Quantum Computing

Exercises 1: Intro to Quantum Physics

1. a) Show that the 'in' and 'out' states defined as:

$$
\begin{aligned}
& |i\rangle=\frac{1}{\sqrt{2}}(|u\rangle+i|d\rangle) \\
& |o\rangle=\frac{1}{\sqrt{2}}(|u\rangle-i|d\rangle)
\end{aligned}
$$

are orthogonal.
b) Calculate the expectation values of σ_{y} in the states $|u\rangle$ and $|i\rangle$, and of σ_{z} in the state $|o\rangle$.
a) We take their product, which in the braket notation reads as $\langle o \mid i\rangle$, and verify that it is 0 :

$$
\langle o \mid i\rangle=\frac{1}{\sqrt{2}}(\langle u|+i\langle d|) \cdot \frac{1}{\sqrt{2}}(|u\rangle+i|d\rangle)=\frac{1}{2}(\langle u \mid u\rangle+i\langle u \mid d\rangle+i\langle d \mid u\rangle-\langle d \mid d\rangle)
$$

Now, recalling $|u\rangle=\binom{1}{0},|d\rangle=\binom{0}{1}$, we have:

$$
\begin{aligned}
& \langle u \mid u\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \cdot\binom{1}{0}=1 \quad, \quad\langle u \mid d\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \cdot\binom{0}{1}=0 \\
& \langle d \mid u\rangle=\left(\begin{array}{ll}
0 & 1
\end{array}\right) \cdot\binom{1}{0}=0 \quad, \quad\langle d \mid d\rangle=\left(\begin{array}{ll}
0 & 1
\end{array}\right) \cdot\binom{0}{1}=1
\end{aligned}
$$

b) We insert the Pauli matrices into the expression for the expectation value of a general operator: $\langle\psi| A|\psi\rangle$

$$
\begin{gathered}
\langle u| \sigma_{y}|u\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{1}{0}=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{0}{i}=0 \\
\langle l| \sigma_{y}|l\rangle=\frac{1}{2}\left(\begin{array}{ll}
1 & -i
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{1}{i}=\frac{1}{2}\left(\begin{array}{ll}
1 & -i
\end{array}\right)\binom{1}{i}=1
\end{gathered}
$$

Alternatively, rather than working with matrix multiplication you can decompose the state into the eigenstates of the desired operator. For example

$$
\langle o| \sigma_{z}|o\rangle=\frac{1}{2}(\langle u|+i\langle d|) \sigma_{z}(|u\rangle-i|d\rangle)
$$

Since we know that $\sigma_{z}|u\rangle=|u\rangle$ and $\sigma_{z}|d\rangle=-|d\rangle$ we have

$$
\langle o| \sigma_{z}|o\rangle=\frac{1}{2}(\langle u|+i\langle d|)(|u\rangle+i|d\rangle)=\frac{1}{2}(1-1)=0
$$

2. a) Normalise the state

$$
|\psi\rangle=3 i|u\rangle+(1-2 i)|d\rangle
$$

b) For this (normalised) state, calculate the probability of getting both positive $(+1)$ and negative (-1) spin eigenvalues by measuring σ_{z}.
a) Normalization means that taking the norm of the state , $|\psi\rangle$, is unity i.e. $\sqrt{\langle\psi \mid \psi\rangle}=1$.

In this case however, we have:

$$
\langle\psi \mid \psi\rangle=(-3 i)(3 i)+(1+2 i)(1-2 i)=9+5=14 \neq 1 .
$$

We should then rescale our state by a constant $\mathrm{N},|\psi\rangle \Rightarrow N \cdot|\psi\rangle$ such that the result is 1 :

$$
\langle N \psi \mid N \psi\rangle=N^{2} \overbrace{\langle\psi \mid \psi\rangle}^{=14}=1 \Rightarrow N=\frac{1}{\sqrt{14}}
$$

So our new normalised state is

$$
|\psi\rangle=\frac{3 i}{\sqrt{14}}|u\rangle+\frac{(1-2 i)}{\sqrt{14}}|d\rangle .
$$

b) $P_{\psi}(+)=|\langle u \mid \psi\rangle|^{2}=\left|\frac{3 i}{\sqrt{14}}\right|^{2}=\frac{9}{14}$. For $P_{\psi}(-)$, we know that this is the only other possible outcome so $P_{\psi}(-)=$ 1- $\frac{9}{14}=\frac{5}{14}$.
3. (Nielsen \mathcal{G} Chuang Ex. 2.11 [Eigendecomposition of a Pauli matrix])

Find the eigenvectors, eigenvalues and diagonal representations of σ_{x}.

