
5. Summary: Notation

Let us also at this point summarize some of the notation we have introduced and its corresponding
meaning in the more familiar language of matrices and row vectors.

• A state is described by a ket or a bra, which in turn can be described as a column or row vector,
respectively. The entries of these two vectors are then further related by complex conjugation.

• Observables are described by operators, which in turn are described by matrices. They act
from the left on a ket and from the right on a bra:

A| i $ h |A†
, (1.46)

where the Hermitian conjugate is denoted A
†.

• The Hermitian conjugation acts on the matrix by complex conjugation together with transpo-
sition:

A =

✓
a b

c d

◆
=) A

† =

✓
a
⇤

c
⇤

b
⇤

d
⇤

◆
. (1.47)

• A normal operator is defined by A
†
A = AA

†, or [A†
, A] = A

†
A�AA

† = 0, where [·, ·] is called
the commutator.

• A Hermitian operator is defined by A
† = A, it has real eigenvalues.

• A unitary operator is defined by U
†
U = .

6. What actually is the quantum state?

At this point, you might be asking yourself what the meaning of the quantum state is. After all,
measurements tells us that eventually the state will not be in a superposition, the thing we observe is a
definitive classical state, so how do we know that the state was ever in a superposition of other states?
Well, such questions have given rise to a large number of debates on the interpretation of quantum
mechanics. 14

Many early interpretations of quantum mechanics involved hidden variables, i.e., that there are some
hidden variables that we do not know about which determines the measurements in a deterministic
fashion. These have been essentially refuted by a number of results, such as Gleason’s theorem and
variations thereof. These type of results typically go under the name of Bell’s theorem, and in principle
they rule out almost all hidden variables theories. The experimental verification of these results was the
subject of the Nobel prize in physics 2022.15

In contrast, the widely considered Copenhagen interpretation of quantum mechanics (with variations)
is essentially Bayesian. In this interpretation, the nature of quantum mechanics is essentially non-
deterministic, and we should not require one to consider the “exponential” dimension of the quantum
state prior to measurement any more so than we require a person throwing a die to consider the prob-
ability distribution over the outcomes. Measurements give rise to a (practically) irreversible process in
which the state is a↵ected.

Another famous interpretation is the many-worlds interpretation due to Hugh Everett. Here, time
is considered as a tree, having many branches and each branch corresponds to a possible result of a
measurement. This gives rise to an uncountable number of worlds or universes. The many-worlds
interpretation is thus inherently deterministic, as the universal wave function never collapses to one
particular state.

Finally, let us mention the de Broglie-Bohm interpretation. This is a kind of hidden variables theory
where the problems of Bell’s theorem are circumvented by embracing non-locality. Locality is basically
the concept that only things near to each other can a↵ect each other. This is one of the main building

14See for example Wikipedia
15Awarded to the three experimentalists Alain Aspect, John Clauser and Anton Zeilinger.
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blocks of Einstein’s theory of special relativity. The de Broglie-Bohm interpretation is thus a deterministic
theory and particles have a definite configuration at all times, even when not observed. This has gained
some interest in recent years and researcher are currently working on how to align it with the ideas of
special relativity.

7. The harmonic oscillator

To give some intuition, as well as motivation, for the many concepts we have introduced we will now
study the harmonic oscillator. This is a very important system in physics, if not the most important. A
vast number of physical systems can be described using the harmonic oscillator. It also plays a big role
in various physical implementations of qubits. We will begin with the classical harmonic oscillator and
then study the quantum version, highlighting the di↵erences.

7.1. The classical harmonic oscillator. Classical systems follow Newton’s laws of mechanics. In
particular, the second law states that the force is equal to the mass times the acceleration,

F = ma. (1.48)

A harmonic oscillator is a particle that undergoes harmonic motion around an equilibrium point. Think
for example of a spring with a mass attached to its end such that it bounces back and forth around an
equilibrium.

