
Jakub Mareček and Georgios Korpas and
Johannes Aspman

Quantum Computing

via Randomized Algorithms

November 10, 2023

Springer





Preface

Synergies between physics and computer science have been some of the most dom-
inant scientific and technological disciplines in recent times that aided in significant
technological advances. Quantum computing is a growing field at the intersection
of physics and computer science that is projected to lead to the next computational
revolution based on the the theoretical and recently proven computational discovery
that computers based on quantum mechanical architecture are exponentially pow-
erful. Combining the existing expertise in both fields proves to be a nontrivial but
very exciting interdisciplinary adventure that will benefit students in diverse ways.

This course aims to make this cutting-edge discipline broadly accessible to under-
graduate students with a background in computer science as well as mathematics
and physics. The course will introduce the students to some of the most fundamen-
tal concepts in the field, both from a theoretical point of view, so the students obtain
a deep physical understanding of the underlying principles, as well as a practical one
such as to be able to apply their newly acquired skills with quantum simulators or by
accessing actual quantum devices on the cloud. This course provides an interdisci-
plinary first introduction to the emerging field of quantum computation building up
from the basics of quantum mechanics to quantum computational complexity and
quantum algorithms. During the course, special care is given to stress the potential
quantum speedups of quantum computers against their classical counterparts.

Jakub Mareček
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Chapter 1

Quantum Physics 101

Quantum mechanics was developed in the beginning of the last century as a means
to explain certain mystical phenomena observed in experiments involving atoms and
light. This led to a revolution in physics and, more broadly, in how we look upon
the nature of reality.

Nowadays, even though quantum physics still might sound mysterious and abstract,
it is very much a vital part of our daily lives through its many applications in modern
technologies.

1900Max Planck solves the black body radiation problem by assuming that light
comes in discrete levels of wavelengths. This gives birth to quantum mechan-
ics.

1905Einstein explains the photoelectric effect by using Plancks quanta of light.

1913?Bohr proposes a model of the atom based on electrons with quantized angular
momentum.

TBC. Should also be some experiments and so on...

Classical physics1 is completely deterministic. It is in theory possible to know ev-
erything about a classical system, and furthermore, once we know enough about
the system, we can determine everything about its future through the basic laws of
classical physics such as Newton mechanics and the theory of relativity.

One of the mysterious, or some would even say disturbing, facts about quantum
mechanics is that this is no longer true. Quantum mechanics is inherently a non-
deterministic, or probabilistic, theory.

In this Chapter we will give a lightning introduction to the wonderful world of quan-
tum mechanics, with of course a special eye towards the applications into computer

1 In this course, when we talk about classical physics we simply mean not quantum physics.

5



6 1 Quantum Physics 101

science. The mathematical language of quantum mechanics is mainly that of linear
algebra, and much of the material will therefore be a review of concepts that you
learned in linear algebra, but perhaps with a slightly different notation and language
than you are familiar with.

We will also discuss the probabilistic nature of quantum mechanics and how this
affects results of measurements; how quantum systems evolve with time; the quan-
tum harmonic oscillator; and finally, we will discuss the quantum analogue of the
classical bit of computer science.

1.1 Quantum states

1.1.1 States, probability and measurements in a classical world

Imagine throwing an ordinary die, or flipping a coin. The resulting outcomes will be
either {1,2,3,4,5,6} or {Heads, Tails}, respectively. We refer to this as saying that
the state of the die or coin is in the value of the outcome, say 5 or Heads. Obviously,
it does not make sense to say that for example the coin is in a mixture of heads and
tails.2 It simply is in either the state heads or the state tails. We can summarize this
by saying that, in classical physics, a state takes values in a set.

Furthermore, it is obvious to us that making a measurement, i.e. looking at the die
or coin after it has landed, will not affect the system. If we throw the die and imme-
diately cover it with our hand before seeing the outcome, it will still be in the state
it lands on, say six, before we remove the hand, and continue to be in the state six if
we cover it again. We could even imagine doing something more complicated, say
that we first look only at the number on top of the die (six) then cover it then look
only at the number on the side facing us, say four, then cover it again. If we now
look at the number on the top we of course still assume3 that this will still be six.
This can be phrased as saying that in classical physics measurements does not affect
the system.

Later on, we will discuss the probabilistic nature of quantum mechanics, but the
notion of probability is of course something we occasionally use when describing
systems in the classical world as well. After all, playing board games would perhaps
be a bit less fun if we always knew exactly how the dice would land. However, this
notion of probability is simply a measure of how little information we have about
the system. If we had some super computer that could completely characterize the

2 If we are very unlucky, it could of course happen that the coin manages to balance on its edge in
the end, but then we would simply enlarge the set of values it can take to account for this.
3 and correctly so,
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initial state of the dice in the throwers hand, the force and angles of the hand that
throw the dice, the atmospheric pressure and wind speed in the room when the dice
are thrown, and so on, it could determine exactly how the dice would land. In clas-
sical physics, knowing everything about a system really means knowing everything.
Using the laws of classical physics (and given a powerful enough computer) we can
completely determine the future of any system once we know enough data. Or in
other words, classical physics is deterministic.

