
Lecture Topic: Theoretical Computer Science 101

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 1 / 45

What is a Classical Computer?

Before we consider quantum computing, it is worthwhile to review classical
computing. Modern computers are very complicated.

People hence study many abstractions of the workings of a computer, called
“models of computation”.

We hence formalise a notion of a problem and a model of computation first.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 2 / 45

What is a Classical Computer?

Before we consider quantum computing, it is worthwhile to review classical
computing. Modern computers are very complicated.

People hence study many abstractions of the workings of a computer, called
“models of computation”.

We hence formalise a notion of a problem and a model of computation first.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 2 / 45

What is a Classical Computer?

Before we consider quantum computing, it is worthwhile to review classical
computing. Modern computers are very complicated.

People hence study many abstractions of the workings of a computer, called
“models of computation”.

We hence formalise a notion of a problem and a model of computation first.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 2 / 45

Decision Problem

Much of computer science uses a language-inspired definition of a decision
problem.

One starts with a finite alphabet A.

By stringing elements of the alphabet one after another, one obtains strings of
finite or countably infinite length.

A set of strings is called a language.

A decision problem is defined by a fixed set S , which is a subset of the language
U of all possible strings over the alphabet A.

A particular instance of the decision problem is to decide, given an element
u ∈ U, whether u is included in S .

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 3 / 45

Decision Problem

Much of computer science uses a language-inspired definition of a decision
problem.

One starts with a finite alphabet A.

By stringing elements of the alphabet one after another, one obtains strings of
finite or countably infinite length.

A set of strings is called a language.

A decision problem is defined by a fixed set S , which is a subset of the language
U of all possible strings over the alphabet A.

A particular instance of the decision problem is to decide, given an element
u ∈ U, whether u is included in S .

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 3 / 45

Decision Problem

Much of computer science uses a language-inspired definition of a decision
problem.

One starts with a finite alphabet A.

By stringing elements of the alphabet one after another, one obtains strings of
finite or countably infinite length.

A set of strings is called a language.

A decision problem is defined by a fixed set S , which is a subset of the language
U of all possible strings over the alphabet A.

A particular instance of the decision problem is to decide, given an element
u ∈ U, whether u is included in S .

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 3 / 45

Decision Problem

Much of computer science uses a language-inspired definition of a decision
problem.

One starts with a finite alphabet A.

By stringing elements of the alphabet one after another, one obtains strings of
finite or countably infinite length.

A set of strings is called a language.

A decision problem is defined by a fixed set S , which is a subset of the language
U of all possible strings over the alphabet A.

A particular instance of the decision problem is to decide, given an element
u ∈ U, whether u is included in S .

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 3 / 45

Decision Problem

Much of computer science uses a language-inspired definition of a decision
problem.

One starts with a finite alphabet A.

By stringing elements of the alphabet one after another, one obtains strings of
finite or countably infinite length.

A set of strings is called a language.

A decision problem is defined by a fixed set S , which is a subset of the language
U of all possible strings over the alphabet A.

A particular instance of the decision problem is to decide, given an element
u ∈ U, whether u is included in S .

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 3 / 45

Decision Problem

Much of computer science uses a language-inspired definition of a decision
problem.

One starts with a finite alphabet A.

By stringing elements of the alphabet one after another, one obtains strings of
finite or countably infinite length.

A set of strings is called a language.

A decision problem is defined by a fixed set S , which is a subset of the language
U of all possible strings over the alphabet A.

A particular instance of the decision problem is to decide, given an element
u ∈ U, whether u is included in S .

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 3 / 45

Example (Primality testing.)

For example, the alphabet could be composed of binary digits A = {0, 1}, U could
be the set of all natural numbers encoded in binary, and the set S could be the
binary encodings of prime numbers. The decision problem is the inclusion of an
arbitrary binary encoding of a natural number in the set of S . ♦

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 4 / 45

Models of Computation

Several models of computation were devised. Alan Turing introduced a model,
where

characters are stored on an infinitely long tape,

with a read/write head scanning one square at any given time and having

very simple rules for changing its internal state based on the symbol read and
current state.

Many of these formalisms turn out to be equivalent in computational power,
i.e., any computation that can be carried out with one can be carried out with any
of the others. As it turns out, quantum computing may be one of the first models
where this is not the case.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 5 / 45

https://en.wikipedia.org/wiki/Alan_Turing

Models of Computation

Several models of computation were devised. Alan Turing introduced a model,
where

characters are stored on an infinitely long tape,

with a read/write head scanning one square at any given time and having

very simple rules for changing its internal state based on the symbol read and
current state.

Many of these formalisms turn out to be equivalent in computational power,
i.e., any computation that can be carried out with one can be carried out with any
of the others. As it turns out, quantum computing may be one of the first models
where this is not the case.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 5 / 45

https://en.wikipedia.org/wiki/Alan_Turing

Turing Machine

Formally, one can define a Turing machine using:

a finite, non-empty set Q of objects, representing states

a subset F of Q, corresponding to “accepting” states, where computation
halts

q0 ∈ Q, the initial state

a finite, non-empty set Γ of objects, representing the symbols to be used on a
tape

a partial function δ : (Q \ F)× Γ→ Q × Γ× {−1, 0, 1} where for a
combination of a state and symbol read from the tape, we get the next state,
the symbol to write onto the tape, and an instruction to shift the tape left
(-1), right (+1), or keep in its position (0).

Notice that here we assume the input is on the tape, at the beginning.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 6 / 45

Example (There and Back Again.)

Let us, for example, construct a machine, which scans over an integer encoded in
binary and delimited by “blank” on the tape from left to right, and back. This is
not very useful, but will be easy to understand:

Q = {goingright, goingleft, halt}
F = {halt}
q0 = goingright

Γ = {0, 1, “blank ′′}
δ given by the table below:

Current state Scanned symbol Print symbol Move tape Next state
goingright 0 0 1 goingright
goingright 1 1 1 goingright
goingright blank blank -1 goingleft
goingleft 0 0 -1 goingleft
goingleft 1 1 -1 goingleft
goingleft blank blank 0 halt

♦

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 7 / 45

Exercise 1
Exercise

Consider the following simulator of a Turing machine (TM):

1 def turing(code, tape, initPos = 0, initState = "1"):
position = initPos
state = initState
while state != "halt":
print f"{state} : {position} in {tape}"

6 symbol = tape[position]
(symbol, direction, state) = code[state][symbol]
if symbol != "noWrite": tape[position] = symbol
position += direction

code/ch1/turing.py

Implement a TM, which checks whether an integer, which is encoded on the tape
as in binary and delimited by “blank” on both ends of the tape, is odd.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 8 / 45

Exercise 2

Exercise

Consider the same simulator of a Turing machine (TM) as above. Implement a
TM, which adds two integers, encoded on the tape in binary and delimited by
“blank” on both ends of the tape and between the numbers. Replace both
numbers with the result.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 9 / 45

Exercise 3

Exercise

Consider the simulator of a Turing machine (TM) as above. Implement a TM,
which multiplies two integers, which are encoded on the tape in unary and and
delimited by “blank” on both ends and between the numbers. Do not replace the
numbers, but append the result after yet another blank.

Hint: Unary encoding means that the number of occurrences of a particular
symbol (e.g., “1”) is equal to the number (e.g., “11111” stands for 5).

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 10 / 45

Computability

Computability studies these models of computation, and
asks which problems can be proven to be unsolvable by a computer.

Example (The Halting Problem)

Given a program and an input to the program,
will the program eventually stop when given that input? ♦

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 11 / 45

https://en.wikipedia.org/wiki/Halting_problem

The Halting Problem

A silly solution would be to just run the program with the given input, for a
reasonable amount of time.

If the program stops, we know the program stops.

But if the program doesn’t stop in a “reasonable” amount of time, we cannot
conclude that it won’t stop.