Let us focus on the one-dimensional case and set the equilibrium point to be x = 0. The system is
described by a mass m and a restoring force that pushes the mass towards the equilibrium point,

F = �m!
2
x, (1.49)

where ! is called the angular frequency. The minus sign tells us that the force is driving the spring back
towards its equilibrium point. Combining this with Newton’s second law we get

ma = mẍ = �m!
2
x. (1.50)

The solution of this second order di↵erential equation is

x(t) = A cos(!t+ �), (1.51)

where A is the amplitude of the oscillations (giving the turning points of the motion) and � the initial
phase.

The potential energy of the system is given by

V =
1

2
m!

2
x
2
. (1.52)

This gives a parabola as shown in Figure 1.1. The reason why the harmonic oscillator is so important is
that almost any smooth function can be approximated by a parabola near its minimum points.

Figure 1.1. The potential energy (top) and probability density (bottom) of the classical
harmonic oscillator, with amplitude A.

Remember that the total energy of the system is given by the sum of the potential energy, V , and the
kinetic energy 1

2mv
2. At the turning points x = ±A, the velocity, and therefore the kinetic energy, is

zero, and the potential energy reaches its maximum. The total energy of the system thus simply says
something about how far away from the equilibrium it can move. For example, the zero-energy harmonic
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oscillator simply sits still at its equilibrium. At the equilibrium point, on the other hand, the kinetic
energy reaches its maximum and the potential energy is zero, this means that the particle attains the
greatest velocity at this point. This further implies that for a classical harmonic oscillator, the probability
is highest to find it close to the turning points x = ±A, since this is where it moves at its slowest, and
thus spends the most time. This is shown in the bottom picture of Fig. 1.1.

7.2. The quantum harmonic oscillator. The quantum harmonic oscillator is the quantum ana-
logue of the classical system. As we discussed earlier, in quantum mechanics (and also in classical
mechanics) an important role is played by the Hamiltonian of the system. This is simply constructed as
the sum of the kinetic and potential energy. So to construct the quantum Hamiltonian we simply take the
expression for the classical kinetic and potential energy and sum them. But in quantum mechanics, as
we have seen, observables should be operators, so we also promote the position and momentum (p = mv)
variables to operators.16 This results in the expression

Ĥ =
p̂
2

2m
+

1

2
m!

2
x̂
2
, (1.53)

where we, in this section only, adopted the very common practice of putting hats on quantum operators,
to distinguish them from their classical variable analogues. Note that, in contrast to the rest of this
course, we are here considering an infinite-dimensional Hilbert space of states, since both x̂ and p̂ take
continuous values. This does introduce some extra subtleties that we however simply gloss over at the
moment.

In quantum mechanics, as we have seen earlier, the energy of the system is described by the time-
independent Schrödinger equation

Ĥ| Ei = E| Ei, (1.54)

where the subscript E on  E is there to remind us that these are the eigenvectors of Ĥ corresponding to
the eigenvalues E. To solve this, we express the wave function  E(x) = hx| Ei in the coordinate basis.
In this basis we can represent the momentum operator p̂ as a derivative p̂ = �i~ @

@x
, and the equation

takes the form

� ~2
2m

@
2
 E(x)

@ x2
+

1

2
m!

2
x
2
 E(x) = E E(x). (1.55)

This does not look like something we want to explicitly solve in this course, you can take a more advanced
course on quantum mechanics or di↵erential equations for that.17 Here we simply state that under the
assumptions that the wave function is normalizable and symmetric around the equilibrium x = 0, we
have an infinite family of solutions labeled by a level (or quantum number) n

 n(x) =
1p
2nn!

⇣
m!

⇡~

⌘1/4
e
�m!x2

2~ Hn

✓r
m!

~ x

◆
, n = 0, 1, 2, . . . . (1.56)

Here, Hn(y) are the so called (physicist’s) Hermite polynomials, with the first few being

H0(y) =1,

H1(y) =2y,

H2(y) =4y2 � 2,

H3(y) =8y3 � 12y,

...

(1.57)

The corresponding energy eigenvalues are

En = ~!(n+ 1
2 ). (1.58)

These are the values that would be returned upon a measurement of the Hamiltonian of the quantum
harmonic oscillator. Two important things to note are, first that the energies are quantized, i.e., they

16There are many reasons why we use momentum instead of velocity as the go-to operator in quantum mechanics,
the most important one being that momentum is a conserved quantity, while velocity is not.