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) ; \operatorname{det}\left(\sigma_{x}-\lambda I\right)=\left|\begin{array}{cc}
-\lambda & 1 \\
1 & -\lambda
\end{array}\right|=\lambda^{2}-1=0 \Rightarrow \lambda= \pm 1
$$

For the eigenvalue -1 we have:

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \cdot\binom{a}{b}=\binom{0}{0} \Rightarrow\left\{\begin{array}{l}
a+b=0 \\
a+b=0
\end{array}\right.
$$

The eigenvector is therefore $v_{-}=\binom{a}{-a}$. Choosing $a=1$, we have $v_{-}=\binom{1}{-1}$.
And in an analogous way for the positive eigenvalue +1 :
$v_{+}=\binom{1}{1}$.
The diagonal representation is given by:

$$
\sum_{i} \lambda_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|
$$

In this case we have:

$$
\sigma_{x}=|l\rangle\langle l|-|r\rangle\langle r|
$$

That is, the matrix representation of the operator in the basis $v_{ \pm}$is the diagonal matrix, $D=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. The change of basis matrix, P, that gets us from one matrix representation to the other has as columns the eigenvectors, $P=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$. This is achived in the following way:

$$
P^{-1} \sigma_{x} P=D
$$

4. (Hermitian operators)

For a hermitian matrix \mathbf{A}, that is, a matrix that satisfies $\mathbf{A}=\mathbf{A}^{\dagger}$, show that:
a) Different eigenvalues have orthogonal eigenvectors.
b) All its eigenvalues are real. Does the converse also hold, that is, if the spectrum (the set of all eigenvalues) of a matrix is in \mathbb{R}, is it then a hermitian matrix?
a) [Done in Susskind chapter 3]

Consider two eigenvectors of A

$$
A|\psi\rangle=\lambda_{\psi}|\psi\rangle, A|\psi\rangle=\lambda_{\phi}|\phi\rangle
$$

Now consider:

$$
\langle\psi| A|\phi\rangle=\lambda_{\phi}\langle\psi \mid \phi\rangle
$$

But also since $A=A^{\dagger}$ this can be written as:

$$
\langle\psi| A^{\dagger}|\phi\rangle=\lambda_{\psi}^{*}\langle\psi \mid \phi\rangle=\lambda_{\psi}\langle\psi \mid \phi\rangle
$$

Since eigenvlaues of Hermitian matrices are real as we will show below. These two expressions are equivalent so subtracting one from the other leads to:

$$
\left(\lambda_{\phi}-\lambda_{\psi}\right)\langle\psi \mid \phi\rangle=0
$$

$\lambda_{\psi} \neq \lambda_{\phi}$ so there difference is $\neq 0$. Therefore the eigenvectors must be orthogonal for the above to be true.
b) Consider the matrix element of the adjoint of the operator: $\langle\phi| A^{\dagger}|\psi\rangle$

The operator can either act on the ket (that is, from the left) or on the bra, in which case it is 'daggered':

$$
\langle\phi| A^{\dagger}|\psi\rangle=\langle A \phi \mid \psi\rangle
$$

Now, we know that for any bra(c)ket we have: $\langle\phi \mid \psi\rangle=\langle\psi \mid \phi\rangle^{*}$
Taking this remark into account:

$$
\langle\phi| A^{\dagger}|\psi\rangle=\langle A \phi \mid \psi\rangle=\langle\psi \mid A \phi\rangle^{*}=\langle\psi| A|\phi\rangle^{*}
$$

Particularising for the case where $\phi=\psi$ and taking into account the eigenvalue equation, $\mathbf{A}|\psi\rangle=a|\psi\rangle$, we retrieve the eigenvalues of the operator:

$$
\langle\psi| \mathbf{A}|\psi\rangle=\langle\psi| a|\psi\rangle=a \cdot\langle\psi \mid \psi\rangle=a
$$

Last, by assumption, we have $A^{\dagger}=A$, so:

$$
\langle\psi| A^{\dagger}|\psi\rangle=\langle\psi| A|\psi\rangle=\langle\psi| A|\psi\rangle^{*} \Rightarrow a=a^{*}
$$

The converse is not true in general, e.g. $\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right)$
5. (Unitary operators)

Now, consider a unitary matrix, one for which

$$
U U^{\dagger}=\mathbb{I} \Longleftrightarrow U^{\dagger} U=\mathbb{I} \Longleftrightarrow U^{-1}=U^{\dagger}
$$

holds. Prove that its eigenvalues are of the form $e^{i \theta}$ and that eigenvectors of different eigenvalues must be orthogonal as well.

We start by writing the eigenvalue equation for the unitatry operator U :

$$
U|x\rangle=\lambda_{x}|x\rangle \leftrightarrow\langle x| U^{\dagger}=\langle x| \lambda_{x}^{*}
$$

We have normalised our eigenvector, so:

$$
\langle x \mid x\rangle=1=\langle x| U^{\dagger} U|x\rangle=\langle x| \lambda_{x}^{*} \lambda_{x}|x\rangle=\left|\lambda_{x}\right|^{2}\langle x \mid x\rangle=\left|\lambda_{x}\right|^{2} \Rightarrow\left|\lambda_{x}\right|^{2}=1 \Rightarrow \lambda_{x}=e^{i \theta}
$$

Now, as in the previous example, consider two eigenvector of U :

$$
U|x\rangle=\lambda_{x}|x\rangle, U|y\rangle=\lambda_{y}|y\rangle
$$

If $\lambda_{x} \neq \lambda_{y}$, then:

$$
\langle x \mid y\rangle=\langle x| U^{\dagger} U|y\rangle=\lambda_{x}^{*} \lambda_{y}\langle x \mid y\rangle \Rightarrow\langle x \mid y\rangle\left(1-\lambda_{x}^{*} \lambda_{y}\right)=0 \stackrel{\lambda_{x}}{\Rightarrow}\langle x \mid y\rangle\left(\lambda_{x}-\lambda_{y}\right)=0
$$