Maybe we didn’t wait long enough.

Alan Turing proved the Halting problem to be undecidable in 1936.

This could be seen as a special case of Gödel’s First Incompleteness Theorem
(1929).

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 12 / 45

The Halting Problem

A silly solution would be to just run the program with the given input, for a
reasonable amount of time.

If the program stops, we know the program stops.

But if the program doesn’t stop in a “reasonable” amount of time, we cannot
conclude that it won’t stop.

Maybe we didn’t wait long enough.

Alan Turing proved the Halting problem to be undecidable in 1936.

This could be seen as a special case of Gödel’s First Incompleteness Theorem
(1929).

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 12 / 45

The Halting Problem

A silly solution would be to just run the program with the given input, for a
reasonable amount of time.

If the program stops, we know the program stops.

But if the program doesn’t stop in a “reasonable” amount of time, we cannot
conclude that it won’t stop.

Maybe we didn’t wait long enough.

Alan Turing proved the Halting problem to be undecidable in 1936.

This could be seen as a special case of Gödel’s First Incompleteness Theorem
(1929).

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 12 / 45

The Halting Problem

A silly solution would be to just run the program with the given input, for a
reasonable amount of time.

If the program stops, we know the program stops.

But if the program doesn’t stop in a “reasonable” amount of time, we cannot
conclude that it won’t stop.

Maybe we didn’t wait long enough.

Alan Turing proved the Halting problem to be undecidable in 1936.

This could be seen as a special case of Gödel’s First Incompleteness Theorem
(1929).

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 12 / 45

The Halting Problem

A silly solution would be to just run the program with the given input, for a
reasonable amount of time.

If the program stops, we know the program stops.

But if the program doesn’t stop in a “reasonable” amount of time, we cannot
conclude that it won’t stop.

Maybe we didn’t wait long enough.

Alan Turing proved the Halting problem to be undecidable in 1936.

This could be seen as a special case of Gödel’s First Incompleteness Theorem
(1929).

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 12 / 45

The Halting Problem

A silly solution would be to just run the program with the given input, for a
reasonable amount of time.

If the program stops, we know the program stops.

But if the program doesn’t stop in a “reasonable” amount of time, we cannot
conclude that it won’t stop.

Maybe we didn’t wait long enough.

Alan Turing proved the Halting problem to be undecidable in 1936.

This could be seen as a special case of Gödel’s First Incompleteness Theorem
(1929).

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 12 / 45

The Halting Problem

A silly solution would be to just run the program with the given input, for a
reasonable amount of time.

If the program stops, we know the program stops.

But if the program doesn’t stop in a “reasonable” amount of time, we cannot
conclude that it won’t stop.

Maybe we didn’t wait long enough.

Alan Turing proved the Halting problem to be undecidable in 1936.

This could be seen as a special case of Gödel’s First Incompleteness Theorem
(1929).

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 12 / 45

Hilbert’s Tenth Problem

To give another example,

Example (Hilbert’s Tenth Problem)

Given a polynomial equation with integer coefficients and a finite number of
unknowns, is there a solution with all unknowns taking integer values? ♦

In 1970, Yuri Matiyasevich showed the undecidability Hilbert’s Tenth Problem,
building upon the work of Martin Davis, Hilary Putnam and Julia Robinson.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 13 / 45

https://en.wikipedia.org/wiki/Halting_problem

Complexity

Some problems are solvable by a computer,
but require such a long time to compute that the solution is impractical.

Here, we express the run time as a function from the dimensions of the input to
the numbers of steps of a Turing machine (or similar).

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 14 / 45

Complexity

Some problems are solvable by a computer,
but require such a long time to compute that the solution is impractical.

Here, we express the run time as a function from the dimensions of the input to
the numbers of steps of a Turing machine (or similar).

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 14 / 45

Example (Fischer-Rabin Theorem.)

For example, let us have a logic featuring 0, 1, the usual addition, and where the
axioms are a closure of the following:

¬(0 = x + 1)

x + 1 = y + 1⇒ x = y

x + 0 = x

x + (y + 1) = (x + y) + 1

For a first-order formula P(x) (i.e., with the universal and existential
quantifiers) with a free variable x , (P(0) ∧ ∀x(P(x)⇒ P(x + 1)))⇒ ∀yP(y)
(“induction”).

This is known as the Presburger arithmetic.

Fischer and Rabin proved in 1974 that any classical algorithm that decides the
truth of a statement of length n in Presburger arithmetic has a runtime of at least
22cn for some constant c , because it may need to produce an output of that size.

♦

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 15 / 45

Example (Fischer-Rabin Theorem.)

For example, let us have a logic featuring 0, 1, the usual addition, and where the
axioms are a closure of the following:

¬(0 = x + 1)

x + 1 = y + 1⇒ x = y

x + 0 = x

x + (y + 1) = (x + y) + 1

For a first-order formula P(x) (i.e., with the universal and existential
quantifiers) with a free variable x , (P(0) ∧ ∀x(P(x)⇒ P(x + 1)))⇒ ∀yP(y)
(“induction”).

This is known as the Presburger arithmetic.

Fischer and Rabin proved in 1974 that any classical algorithm that decides the
truth of a statement of length n in Presburger arithmetic has a runtime of at least
22cn for some constant c , because it may need to produce an output of that size.

♦

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 15 / 45

Complexity theory

Complexity theory deals with questions concerning the time or space requirements
of given problems: the computational cost. For algorithms working with finite
strings from a finite alphabet, this is often surprisingly easy.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 16 / 45

Analysis of algorithms

The term analysis of algorithms is used to describe the study of the performance
of computer programs on a scientific basis.

One such approach concentrates on determining the growth of the worst-case
performance of the algorithm (an “upper bound”): An algorithm’s “order”
suggests asymptotics of the number of operations carried out by the algorithm on
a particular input, as a function of the dimensions of the input.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 17 / 45

Analysis of algorithms

The term analysis of algorithms is used to describe the study of the performance
of computer programs on a scientific basis.

One such approach concentrates on determining the growth of the worst-case
performance of the algorithm (an “upper bound”): An algorithm’s “order”
suggests asymptotics of the number of operations carried out by the algorithm on
a particular input, as a function of the dimensions of the input.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 17 / 45

O notation in run-time analysis

Example

For example, we might find that a certain algorithm takes time
T (n) = 3n2 − 2n + 6 to complete a problem of size n.

If we ignore

constants (which makes sense because those depend on the particular
hardware/virtual machine the program is run on), and

slower growing terms such as 2n,

we could say “T (n) grows at the order of n2”. ♦

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 18 / 45

O notation in run-time analysis

Example

For example, we might find that a certain algorithm takes time
T (n) = 3n2 − 2n + 6 to complete a problem of size n.

If we ignore

constants (which makes sense because those depend on the particular
hardware/virtual machine the program is run on), and

slower growing terms such as 2n,

we could say “T (n) grows at the order of n2”. ♦

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 18 / 45

O notation in run-time analysis

Example

For example, we might find that a certain algorithm takes time
T (n) = 3n2 − 2n + 6 to complete a problem of size n.

If we ignore

constants (which makes sense because those depend on the particular
hardware/virtual machine the program is run on), and

slower growing terms such as 2n,

we could say “T (n) grows at the order of n2”. ♦

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 18 / 45

Asymptotic behaviour of functions and O notation

Let us introduce a formalisation of the notion of asymptotics.

The formalisation known as “Big O notation” or “Bachmann–Landau notation”
goes back at least to 1892 and Paul Gustav Heinrich Bachmann, according to
some sources, although it was reinvented many times over.

Suppose our A requires T (n) operations to complete the algorithm in the longest
possible case.

Then we may say A is O(g(n)) if |T (n)/g(n)| is bounded from above as n→∞.