17Of course you are welcome to solve it yourselves. A nice trick one can use is to first guess or argue for the expression
of the lowest energy state, and then use the fact that [x̂, p̂] = i~ together with the algebra given by introducing the creation
and annihilation operators a± / p̂± i!x̂ to construct the higher energy states.
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come in discrete steps; and secondly the lowest value is not equal to zero, but rather E0 = ~!
2 . This second

point is a consequence of the famous Heisenberg’s uncertainty principle, which in turn is a consequence of
the fact that non-commuting observables are not simultaneously diagonalizable, as we mentioned before.

To connect with the classical system we can calculate the amplitudes, An, of a classical harmonic oscillator
with the corresponding energies of the quantum one. We find

En =
1

2
m!

2
A

2
n

=) An =

r
(2n+ 1)

~
m!

. (1.59)

Note that these increase with the quantum number n.

Figure 1.2 shows the probability amplitudes,  n(x), and probability densities, | n(x)|2 of finding the
system at the location x, for the first few energy levels in the positional basis. We note two big di↵erences
with the classical oscillator. First, there is a non-zero probability of finding the particle outside the values
x = ±An, this is not possible in the classical system. This is due to something called quantum tunneling.
Secondly, the probability density distribution for the lowest-energy state  0(x), is highest at the origin
x = 0, while for the higher values of n we see that the system starts looking more like the classical one,
i.e., that it is most likely to find the system near the turning points. This is an illustration of something
called the Bohr correspondence principle. Namely that quantum physics should become classical physics
in the limit of large quantum numbers (or when ~ becomes small in comparison to the energy).

Figure 1.2. The probability amplitudes (left) and probability densities (right) for some
levels of the quantum harmonic oscillator. The classical amplitudes An are indicated.

8. The qubit

Let us now introduce the main protagonist of the course, the qubit. In a classical computers we use bits
that are systems whose states takes values 0 or 1. The corresponding quantum system is called a qubit

(sometimes QBit, q-bit or quantum bit). This system is described by a two-dimensional complex vector
space. To make the connection to classical bits even stronger we denote a set of basis vectors in this
state space as

{|0i, |1i}. (1.60)

Note that, as was mentioned before, we use here the notation |0i to denote a basis vector, not the zero
element. This basis is typically referred to as the computational basis. Another frequently appearing
basis is given by the states

|±i = 1p
2
(|0i± |1i). (1.61)
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You may recognize these bases as the u, d and l, r basis we studied earlier. The |±i basis is sometimes
called the Hadamard basis. Any qubit can be expanded in either of these bases,

| i = ↵0|0i+ ↵1|1i = ↵+|+i+ ↵�|�i, (1.62)

for some numbers ↵j , with the extra condition |↵0|2 + |↵1|2 = |↵+|2 + |↵�|2 = 1.

We will often represent the computational basis by the vectors

|0i =
✓
1
0

◆
, |1i =

✓
0
1

◆
. (1.63)

Linear operators acting on a qubit will now be described by 2⇥2 complex matrices. Of special importance
are the so called Pauli operators.18 These are a set of three matrices that together with the identity
matrix spans the vector space of 2⇥ 2 Hermitian matrices. In the computational basis, they read

�x =

✓
0 1
1 0

◆
, �y =

✓
0 �i

i 0

◆
, �z =

✓
1 0
0 �1

◆
. (1.64)

As an easy, but informative, exercise, we can study how the Pauli operators act on the basis states. This
will be very helpful later when we want to start building quantum circuits. We find19

�x

8
>><

>>:

|0i
|1i
|+i
|�i

9
>>=

>>;
=

8
>><

>>:

|1i
|0i
|+i
�|�i

9
>>=

>>;
, �y

8
>><

>>:

|0i
|1i
|+i
|�i

9
>>=

>>;
=

8
>><

>>:

i|1i
�i|0i
�i|�i
i|+i

9
>>=

>>;
, �z

8
>><

>>:

|0i
|1i
|+i
|�i

9
>>=

>>;
=

8
>><

>>:

|0i
�|1i
|�i
|+i

9
>>=

>>;
. (1.65)

When discussing quantum gates, the �x operator is sometimes referred to as the NOT gate, since it
interchanges |0i and |1i.