Let us summarize what we have learned about classical physics so far:

• Classical states are elements of a set.

• Measurements does not affect the classical system.

• Classical physics is deterministic.

All of this hopefully seems rather obvious and intuitive to you and you might wonder
why we are discussing such basic facts. Well, as we will see, when we step in to the
quantum world, these basic things will no longer hold true and our daily life intuition
about the world around us can more or less be thrown out the window.

1.1.2 Quantum states

One of the main differences between classical and quantum physics is the fact that
quantum states are not just elements of a set, they are vectors in a complex-valued
vector space. The strange thing is that we can give some meaning to the statement
that a quantum state is in a mixture of states. If we had a quantum coin it could of
course be either in the states heads or tails, but it could also be in a mixture of the
two. This is called superposition and is one of the most fundamental concepts in
quantum mechanics.

To see how this works, we first introduce some notation. We imagine that we have
a system that is in some state, which we simply label by the letter ψ . This could in
principle be anything we want, it is just a label for us to distinguish the state from
another. For example, it could be a number corresponding to one of the classical
states {1,2,3,4,5,6} of a die, but it could also be something else, such as ↑ or ↓.
The state vector is then denoted as

|ψ〉.
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This is called a ket vector, or simply a ket.4 The ψ is just a label that we pick for
our state while the encasing |·〉 is there to remind us that this is a vector. Now, su-
perposition tells us that it could happen that the physical system is in a combination
of two (or more) states, e.g., we could have something like

|ψ〉= α|ψ1〉+β |ψ2〉,

for some states |ψ1〉, |ψ2〉, and some (complex) numbers α and β . The numbers
α and β are usually called the probability amplitude of the states |ψ1〉 and |ψ2〉,
respectively.5 Due to this possibility, we directly see that we will have many more
possibilities than in the classical system.

The ket vectors satisfy the ordinary axioms of a vector space. There are two oper-
ations, vector addition and scalar multiplication. Under vector addition, the vector
space is closed, associative and commutative. This means that for three vectors in
the space |a〉, |b〉, |c〉, we have

|a〉+ |b〉= |c〉, (closed),

(|a〉+ |b〉)+ |c〉= |a〉+(|b〉+ |c〉), (associative),

|a〉+ |b〉= |b〉+ |a〉, (commutative).

There is a unique identity element of vector addition, which we denote simply by 0,
such that

|ψ〉+0 = |ψ〉.
The reason why we do not use |0〉 here is because we want to reserve that notation
for something completely different, as we will see later on. There is also a unique
vector (−|ψ〉) such that

|ψ〉+(−|ψ〉) = 0.

The vector space is linear and distributive under scalar multiplication. This means
that for some complex numbers z,z1,z2 ∈ C,

|(z1 + z2)ψ〉= z1|ψ〉+ z2|ψ〉, z(|ψ〉+ |ϕ〉) = z|ψ〉+ z|ϕ〉.

Finally, there also exists an identity element with respect to scalar multiplication,
i.e., we can multiply with the number 1 and get back the same state, 1|ψ〉= |ψ〉.
A basis of a vector space, {|a1〉, . . . , |ad〉}, is a minimal set of vectors that spans
the space, the number of basis vectors needed, here d, gives the dimension of the
vector space. A generic state |ψ〉 in this vector space can then be expressed as a
superposition of such basis vectors,

4 The notation here (together with the bra vector that we will introduce shortly, is usually called
either the bra-ket notation or the Dirac notation, after the physicist Paul Dirac who invented it.
5 This will be discussed in more detail later on, but it is important to note that the probability
amplitude is not the same as a probability. For one thing, it is a complex number.
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|ψ〉=
d

∑
j=1

ψ j|a j〉.

1.1.3 The dual space and inner product

There is also a corresponding dual vector space. The elements of this space are
denoted

〈ϕ|,
and are called bra vectors. The notation and their names becomes slightly more
sensical when we introduce the inner product between the bra and the ket, or a
bra(c)ket,6

〈ϕ|ψ〉.
This is simply a complex number. When we have a finite-dimensional vector space
together with an inner product this defines what is called a Hilbert space.7 Two
vectors are said to be orthogonal if their inner product is zero. Furthermore, it is
customary to normalize quantum states such that the inner product with itself is
equal to one, such vectors are called unit vectors. We will do this automatically, or
in other words, we will always set

〈ψ|ψ〉= 1.