The fastest growing term in T (n) dominates all the others as n gets bigger
and so is the most significant measure of complexity.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 19 / 45

Asymptotic behaviour of functions and O notation

Let us introduce a formalisation of the notion of asymptotics.

The formalisation known as “Big O notation” or “Bachmann–Landau notation”
goes back at least to 1892 and Paul Gustav Heinrich Bachmann, according to
some sources, although it was reinvented many times over.

Suppose our A requires T (n) operations to complete the algorithm in the longest
possible case.

Then we may say A is O(g(n)) if |T (n)/g(n)| is bounded from above as n→∞.

The fastest growing term in T (n) dominates all the others as n gets bigger
and so is the most significant measure of complexity.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 19 / 45

Asymptotic behaviour of functions and O notation

Let us introduce a formalisation of the notion of asymptotics.

The formalisation known as “Big O notation” or “Bachmann–Landau notation”
goes back at least to 1892 and Paul Gustav Heinrich Bachmann, according to
some sources, although it was reinvented many times over.

Suppose our A requires T (n) operations to complete the algorithm in the longest
possible case.

Then we may say A is O(g(n)) if |T (n)/g(n)| is bounded from above as n→∞.

The fastest growing term in T (n) dominates all the others as n gets bigger
and so is the most significant measure of complexity.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 19 / 45

Asymptotic behaviour of functions and O notation

Let us introduce a formalisation of the notion of asymptotics.

The formalisation known as “Big O notation” or “Bachmann–Landau notation”
goes back at least to 1892 and Paul Gustav Heinrich Bachmann, according to
some sources, although it was reinvented many times over.

Suppose our A requires T (n) operations to complete the algorithm in the longest
possible case.

Then we may say A is O(g(n)) if |T (n)/g(n)| is bounded from above as n→∞.

The fastest growing term in T (n) dominates all the others as n gets bigger
and so is the most significant measure of complexity.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 19 / 45

Asymptotic behaviour of functions and O notation

Let us introduce a formalisation of the notion of asymptotics.

The formalisation known as “Big O notation” or “Bachmann–Landau notation”
goes back at least to 1892 and Paul Gustav Heinrich Bachmann, according to
some sources, although it was reinvented many times over.

Suppose our A requires T (n) operations to complete the algorithm in the longest
possible case.

Then we may say A is O(g(n)) if |T (n)/g(n)| is bounded from above as n→∞.

The fastest growing term in T (n) dominates all the others as n gets bigger
and so is the most significant measure of complexity.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 19 / 45

Asymptotic behaviour of functions and O notation

Let us introduce a formalisation of the notion of asymptotics.

The formalisation known as “Big O notation” or “Bachmann–Landau notation”
goes back at least to 1892 and Paul Gustav Heinrich Bachmann, according to
some sources, although it was reinvented many times over.

Suppose our A requires T (n) operations to complete the algorithm in the longest
possible case.

Then we may say A is O(g(n)) if |T (n)/g(n)| is bounded from above as n→∞.

The fastest growing term in T (n) dominates all the others as n gets bigger
and so is the most significant measure of complexity.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 19 / 45

Asymptotic behaviour of functions and O notation

Similarly to “Big O”, there are 4 more notions

Notation Definition Analogy

f (n) = O(g(n)) below ≤
f (n) = o(g(n)) below <
f (n) = Ω(g(n)) g(n) = O(f (n)) ≥
f (n) = ω(g(n)) g(n) = o(f (n)) >
f (n) = Θ(g(n)) f (n) = O(g(n)) and g(n) = O(f (n)) =

Table: An overview of the Bachmann–Landau notation.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 20 / 45

f (x) = O(g(x)): f does not grow faster than g

Definition

We write:

f (x) = O(g(x)) (or, to be more precise, f (x) = O(g(x)) for x →∞)

if and only if there exist constants N and C > 0 such that

|f (x)| ≤ C |g(x)| for all x > N or, equivalently,
|f (x)|
|g(x)|

≤ C for all x > N.

That is, |f (x)/g(x)| is bounded from above as x →∞.

Intuitively, this means that f does not grow faster than g .

The letter “O” is read as “order” or just “Oh”.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 21 / 45

f (x) = O(g(x)): f does not grow faster than g

Definition

We write:

f (x) = O(g(x)) (or, to be more precise, f (x) = O(g(x)) for x →∞)

if and only if there exist constants N and C > 0 such that

|f (x)| ≤ C |g(x)| for all x > N or, equivalently,
|f (x)|
|g(x)|

≤ C for all x > N.

That is, |f (x)/g(x)| is bounded from above as x →∞.

Intuitively, this means that f does not grow faster than g .

The letter “O” is read as “order” or just “Oh”.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 21 / 45

f (x) = O(g(x)): f does not grow faster than g

Definition

We write:

f (x) = O(g(x)) (or, to be more precise, f (x) = O(g(x)) for x →∞)

if and only if there exist constants N and C > 0 such that

|f (x)| ≤ C |g(x)| for all x > N or, equivalently,
|f (x)|
|g(x)|

≤ C for all x > N.

That is, |f (x)/g(x)| is bounded from above as x →∞.

Intuitively, this means that f does not grow faster than g .

The letter “O” is read as “order” or just “Oh”.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 21 / 45

f (x) = O(g(x)): f does not grow faster than g

Definition

We write:

f (x) = O(g(x)) (or, to be more precise, f (x) = O(g(x)) for x →∞)

if and only if there exist constants N and C > 0 such that

|f (x)| ≤ C |g(x)| for all x > N or, equivalently,
|f (x)|
|g(x)|

≤ C for all x > N.

That is, |f (x)/g(x)| is bounded from above as x →∞.

Intuitively, this means that f does not grow faster than g .

The letter “O” is read as “order” or just “Oh”.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 21 / 45

f (x) = Ω(g(x)): f does not grow slower than g

Definition

We also write:
f (x) = Ω(g(x)) (for x →∞)

if and only if there exist constants N and C > 0 such that

|f (x)| ≥ C |g(x)| for all x > N or, equivalently,
|f (x)|
|g(x)|

≥ C for all x > N.

That is, |f (x)/g(x)| is bounded from below by a positive (i.e., non-zero) number
as x →∞.

Intuitively, this means that f does not grow more slowly than g
(i.e., g(x) = O(f (x))).

The letter “Ω” is read as “omega” or just “bounded from below by”.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 22 / 45

f (x) = Ω(g(x)): f does not grow slower than g

Definition

We also write:
f (x) = Ω(g(x)) (for x →∞)

if and only if there exist constants N and C > 0 such that

|f (x)| ≥ C |g(x)| for all x > N or, equivalently,
|f (x)|
|g(x)|

≥ C for all x > N.

That is, |f (x)/g(x)| is bounded from below by a positive (i.e., non-zero) number
as x →∞.

Intuitively, this means that f does not grow more slowly than g
(i.e., g(x) = O(f (x))).

The letter “Ω” is read as “omega” or just “bounded from below by”.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 22 / 45

f (x) = Ω(g(x)): f does not grow slower than g

Definition

We also write:
f (x) = Ω(g(x)) (for x →∞)

if and only if there exist constants N and C > 0 such that

|f (x)| ≥ C |g(x)| for all x > N or, equivalently,
|f (x)|
|g(x)|

≥ C for all x > N.

That is, |f (x)/g(x)| is bounded from below by a positive (i.e., non-zero) number
as x →∞.

Intuitively, this means that f does not grow more slowly than g
(i.e., g(x) = O(f (x))).

The letter “Ω” is read as “omega” or just “bounded from below by”.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 22 / 45

f (x) = Ω(g(x)): f does not grow slower than g

Definition

We also write:
f (x) = Ω(g(x)) (for x →∞)

if and only if there exist constants N and C > 0 such that

|f (x)| ≥ C |g(x)| for all x > N or, equivalently,
|f (x)|
|g(x)|

≥ C for all x > N.