8.1. The Bloch sphere. We know that we can express any qubit as a superposition of the two
basis vectors |0i, |1i, and that the corresponding coe�cients must satisfy |↵0|2 + |↵1|2 = 1. We can then
use a little trigonometry to express any qubit as

| i = e
i�
�
cos ✓

2 |0i+ e
i� sin ✓

2 |1i
�
. (1.66)

Where �, � and ✓ are some real numbers. However, we also saw earlier that that we can not distinguish
states that only di↵er by an overall phase, so we can disregard the overall phase factor ei� . We can thus
describe any qubit in terms of two real numbers � and ✓ through the identification

| i = cos ✓

2 |0i+ e
i� sin ✓

2 |1i. (1.67)

This is simply the spherical coordinates for the unit sphere, and we have thus found that any qubit can
be represented by a point on the unit sphere. This representation of the state space as a sphere goes
under the name of the Bloch sphere.

Figure 1.3 shows how we can visualize the state |+i on the Bloch sphere.

Figure 1.3. The Bloch sphere. The vector denotes the qubit state | i = |+i = 1p
2
(|0i+

|1i). The labels x and y represent the Euclidean x and y directions.

18Named after the Austrian physicist Wolfgang Pauli, who is counted as one of the main inventors of quantum
mechanics.

19Perhaps you recognize some of these properties from when we studied the up/down/left/right system earlier.
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It can be easily seen from the previous calculations that the Pauli matrices act as rotations along the
di↵erent axes of the Bloch sphere. For example, acting with �x on |0i rotates the state 180�, or ⇡ radians,
around the x-axis to give the state |1i, and so on. All the standard one qubit gates can be visualized in
a similar manner as their action on the sphere.

8.2. Several qubits. As we discussed previously, we can combine simple systems into larger ones
by using the tensor product of vector spaces. This will be vital when constructing quantum circuits,
since obviously, having just one qubit would perhaps not be all that exciting.

So, using the tensor product we can build larger systems of several qubits, for example

|0i ⌦ |0i ⌦ |+i ⌦ |1i ⌦ · · ·⌦ |1i. (1.68)

We will often be lazy and use the notation

| n�1 . . . 0i := | n�1i ⌦ | n�2i ⌦ · · ·⌦ | 0i. (1.69)

For example, for the two-qubit system, given by a four-dimensional vector space, we then have the basis
vectors

|00i = |0i ⌦ |0i, |01i = |0i ⌦ |1i, |10i = |1i ⌦ |0i, |11i = |1i ⌦ |1i. (1.70)

It is easy to show that these span the vector space of states. Sometimes a further simplification of
notation is used for these types of combined systems where we imagine the product to indicate a binary
representation of an integer, so that we write for example |01i = |1i2 and |11i = |3i2 and so on, where
the subscript indicates how many qubits there are in the system. The subscript is of course needed
because 001 and 1 are both binary representations of the number 1, while here the former would be a
three qubit system and the later a one qubit system.

9. Building our first quantum circuits

We are now ready to start building quantum circuits. The ingredients will be qubits and unitary operators
or gates.

First of all we need to discuss where we will start, i.e., what is the initial state of the system, or the
input of the circuit, and how do we prepare that? A simple choice of input vector that is most commonly
used is to pick |0 . . . 0i as the initial state vector. Given some general initial state, how do we prepare
it in the |0 . . . 0i? Well, one very simple way is found by remembering that measurements will make the
system collapse to a given eigenvector of the observable being measured. We can then simply make a
measurement of �z on each qubit, which will return the results ±1 with some probabilities. If we get +1
we know that the qubit is in the state |0i as desired, while if we find �1 we know that it will be in the
state |1i. Then we simply keep the qubits that are in the |0i state and act with �x on the others, since
we saw previously that �x|1i = |0i. Now we have our input vector | i = |0 . . . 0i.