Vectors that are both normalized and orthogonal are then called orthonormal. This
is, for example, a very good property to demand of a set of basis vectors. The nor-
malization of quantum states will also play a vital role when we later discuss prob-
abilities in quantum mechanics.

Is is often useful to represent the kets as column vectors and the bras as row vectors.
We then have the relation

|ψ〉=

ψ1
...

ψd

←→ 〈ψ|= (ψ∗1 . . . , ψ
∗
d ),

6 Remember that quantum physics was invented long before the invention of the meme, so this was
perhaps at the time considered funny. Dirac was also a famously strange man, The strangest man.
7 When the vector space is infinite-dimensional, some extra subtleties arise, but we will mostly
be dealing with finite-dimensional vector spaces in this course, and we therefore ignore these sub-
tleties for now.

https://en.wikipedia.org/wiki/The_Strangest_Man
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and the inner-product (or the bracket) then simply becomes the ordinary multipli-
cation of vectors. We further see that the elements of the corresponding vectors are
related by complex conjugation and we have

〈ψ|ψ〉= |ψ1|2 + · · ·+ |ψd |2.

Since the inner product between two states is just a complex number, we can ask
what its complex conjugate is. This is given by

(〈ϕ|ψ〉)∗ = 〈ψ|ϕ〉,

and thus
|〈ϕ|ψ〉|2 = 〈ϕ|ψ〉〈ψ|ϕ〉.

1.1.4 Composite systems

If we imagine that we have several quantum systems, each in some state represented
by some state vector, we can combine the separate system into a larger system using
the tensor product of vector spaces,⊗. If we imagine that we have one system where
the state is given by |ψ〉 and another where the state is given by |ϕ〉, the state of the
composite system is given by

|ψ〉⊗ |ϕ〉.
States that can be written in this simple way are called product states. We will dis-
cuss that in more detail later on when we introduce the concept of entanglement.
This way we can build complicated systems by combining several smaller systems.
We will see this in action when we discuss quantum circuits. Note that the tensor
product does not commute in general.

[width= colback=gray!50,title=Summary quantum states, colbacktitle=gray!20,coltitle=black]

• Quantum states are vectors in a complex vector space.

• A state is represented by the ket |ψ〉.
• The elements of the dual space are called bras and denoted 〈ϕ|.
• The inner product, or bracket, 〈ϕ|ψ〉, is a complex number, and its complex

conjugate is given by (〈ϕ|ψ〉)∗ = 〈ψ|ϕ〉.
• We normalize the states such that 〈ψ|ψ〉= 1.

• Quantum states can be in a superposition of states, |ψ〉 = α|ψ1〉+ β |ψ2〉, for
some complex numbers α,β .
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• More generally, we can express any quantum state in a vector space as a super-
position of the basis vectors of that vector space, |ψ〉 = ∑

d
j=1 ψ j|a j〉, for some

complex numbers ψ j and basis vectors |a j〉.

1.2 Measurements and probability

1.2.1 Observables

We have discussed how a quantum state is described by a state vector in a vector
space. The quantum state is however not something that we can measure directly.8

In fact, it only tells us something about the probability of finding some result upon
performing a measurement. Note that this is in stark contrast to the classical case
where the state and the outcome of a measurement is for all intents and purposes
equal to each other.

We refer to the properties of a state that we can measure as observables. If we con-
sider a system representing a particle in some particular state, the observables would
correspond to specific properties of this particle, such as its position, its velocity or
its angular momentum. Observables are described in quantum mechanics by linear
operators acting on the vector space of states. We thus say that a linear operator A
acts on the state |ψ〉, and denote it by

A|ψ〉.

The corresponding action on the bra is given by the Hermitian conjugate (sometimes
called the adjoint) of A, which we denote by a small dagger

A|ψ〉 ←→ 〈ψ|A†.

Note that the operator acts on the bra from the right and on the ket from the left.

When we represent the bras and kets as vectors the operators are naturally repre-
sented by matrices. The action of the dagger is then given by complex conjugation
of the elements together with transposition of the matrix. For example,(

a b
c d

)†

=

(
a∗ c∗

b∗ d∗

)
.

We can construct linear operators through the outer product

8 The actual meaning of the quantum state is something that has spurred a long history of heated
discussions. We will discuss some interpretations in the following sections.
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A = |ϕ1〉〈ϕ2|.

Acting with such an operator on a state |ψ〉 gives

A|ψ〉= (|ϕ1〉〈ϕ2|)|ψ〉= 〈ϕ2|ψ〉|ϕ1〉.