That is, |f (x)/g(x)| is bounded from below by a positive (i.e., non-zero) number
as x →∞.

Intuitively, this means that f does not grow more slowly than g
(i.e., g(x) = O(f (x))).

The letter “Ω” is read as “omega” or just “bounded from below by”.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 22 / 45

f (x) = Θ(g(x)): f grows at the same rate as g

Definition

f (x) = Θ(g(x)) (for x →∞)

if and only if there exist constants N, C and D > 0 such that

D|g(x)| ≤ |f (x)| ≤ C |g(x)| for all x > N ⇐⇒ D ≤ |f (x)|
|g(x)|

≤ C for all x > N.

That is, |f (x)/g(x)| is bounded from both above and below by positive numbers
as x →∞.

Intuitively, this means that f grows roughly at the same rate as g .

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 23 / 45

f (x) = Θ(g(x)): f grows at the same rate as g

Definition

f (x) = Θ(g(x)) (for x →∞)

if and only if there exist constants N, C and D > 0 such that

D|g(x)| ≤ |f (x)| ≤ C |g(x)| for all x > N ⇐⇒ D ≤ |f (x)|
|g(x)|

≤ C for all x > N.

That is, |f (x)/g(x)| is bounded from both above and below by positive numbers
as x →∞.

Intuitively, this means that f grows roughly at the same rate as g .

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 23 / 45

f (x) = Θ(g(x)): f grows at the same rate as g

Definition

f (x) = Θ(g(x)) (for x →∞)

if and only if there exist constants N, C and D > 0 such that

D|g(x)| ≤ |f (x)| ≤ C |g(x)| for all x > N ⇐⇒ D ≤ |f (x)|
|g(x)|

≤ C for all x > N.

That is, |f (x)/g(x)| is bounded from both above and below by positive numbers
as x →∞.

Intuitively, this means that f grows roughly at the same rate as g .

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 23 / 45

Polynomial time: order O(nk)

Example

Let us consider algorithm A with parameter n and polynomial run-time O(nk). By
our definition of O, the algorithm is of order O(nk) if |T (n)/nk | is bounded from
above as n→∞, or — equivalently — there are real constants a0, a1, . . . , ak with
ak > 0 so that A requires

akn
k + ak−1n

k−1 + · · ·+ a1n + a0

operations to complete in the worst case.
Note k is an integer constant independent of the algorithm input and n. There
may be no such polynomial for the number of operations in terms of n.
If there is such a polynomial, A is usually considered “good”
as it does not require “very many” operations. ♦

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 24 / 45

Polynomial time: order O(nk)

Example

Let us consider algorithm A with parameter n and polynomial run-time O(nk). By
our definition of O, the algorithm is of order O(nk) if |T (n)/nk | is bounded from
above as n→∞, or — equivalently — there are real constants a0, a1, . . . , ak with
ak > 0 so that A requires

akn
k + ak−1n

k−1 + · · ·+ a1n + a0

operations to complete in the worst case.
Note k is an integer constant independent of the algorithm input and n. There
may be no such polynomial for the number of operations in terms of n.
If there is such a polynomial, A is usually considered “good”
as it does not require “very many” operations. ♦

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 24 / 45

Polynomial time: order O(nk)

Example

Let us consider algorithm A with parameter n and polynomial run-time O(nk). By
our definition of O, the algorithm is of order O(nk) if |T (n)/nk | is bounded from
above as n→∞, or — equivalently — there are real constants a0, a1, . . . , ak with
ak > 0 so that A requires

akn
k + ak−1n

k−1 + · · ·+ a1n + a0

operations to complete in the worst case.
Note k is an integer constant independent of the algorithm input and n. There
may be no such polynomial for the number of operations in terms of n.
If there is such a polynomial, A is usually considered “good”
as it does not require “very many” operations. ♦

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 24 / 45

Multiple parameters

This notation can also be used with multiple parameters and with other
expressions on the right hand side of the equal sign. The notation:

f (n,m) = n2 + m3 + O(n + m)

represents the statement:

there exist C ,N such that, for all n,m > N : f (n,m) ≤ n2 + m3 + C (n + m).

Similarly, O(mn2) would mean the number of operations the algorithm carries out
is a polynomial in two indeterminates n and m, with the highest degree term
being mn2, e.g., 2mn2 + 4mn − 6n2 − 2n + 7. This is most useful if we can relate
m and n
(e.g., in dense graphs we have m = O(n2), so O(mn2) would mean O(n4) there).

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 25 / 45

Multiple parameters

This notation can also be used with multiple parameters and with other
expressions on the right hand side of the equal sign. The notation:

f (n,m) = n2 + m3 + O(n + m)

represents the statement:

there exist C ,N such that, for all n,m > N : f (n,m) ≤ n2 + m3 + C (n + m).

Similarly, O(mn2) would mean the number of operations the algorithm carries out
is a polynomial in two indeterminates n and m, with the highest degree term
being mn2, e.g., 2mn2 + 4mn − 6n2 − 2n + 7. This is most useful if we can relate
m and n
(e.g., in dense graphs we have m = O(n2), so O(mn2) would mean O(n4) there).

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 25 / 45

Multiple parameters

This notation can also be used with multiple parameters and with other
expressions on the right hand side of the equal sign. The notation:

f (n,m) = n2 + m3 + O(n + m)

represents the statement:

there exist C ,N such that, for all n,m > N : f (n,m) ≤ n2 + m3 + C (n + m).

Similarly, O(mn2) would mean the number of operations the algorithm carries out
is a polynomial in two indeterminates n and m, with the highest degree term
being mn2, e.g., 2mn2 + 4mn − 6n2 − 2n + 7. This is most useful if we can relate
m and n
(e.g., in dense graphs we have m = O(n2), so O(mn2) would mean O(n4) there).

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 25 / 45

Classes of functions commonly met in algorithm analysis

Notation Name

O(1) constant
O(log(n)) logarithmic
O((log(n))c) polylogarithmic
O(n) linear
O(n2) quadratic
O(nc) polynomial
O(cn) exponential
O(n!) factorial

Here, c > 0 is a constant. Once again, if a function f (n) is a sum of functions,
the fastest growing one determines the order of f (n).

E.g.: If f (n) = 10 log(n) + 5(log(n))3 + 7n + 3n2 + 6n3, then f (n) = O(n3).

Caveat: the number of summands must be constant and not depend on n.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 26 / 45

Classes of functions commonly met in algorithm analysis

Notation Name

O(1) constant
O(log(n)) logarithmic
O((log(n))c) polylogarithmic
O(n) linear
O(n2) quadratic
O(nc) polynomial
O(cn) exponential
O(n!) factorial

Here, c > 0 is a constant. Once again, if a function f (n) is a sum of functions,
the fastest growing one determines the order of f (n).

E.g.: If f (n) = 10 log(n) + 5(log(n))3 + 7n + 3n2 + 6n3, then f (n) = O(n3).

Caveat: the number of summands must be constant and not depend on n.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 26 / 45

Classes of functions commonly met in algorithm analysis

Notation Name

O(1) constant
O(log(n)) logarithmic
O((log(n))c) polylogarithmic
O(n) linear
O(n2) quadratic
O(nc) polynomial
O(cn) exponential
O(n!) factorial

Here, c > 0 is a constant. Once again, if a function f (n) is a sum of functions,
the fastest growing one determines the order of f (n).

E.g.: If f (n) = 10 log(n) + 5(log(n))3 + 7n + 3n2 + 6n3, then f (n) = O(n3).