The quantum circuit will then start with a number of qubits in the |0i state and act on this with some
number of gates, or unitary operators. The most basic gates are:

• The Pauli matrices: �x, �y and �z. These are typically denoted by X, Y and Z in the circuit
diagrams. On the Bloch sphere we can visualize them as a ⇡-rotation of the qubit about the
corresponding axis.

• The Hadamard gate: H := 1p
2
(�x +�z). It changes |0i ! |+i and |1i ! |�i. So it can be seen

as a change of basis. On the Bloch sphere we can visualize it as a ⇡-rotation about the axis
1p
2
(x̂+ ẑ).

• Phase shift gates changes the relative phase in the expansion in the computational basis by
sending |0i ! |0i and |1i ! e

i'|1i. Common examples are the T gate, with ' = ⇡/4,20 and
the S gate, where ' = ⇡/2. On the Bloch sphere, these gates can be seen as a rotation of '
radians about the ẑ axis.

20the T gate is confusingly also known as the ⇡/8 gate,
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• The controlled-U gate acts on a number of qubits and uses the first as a control. If this is |0i
it does nothing, while if it is |1i it acts on the second qubit with the operator U . For example,
the controlled-X, or CNOT, gate, is a two qubit gate that acts in the following way:

|00i ! |00i,
|01i ! |01i,
|10i ! |1i ⌦ �x|0i = |11i,
|11i ! |1i ⌦ �x|1i = |10i.

(1.71)

• The To↵oli, or CCNOT, gate is a controlled-controlled-gate acting on three qubits. If the two
first qubits are in the state |1i then it acts on the third with the X gate. Otherwise it does
nothing. We can thus represent it as the matrix

0

BBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

1

CCCCCCCCCCCA

. (1.72)

The Hadamard, CNOT and S gates together generate a group called the Cli↵ord group. But it is
important to note that, due to the Gottesman-Knill theorem, the Cli↵ord gates does not make a universal
gate set. However, the Hadamard together with the Tofolli gate is a universal set. Other combinations
are also common as universal gate sets.

Two example circuits are given in Figures 1.4 and 1.5. One important thing to note is that when we
read the circuits we read it from left to right, but when we write it down mathematically the gates act
in the opposite order. In other words, the circuit of Fig. 1.4 would read

|0i ⌦ |+i ⌦ |�i = |0i ⌦H|0i ⌦H�x|0i. (1.73)

|0i X H |�i

|0i H |+i
|0i |0i

1

Figure 1.4. A simple example of a quantum circuit using the X and H gates.

|1i H |+i

|1i • |1i

1

Figure 1.5. A simple example of a quantum circuit using the H and CNOT gate.

Finally, after we have acted with all of our gates in the circuit we want to retrieve the result. This is
done by simply measuring the desired properties of the final state.
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10. Physical implementations

There are several physical implementations of a qubit, including:

• Superconducting qubits: These qubits are made from tiny loops of superconducting wire, which
can carry electrical current without resistance. The state of a superconducting qubit can be
controlled by applying electromagnetic pulses to the loop.

• Trapped-ion qubits: These qubits are made by trapping a single ion (an electrically charged
atom) in a magnetic or electric field. The state of a trapped-ion qubit can be controlled by
shining laser light on the ion.

• Topological qubits: These qubits are based on the properties of certain materials, such as
topological insulators, that can carry electrical current on their surface while insulating inside.

• Quantum dots: These qubits are made by confining a single electron or hole (an absence of an
electron) in a tiny semiconductor structure called a quantum dot.

• Nuclear Magnetic Resonance (NMR) qubits: These qubits are based on the spin of the nuclei
of certain atoms.

• Photonic qubits: These qubits are based on the properties of individual photons (particles of
light). For example, the polarization state of a photon can be used as a qubit, with the two
possible states being horizontal and vertical polarization.

• Single-molecule spin qubits: These qubits are based on the spin of individual electrons or nuclei
in a single molecule. The state of the qubit can be controlled by applying magnetic fields to
the molecule. These qubits are still in the research stage and not yet commercialized.
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