Caveat: the number of summands must be constant and not depend on n.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 26 / 45

Classes of functions commonly met in algorithm analysis

Notation Name

O(1) constant
O(log(n)) logarithmic
O((log(n))c) polylogarithmic
O(n) linear
O(n2) quadratic
O(nc) polynomial
O(cn) exponential
O(n!) factorial

Here, c > 0 is a constant. Once again, if a function f (n) is a sum of functions,
the fastest growing one determines the order of f (n).

E.g.: If f (n) = 10 log(n) + 5(log(n))3 + 7n + 3n2 + 6n3, then f (n) = O(n3).

Caveat: the number of summands must be constant and not depend on n.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 26 / 45

Notes on growth of functions

O(nc) and O(cn) are very different.

The former is polynomial, the latter is exponential and grows much, much faster,
no matter how big the constant c is.

A function that grows faster than O(nc) is called superpolynomial. One that
grows slower than O(cn) is called subexponential.

An algorithm can require time that is both superpolynomial and subexponential.

O(log n) is exactly the same as O(log(nc)).

The logarithms differ only by a constant factor,
and the big O notation ignores such constant factors.

Similarly, logarithms with different constant bases are equivalent.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 27 / 45

Notes on growth of functions

O(nc) and O(cn) are very different.

The former is polynomial, the latter is exponential and grows much, much faster,
no matter how big the constant c is.

A function that grows faster than O(nc) is called superpolynomial. One that
grows slower than O(cn) is called subexponential.

An algorithm can require time that is both superpolynomial and subexponential.

O(log n) is exactly the same as O(log(nc)).

The logarithms differ only by a constant factor,
and the big O notation ignores such constant factors.

Similarly, logarithms with different constant bases are equivalent.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 27 / 45

Notes on growth of functions

O(nc) and O(cn) are very different.

The former is polynomial, the latter is exponential and grows much, much faster,
no matter how big the constant c is.

A function that grows faster than O(nc) is called superpolynomial. One that
grows slower than O(cn) is called subexponential.

An algorithm can require time that is both superpolynomial and subexponential.

O(log n) is exactly the same as O(log(nc)).

The logarithms differ only by a constant factor,
and the big O notation ignores such constant factors.

Similarly, logarithms with different constant bases are equivalent.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 27 / 45

Notes on growth of functions

O(nc) and O(cn) are very different.

The former is polynomial, the latter is exponential and grows much, much faster,
no matter how big the constant c is.

A function that grows faster than O(nc) is called superpolynomial. One that
grows slower than O(cn) is called subexponential.

An algorithm can require time that is both superpolynomial and subexponential.

O(log n) is exactly the same as O(log(nc)).

The logarithms differ only by a constant factor,
and the big O notation ignores such constant factors.

Similarly, logarithms with different constant bases are equivalent.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 27 / 45

Notes on growth of functions

O(nc) and O(cn) are very different.

The former is polynomial, the latter is exponential and grows much, much faster,
no matter how big the constant c is.

A function that grows faster than O(nc) is called superpolynomial. One that
grows slower than O(cn) is called subexponential.

An algorithm can require time that is both superpolynomial and subexponential.

O(log n) is exactly the same as O(log(nc)).

The logarithms differ only by a constant factor,
and the big O notation ignores such constant factors.

Similarly, logarithms with different constant bases are equivalent.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 27 / 45

Notes on growth of functions

O(nc) and O(cn) are very different.

The former is polynomial, the latter is exponential and grows much, much faster,
no matter how big the constant c is.

A function that grows faster than O(nc) is called superpolynomial. One that
grows slower than O(cn) is called subexponential.

An algorithm can require time that is both superpolynomial and subexponential.

O(log n) is exactly the same as O(log(nc)).

The logarithms differ only by a constant factor,
and the big O notation ignores such constant factors.

Similarly, logarithms with different constant bases are equivalent.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 27 / 45

Notes on growth of functions

O(nc) and O(cn) are very different.

The former is polynomial, the latter is exponential and grows much, much faster,
no matter how big the constant c is.

A function that grows faster than O(nc) is called superpolynomial. One that
grows slower than O(cn) is called subexponential.

An algorithm can require time that is both superpolynomial and subexponential.

O(log n) is exactly the same as O(log(nc)).

The logarithms differ only by a constant factor,
and the big O notation ignores such constant factors.

Similarly, logarithms with different constant bases are equivalent.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 27 / 45

Exercise

Prove that any later function in the above table grows faster than any earlier
function.

Hint: you need several small proofs. Also, each function is differentiable.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 28 / 45

Exercise

Prove that any later function in the above table grows faster than any earlier
function.

Hint: you need several small proofs. Also, each function is differentiable.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 28 / 45

P and NP

In complexity theory there are two commonly used classes of (decision) problems:

The class P consists of all those decision problems that can be solved on a
deterministic Turing machine in an amount of time that is polynomial in the
size of the input, i.e., O(nk) for some constant k . Intuitively, we think of the
problems in P as those that can be solved “reasonably fast”.

The class NP consists of all those decision problems whose solutions (called
witnesses) can be verified in polynomial time on a Turing machine. That is,
given a proposed solution to the problem, we can check that it really is a
solution in polynomial time.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 29 / 45

Defining NP

A language L ⊂ {0, 1}∗ is in NP, if there exists a deterministic Turing machine M
and a polynomial p such that upon receipt of:

an input string x , e.g., x ∈ {0, 1}∗,
a witness of length p(|x |)

M runs in time polynomial in |x | and

for all x ∈ L, there exists y such that M accepts (x , y) (“completeness”),

for all x 6∈ L, for all y , (x , y) is rejected (“soundness”).

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 30 / 45

Randomized complexity classes
It seems quite unlikely that the Turing machine can produce a truly random
number.

But would the availability of a source of randomness make a Turing machine more
powerful?

We will formalise the question using the classes of Probabilistic Polynomial Time
(PP) and Bounded-Error Probabilistic Polynomial Time (BPP), where BPP ⊂ PP.

It is not known whether BPP is equal to P or NP, i.e., whether the source of
randomness helps at all or whether having access to a source of randomness makes
a deterministic Turing machine as powerful as a non-deterministic Turing machine,
despite much attention paid to the questions over the past couple of decades.

On the other hand, it is known that NP ⊂ PP and, in a somewhat different
formalisation of Bennett and Gill, we will see that the source of randomness does
render many classes of computation (LOGSPACEA, PA, NPA, PPA, and
PSPACEA) properly contained in this order, with probability 1 with respect to
random oracles A.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 31 / 45

Randomized complexity classes
It seems quite unlikely that the Turing machine can produce a truly random
number.

But would the availability of a source of randomness make a Turing machine more
powerful?

We will formalise the question using the classes of Probabilistic Polynomial Time
(PP) and Bounded-Error Probabilistic Polynomial Time (BPP), where BPP ⊂ PP.

It is not known whether BPP is equal to P or NP, i.e., whether the source of
randomness helps at all or whether having access to a source of randomness makes
a deterministic Turing machine as powerful as a non-deterministic Turing machine,
despite much attention paid to the questions over the past couple of decades.

On the other hand, it is known that NP ⊂ PP and, in a somewhat different
formalisation of Bennett and Gill, we will see that the source of randomness does
render many classes of computation (LOGSPACEA, PA, NPA, PPA, and
PSPACEA) properly contained in this order, with probability 1 with respect to
random oracles A.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 31 / 45

Randomized complexity classes
It seems quite unlikely that the Turing machine can produce a truly random
number.

But would the availability of a source of randomness make a Turing machine more
powerful?

We will formalise the question using the classes of Probabilistic Polynomial Time
(PP) and Bounded-Error Probabilistic Polynomial Time (BPP), where BPP ⊂ PP.

It is not known whether BPP is equal to P or NP, i.e., whether the source of
randomness helps at all or whether having access to a source of randomness makes
a deterministic Turing machine as powerful as a non-deterministic Turing machine,
despite much attention paid to the questions over the past couple of decades.

On the other hand, it is known that NP ⊂ PP and, in a somewhat different
formalisation of Bennett and Gill, we will see that the source of randomness does
render many classes of computation (LOGSPACEA, PA, NPA, PPA, and
PSPACEA) properly contained in this order, with probability 1 with respect to
random oracles A.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 31 / 45

Randomized complexity classes
It seems quite unlikely that the Turing machine can produce a truly random
number.

But would the availability of a source of randomness make a Turing machine more
powerful?

We will formalise the question using the classes of Probabilistic Polynomial Time
(PP) and Bounded-Error Probabilistic Polynomial Time (BPP), where BPP ⊂ PP.

It is not known whether BPP is equal to P or NP, i.e., whether the source of
randomness helps at all or whether having access to a source of randomness makes
a deterministic Turing machine as powerful as a non-deterministic Turing machine,
despite much attention paid to the questions over the past couple of decades.

On the other hand, it is known that NP ⊂ PP and, in a somewhat different
formalisation of Bennett and Gill, we will see that the source of randomness does
render many classes of computation (LOGSPACEA, PA, NPA, PPA, and
PSPACEA) properly contained in this order, with probability 1 with respect to
random oracles A.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 31 / 45

Randomized complexity classes
It seems quite unlikely that the Turing machine can produce a truly random
number.

But would the availability of a source of randomness make a Turing machine more
powerful?

We will formalise the question using the classes of Probabilistic Polynomial Time
(PP) and Bounded-Error Probabilistic Polynomial Time (BPP), where BPP ⊂ PP.

It is not known whether BPP is equal to P or NP, i.e., whether the source of
randomness helps at all or whether having access to a source of randomness makes
a deterministic Turing machine as powerful as a non-deterministic Turing machine,
despite much attention paid to the questions over the past couple of decades.

On the other hand, it is known that NP ⊂ PP and, in a somewhat different
formalisation of Bennett and Gill, we will see that the source of randomness does
render many classes of computation (LOGSPACEA, PA, NPA, PPA, and
PSPACEA) properly contained in this order, with probability 1 with respect to
random oracles A.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 31 / 45

Defining randomized computation

In two important definitions of randomized computation, one considers a
deterministic Turing machine M, which receives:

an input string x , such as x ∈ {0, 1}∗,
a random string y , such as a realization y ∈ {0, 1}∗ of a random variable Y

and

accepts the input (x , y) for all x that we would like to be accepted with a
certain probability,

rejects (x , y) for all x we would like to be rejected with a certain probability,

where the probability is with respect to Y .

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 32 / 45

Defining PP

A language L ⊂ {0, 1}∗ is in PP, if there exists a deterministic Turing machine M
and a polynomial p such that upon receipt of:

an input string x , e.g., x ∈ {0, 1}∗,
a realisation y of length p(|x |), e.g., y ∈ {0, 1}p(|x |), of a random variable Y

M runs in time polynomial in |x | and

for all x ∈ L, (x , y) is accepted with a probability strictly greater than 1/2,

for all x 6∈ L, (x , y) is accepted with a probability less than or equal than 1/2,

where the probability is with respect to Y .

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 33 / 45

Explaining PP

In PP, we hence ask only for some “distinguishability”.

The “distinguishing” can, however, take arbitrarily long.

Consider, for instance, a Turing machine M of the definition, that

for all x ∈ L, (x , y) is accepted with probability 1/2 + 1/2|x |
for all x 6∈ L, (x , y) is accepted with probability 1/2− 1/2|x |.

For any number of trials, there is an |x | that makes those necessary to achieve a
fixed probability of the answer being correct.

Notice that the number of trials grows exponentially with |x |.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 34 / 45

Explaining PP

In PP, we hence ask only for some “distinguishability”.

The “distinguishing” can, however, take arbitrarily long.

Consider, for instance, a Turing machine M of the definition, that

for all x ∈ L, (x , y) is accepted with probability 1/2 + 1/2|x |
for all x 6∈ L, (x , y) is accepted with probability 1/2− 1/2|x |.

For any number of trials, there is an |x | that makes those necessary to achieve a
fixed probability of the answer being correct.

Notice that the number of trials grows exponentially with |x |.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 34 / 45

Explaining PP

In PP, we hence ask only for some “distinguishability”.

The “distinguishing” can, however, take arbitrarily long.

Consider, for instance, a Turing machine M of the definition, that

for all x ∈ L, (x , y) is accepted with probability 1/2 + 1/2|x |
for all x 6∈ L, (x , y) is accepted with probability 1/2− 1/2|x |.

For any number of trials, there is an |x | that makes those necessary to achieve a
fixed probability of the answer being correct.

Notice that the number of trials grows exponentially with |x |.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 34 / 45

Explaining PP

In PP, we hence ask only for some “distinguishability”.

The “distinguishing” can, however, take arbitrarily long.

Consider, for instance, a Turing machine M of the definition, that

for all x ∈ L, (x , y) is accepted with probability 1/2 + 1/2|x |
for all x 6∈ L, (x , y) is accepted with probability 1/2− 1/2|x |.

For any number of trials, there is an |x | that makes those necessary to achieve a
fixed probability of the answer being correct.

Notice that the number of trials grows exponentially with |x |.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 34 / 45

Explaining PP

In PP, we hence ask only for some “distinguishability”.

The “distinguishing” can, however, take arbitrarily long.

Consider, for instance, a Turing machine M of the definition, that

for all x ∈ L, (x , y) is accepted with probability 1/2 + 1/2|x |
for all x 6∈ L, (x , y) is accepted with probability 1/2− 1/2|x |.

For any number of trials, there is an |x | that makes those necessary to achieve a
fixed probability of the answer being correct.

Notice that the number of trials grows exponentially with |x |.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 34 / 45

An Alternative Definition of PP

Alternatively, PP is the set of languages, for which there is a variant of a
non-deterministic Turing machine that stops in polynomial time with the
acceptance condition being that more than one half of computational paths
accept.

For this reason, one sometimes refers to PP as Majority-P.

It is thus clear that NP ⊆ PP.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 35 / 45

An Alternative Definition of PP

Alternatively, PP is the set of languages, for which there is a variant of a
non-deterministic Turing machine that stops in polynomial time with the
acceptance condition being that more than one half of computational paths
accept.

For this reason, one sometimes refers to PP as Majority-P.

It is thus clear that NP ⊆ PP.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 35 / 45

An Alternative Definition of PP

Alternatively, PP is the set of languages, for which there is a variant of a
non-deterministic Turing machine that stops in polynomial time with the
acceptance condition being that more than one half of computational paths
accept.

For this reason, one sometimes refers to PP as Majority-P.

It is thus clear that NP ⊆ PP.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 35 / 45

A Complete Problem for PP

PP is often thought of as a counting class.

Recall that the permanent of an n × n matrix A = (aij) is

perm(A) =
∑
σ∈Sn

n∏
i=1

ai ,σ(i). (1.1)

Valiant showed that computing permanents is at least as hard as many so-called
counting problems (#P-hard), and it is hard (#P-complete) even for matrices
having only entries 0 or 1.

The language {(A, k)| the permanent of A is at least k} is complete for PP, but it
is believed to be outside of P.

Alternatively, in terms of the number of accepting and rejecting paths, PP can be
seen as computing the high-order bit of a #P function.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 36 / 45

A Complete Problem for PP

PP is often thought of as a counting class.

Recall that the permanent of an n × n matrix A = (aij) is

perm(A) =
∑
σ∈Sn

n∏
i=1

ai ,σ(i). (1.1)

Valiant showed that computing permanents is at least as hard as many so-called
counting problems (#P-hard), and it is hard (#P-complete) even for matrices
having only entries 0 or 1.

The language {(A, k)| the permanent of A is at least k} is complete for PP, but it
is believed to be outside of P.

Alternatively, in terms of the number of accepting and rejecting paths, PP can be
seen as computing the high-order bit of a #P function.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 36 / 45

A Complete Problem for PP

PP is often thought of as a counting class.

Recall that the permanent of an n × n matrix A = (aij) is

perm(A) =
∑
σ∈Sn

n∏
i=1

ai ,σ(i). (1.1)

Valiant showed that computing permanents is at least as hard as many so-called
counting problems (#P-hard), and it is hard (#P-complete) even for matrices
having only entries 0 or 1.

The language {(A, k)| the permanent of A is at least k} is complete for PP, but it
is believed to be outside of P.

Alternatively, in terms of the number of accepting and rejecting paths, PP can be
seen as computing the high-order bit of a #P function.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 36 / 45

A Complete Problem for PP

PP is often thought of as a counting class.

Recall that the permanent of an n × n matrix A = (aij) is

perm(A) =
∑
σ∈Sn

n∏
i=1

ai ,σ(i). (1.1)

Valiant showed that computing permanents is at least as hard as many so-called
counting problems (#P-hard), and it is hard (#P-complete) even for matrices
having only entries 0 or 1.

The language {(A, k)| the permanent of A is at least k} is complete for PP, but it
is believed to be outside of P.

Alternatively, in terms of the number of accepting and rejecting paths, PP can be
seen as computing the high-order bit of a #P function.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 36 / 45

Defining BPP

Let ε be a constant 0 < ε < 1/2. A language L ⊂ {0, 1}∗ is in BPP, if there exists
a deterministic Turing machine M and a polynomial p such that upon receipt of:

an input string x , e.g., x ∈ {0, 1}∗,
a realisation y , e.g., y ∈ {0, 1}p(|x |), of a random variable Y in dimension
p(|x |)

M runs in time polynomial in |x | and

for all x ∈ L, (x , y) is accepted with a probability strictly greater than 1− ε,
for all x 6∈ L, (x , y) is accepted with a probability less than or equal to ε,

where the probability is with respect to Y .

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 37 / 45

Explaining BPP
BPP can be seen as a subset of PP, for which there are efficient probabilistic
algorithms.

Indeed: the constant ε is independent of the dimension |x |, and thus any desired
probability of correctness can be had with the number of trials independent of |x |
by the so-called amplification of probability.

The majority vote of k trials will be wrong with probability:∑
S⊆{1,2,...,k},|S |≤k/2

(1− ε)|S |εk−|S | (1.2)

= ((1− ε)ε)k/2
∑

S⊆{1,2,...,k},|S |≤k/2

(
ε

1− ε

)k/2−|S |
(1.3)

< 2k(
√

(1− ε)ε)k = λk (1.4)

for some λ = 2
√
ε(1− ε) < 1.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 38 / 45

Explaining BPP
BPP can be seen as a subset of PP, for which there are efficient probabilistic
algorithms.

Indeed: the constant ε is independent of the dimension |x |, and thus any desired
probability of correctness can be had with the number of trials independent of |x |
by the so-called amplification of probability.

The majority vote of k trials will be wrong with probability:∑
S⊆{1,2,...,k},|S |≤k/2

(1− ε)|S |εk−|S | (1.2)

= ((1− ε)ε)k/2
∑

S⊆{1,2,...,k},|S |≤k/2

(
ε

1− ε

)k/2−|S |
(1.3)

< 2k(
√

(1− ε)ε)k = λk (1.4)

for some λ = 2
√
ε(1− ε) < 1.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 38 / 45

Explaining BPP
BPP can be seen as a subset of PP, for which there are efficient probabilistic
algorithms.

Indeed: the constant ε is independent of the dimension |x |, and thus any desired
probability of correctness can be had with the number of trials independent of |x |
by the so-called amplification of probability.

The majority vote of k trials will be wrong with probability:∑
S⊆{1,2,...,k},|S |≤k/2

(1− ε)|S |εk−|S | (1.2)

= ((1− ε)ε)k/2
∑

S⊆{1,2,...,k},|S |≤k/2

(
ε

1− ε

)k/2−|S |
(1.3)

< 2k(
√

(1− ε)ε)k = λk (1.4)

for some λ = 2
√
ε(1− ε) < 1.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 38 / 45

An Alternative Definition of BPP, due to Bennett

How large is BPP within PP? It turns out that BPP is a substantial subset of PP.

Bennett and Gill have shown that for a language L ⊂ {0, 1}∗, the following are
equivalent:

L ∈ BPP.

For almost all oracles A, L ∈ PA, wherein the almost all is with respect to a
particular measure over the oracles.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 39 / 45

An Alternative Definition of BPP, due to Bennett

How large is BPP within PP? It turns out that BPP is a substantial subset of PP.

Bennett and Gill have shown that for a language L ⊂ {0, 1}∗, the following are
equivalent:

L ∈ BPP.

For almost all oracles A, L ∈ PA, wherein the almost all is with respect to a
particular measure over the oracles.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 39 / 45

An Alternative Definition of BPP, due to Bennett

How large is BPP within PP? It turns out that BPP is a substantial subset of PP.

Bennett and Gill have shown that for a language L ⊂ {0, 1}∗, the following are
equivalent:

L ∈ BPP.

For almost all oracles A, L ∈ PA, wherein the almost all is with respect to a
particular measure over the oracles.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 39 / 45

Probabilistic Computation of Arora and Barak

It turns out that BPP has yet another definition, due to Arora and Barak, which is
very instructive.

It uses a seemingly different model of computation.

There, one works with 2N -dimensional vector v ∈ [0, 1]2
N

, which we index with
values from {0, 1}N , and which satisfies

∑
i∈{0,1}N vi = 1.

This vector should be seen as a representation of a probability mass function of a
random variable over {0, 1}N .

One cannot access the values of v directly; rather, one obtains i ∈ {0, 1}N with
probability vi , when one attempts to access v .

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 40 / 45

Probabilistic Computation of Arora and Barak

It turns out that BPP has yet another definition, due to Arora and Barak, which is
very instructive.

It uses a seemingly different model of computation.

There, one works with 2N -dimensional vector v ∈ [0, 1]2
N

, which we index with
values from {0, 1}N , and which satisfies

∑
i∈{0,1}N vi = 1.

This vector should be seen as a representation of a probability mass function of a
random variable over {0, 1}N .

One cannot access the values of v directly; rather, one obtains i ∈ {0, 1}N with
probability vi , when one attempts to access v .

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 40 / 45

Probabilistic Computation of Arora and Barak

It turns out that BPP has yet another definition, due to Arora and Barak, which is
very instructive.

It uses a seemingly different model of computation.

There, one works with 2N -dimensional vector v ∈ [0, 1]2
N

, which we index with
values from {0, 1}N , and which satisfies

∑
i∈{0,1}N vi = 1.

This vector should be seen as a representation of a probability mass function of a
random variable over {0, 1}N .

One cannot access the values of v directly; rather, one obtains i ∈ {0, 1}N with
probability vi , when one attempts to access v .

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 40 / 45

Probabilistic Computation of Arora and Barak

It turns out that BPP has yet another definition, due to Arora and Barak, which is
very instructive.

It uses a seemingly different model of computation.

There, one works with 2N -dimensional vector v ∈ [0, 1]2
N

, which we index with
values from {0, 1}N , and which satisfies

∑
i∈{0,1}N vi = 1.

This vector should be seen as a representation of a probability mass function of a
random variable over {0, 1}N .

One cannot access the values of v directly; rather, one obtains i ∈ {0, 1}N with
probability vi , when one attempts to access v .

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 40 / 45

Probabilistic Computation of Arora and Barak

It turns out that BPP has yet another definition, due to Arora and Barak, which is
very instructive.

It uses a seemingly different model of computation.

There, one works with 2N -dimensional vector v ∈ [0, 1]2
N

, which we index with
values from {0, 1}N , and which satisfies

∑
i∈{0,1}N vi = 1.

This vector should be seen as a representation of a probability mass function of a
random variable over {0, 1}N .

One cannot access the values of v directly; rather, one obtains i ∈ {0, 1}N with
probability vi , when one attempts to access v .

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 40 / 45

Probabilistic Computation of Arora and Barak

Let us introduce a special notation |i〉 for the representation of (so-called
degenerate) distributions, where all the mass is concentrated in vi = 1 for some
i ∈ {0, 1}N .

Because |i〉i∈{0,1}N is a basis for R2N , any v can be represented as
∑

i∈{0,1}N vi |i〉.
For the example of N = 1, we have v = v0 |0〉+ v1 |1〉.

The only operations permitted are linear stochastic functions U : R2N → R2N

applied to the vector v , where linearity suggests U(v) =
∑

i∈{0,1}N viU(|i〉) and
stochasticity suggests

∑
i∈{0,1}N U(v)i = 1 for all v satisfying

∑
i∈{0,1}N vi = 1.

Notice that U can be represented by a matrix with non-negative entries, wherein
each column sums up to 1.

U can be a composition of multiple linear stochastic functions
U = UL,UL−1, · · ·U2,U1,Ui : R2N → R2N , where each Ui will represent the
so-called gate and L will be the known as the depth of the circuit.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 41 / 45

Probabilistic Computation of Arora and Barak

Let us introduce a special notation |i〉 for the representation of (so-called
degenerate) distributions, where all the mass is concentrated in vi = 1 for some
i ∈ {0, 1}N .

Because |i〉i∈{0,1}N is a basis for R2N , any v can be represented as
∑

i∈{0,1}N vi |i〉.
For the example of N = 1, we have v = v0 |0〉+ v1 |1〉.

The only operations permitted are linear stochastic functions U : R2N → R2N

applied to the vector v , where linearity suggests U(v) =
∑

i∈{0,1}N viU(|i〉) and
stochasticity suggests

∑
i∈{0,1}N U(v)i = 1 for all v satisfying

∑
i∈{0,1}N vi = 1.

Notice that U can be represented by a matrix with non-negative entries, wherein
each column sums up to 1.

U can be a composition of multiple linear stochastic functions
U = UL,UL−1, · · ·U2,U1,Ui : R2N → R2N , where each Ui will represent the
so-called gate and L will be the known as the depth of the circuit.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 41 / 45

Probabilistic Computation of Arora and Barak

Let us introduce a special notation |i〉 for the representation of (so-called
degenerate) distributions, where all the mass is concentrated in vi = 1 for some
i ∈ {0, 1}N .

Because |i〉i∈{0,1}N is a basis for R2N , any v can be represented as
∑

i∈{0,1}N vi |i〉.
For the example of N = 1, we have v = v0 |0〉+ v1 |1〉.

The only operations permitted are linear stochastic functions U : R2N → R2N

applied to the vector v , where linearity suggests U(v) =
∑

i∈{0,1}N viU(|i〉) and
stochasticity suggests

∑
i∈{0,1}N U(v)i = 1 for all v satisfying

∑
i∈{0,1}N vi = 1.

Notice that U can be represented by a matrix with non-negative entries, wherein
each column sums up to 1.

U can be a composition of multiple linear stochastic functions
U = UL,UL−1, · · ·U2,U1,Ui : R2N → R2N , where each Ui will represent the
so-called gate and L will be the known as the depth of the circuit.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 41 / 45

Probabilistic Computation of Arora and Barak

Let us introduce a special notation |i〉 for the representation of (so-called
degenerate) distributions, where all the mass is concentrated in vi = 1 for some
i ∈ {0, 1}N .

Because |i〉i∈{0,1}N is a basis for R2N , any v can be represented as
∑

i∈{0,1}N vi |i〉.
For the example of N = 1, we have v = v0 |0〉+ v1 |1〉.

The only operations permitted are linear stochastic functions U : R2N → R2N

applied to the vector v , where linearity suggests U(v) =
∑

i∈{0,1}N viU(|i〉) and
stochasticity suggests

∑
i∈{0,1}N U(v)i = 1 for all v satisfying

∑
i∈{0,1}N vi = 1.

Notice that U can be represented by a matrix with non-negative entries, wherein
each column sums up to 1.

U can be a composition of multiple linear stochastic functions
U = UL,UL−1, · · ·U2,U1,Ui : R2N → R2N , where each Ui will represent the
so-called gate and L will be the known as the depth of the circuit.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 41 / 45

Probabilistic Computation of Arora and Barak

Let us introduce a special notation |i〉 for the representation of (so-called
degenerate) distributions, where all the mass is concentrated in vi = 1 for some
i ∈ {0, 1}N .

Because |i〉i∈{0,1}N is a basis for R2N , any v can be represented as
∑

i∈{0,1}N vi |i〉.
For the example of N = 1, we have v = v0 |0〉+ v1 |1〉.

The only operations permitted are linear stochastic functions U : R2N → R2N

applied to the vector v , where linearity suggests U(v) =
∑

i∈{0,1}N viU(|i〉) and
stochasticity suggests

∑
i∈{0,1}N U(v)i = 1 for all v satisfying

∑
i∈{0,1}N vi = 1.

Notice that U can be represented by a matrix with non-negative entries, wherein
each column sums up to 1.

U can be a composition of multiple linear stochastic functions
U = UL,UL−1, · · ·U2,U1,Ui : R2N → R2N , where each Ui will represent the
so-called gate and L will be the known as the depth of the circuit.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 41 / 45

An Alternative Definition of BPP, due to Arora and Barak

Let a probability threshold be a constant strictly larger than 1/2. A language
L ⊂ {0, 1}n is in BPP, if and only if its corresponding indicator function
F (x) : {0, 1}n → {0, 1} can be computed probabilistically in polynomial time such
that:

1 one starts with v ∈ [0, 1]2
N

, for some N ≥ n dependent on F , with an initial
state |x , 0N−n〉 consisting of the input padded to length N by zeros;

2 applies a linear stochastic function U : R2N → R2N to v , whose matrix
representation can be computed in a sparse format by a Turing machine from
all-ones input in time polynomial in n

3 obtains a random variable Y , wherein F (x) is followed by N − 1 arbitrary
subsequent symbols with probability at least as high as the probability
threshold, while the random variable Y has value y with probability vy for
the value v of some final register.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 42 / 45

Exercise 1

Exercise

Prove the equivalence. Hint: find a way of generating N − n Bernoulli random
variables by a suitable U.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 43 / 45

An Alternative Definition of BQP, due to Arora and Barak

Let a probability threshold be a constant strictly larger than 1/2. A language
L ⊂ {0, 1}n is in BQP, if and only if its corresponding indicator function
F (x) : {0, 1}n → {0, 1} can be computed probabilistically such that:

1 one starts with an N-qubit register, for some N ≥ n dependent on F , with an
initial state |x , 0N−n〉 consisting of the input padded to length N by zeros;

2 applies a linear function U : C2N → C2N to v , whose matrix representation (a

unitary matrix in C2N×2N) can be computed in a sparse format by a Turing
machine from all-ones input in time polynomial in n

3 obtains a random variable Y , wherein F (x) is followed by N − 1 arbitrary
subsequent symbols with probability at least as high as the probability
threshold, wherein the random variable Y has value y with probability |vy |2
for the value v of some final register.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 44 / 45

An Alternative Definition of BQP, due to Arora and Barak

See also arXiv:2312.02279 for a high-level discussion.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 22, 2024 45 / 45

	Turing Machines
	Computability
	Complexity theory
	Computational Complexity of Discrete Algorithms
	The Bachmann–Landau Notation
	P and NP
	Randomized Algorithms
	Definitions

	Quantum Algorithms