So it transforms the state |ψ〉 into the state |ϕ1〉 multiplied by the complex number
〈ϕ2|ψ〉.
A very important and useful identity can be derived by considering a complete or-
thonormal basis {|v j〉} and expressing |ψ〉= ∑ j ψ j|v j〉, then introduce the operator
A = ∑ j |v j〉〈v j|. Here both sums are over the complete set of basis states. We notice
that

A|ψ〉=
(

∑
j
|v j〉〈v j|

)
|ψ〉=∑

j
|v j〉〈v j|ψ〉=∑

j
∑
k

ψk|v j〉〈v j|vk〉=∑
j

ψ j|v j〉= |ψ〉,

which implies that ∑ j |v j〉〈v j| = 1, the identity operator on the vector space. This
relation is called a completeness relation, or sometimes a resolution of identity, and
can be a very useful trick in many computations and proofs in quantum mechanics.

For any observable, say A, there exists a particular set of vectors called the eigen-
vectors, |a j〉. They are defined through the relation

A|a j〉= a j|a j〉,

where a j is a complex number called the eigenvalue corresponding to the eigenvec-
tor |a j〉 of A. We will typically use the above notation where the eigenvalues and
eigenvectors have the same symbol, i.e., the eigenvalue of the eigenvector |a j〉 is
given by a j. This is standard, and hopefully does not introduce too much confu-
sion.

An especially important class of operators is the class of Hermitian operators. They
are defined by having the property A† = A. One of the key consequences of this
for Hermitian operators is that their eigenvalues are all real. Physical observables
in quantum mechanics are always given by Hermitian operators. The reason, as we
will see later, is that the result of a measurement in quantum mechanics is given by
the eigenvalues of the observable we are measuring. But the results of any physi-
cal measurement should of course be a real number, so that we should impose that
the observables are Hermitian operators. Another important property of Hermitian
operators is that their eigenvectors form a complete set, i.e., any state can be ex-
pressed in the eigenvectors. Note however, that if the eigenvalues are the same the
eigenvectors need not be orthogonal.

An operator A is called normal if it satisfies A†A = AA†. Such operators satisfy
an important theorem called the spectral decomposition theorem. It states that an
operator is normal if and only if it is diagonalizable with respect to some basis. This
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means that we can always express a normal operator, A, as A = ∑ j a j| j〉〈 j|, where
a j are the eigenvalues of A and | j〉 an orthonormal basis where each vector is also
an eigenvector of A (with eigenvalue a j). Obviously, Hermitian operators are always
normal.

A third class of operators that will play a very important role in this course is the
class of unitary operators. They are defined by the property A−1 = A†, or in words,
that the Hermitian conjugate is equal to the inverse operator. This means that A†A =

1.

Suppose now that we have two different observables A and B and we want to know
if we can express them both in terms of the same basis. Or in other words, if we
can write A = ∑ j a j| j〉〈 j| and B = ∑b j| j〉〈 j|. If this is possible we say that A and B
are simultaneously diagonalizable. It turns out that this can only be done if A and B
commute with each other, that is, if and only if

[A,B] := AB−BA = 0.

The notation [A,B] is called the commutator of A and B and is a very frequently used
operation in quantum mechanics.

We can again use the tensor product to build larger systems. If we have a system
that is a composite system of say two different vector spaces

|ψ〉= |ψ1〉⊗ |ψ2〉,

we can build composite operators acting on this tensor product as

A = A1⊗A2, A|ψ〉= A1|ψ1〉⊗A2|ψ2〉.

1.2.2 The wave function

Consider now a complete set of commuting observables, A, B,C, . . . together with
an orthonormal basis |a,b,c, . . .〉, where a, b, c, . . . are the corresponding eigenval-
ues of the observables. An arbitrary state |ψ〉 can then be expanded in this basis
as

|ψ〉= ∑
a,b,c,...

ψ(a,b,c, . . .)|a,b,c, . . .〉.

The set of coefficients,

{ψ(a,b,c, . . .) = 〈a,b,c, . . . |ψ〉},
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is called the wave function of the system in the a,b,c, . . . basis. As we have men-
tioned before, the individual coefficients ψ(a,b,c, . . .) are also called the probability
amplitude for finding the system in the |a,b,c, . . .〉 state, or sometimes just the am-
plitude. It is important to note that this is not the same as the probability as we will
see next. For one thing, it is in general a complex number. The actual probability of
finding the eigenvalues corresponding to |a,b,c, . . .〉, is instead given by the absolute
value squared of ψ(a,b,c, . . .).

1.2.3 Measurements

The idea of a measurement in quantum mechanics is that we measure some observ-
able A and the outcome will be an eigenvalue of A, where the corresponding proba-
bility of getting this result is captured by the coefficient of the state when expanded
in the eigenvectors of the measured observable.

In other words, we start with an observable A that we want to measure for some
system |ψ〉. We express it in its complete basis of eigenvectors A = ∑ j a j|a j〉. We
further expand our system in this basis as |ψ〉 = ∑ j ψ j|a j〉. The measurement will
then return an eigenvalue of A, let us say a j, and the probability of finding this
specific result is given by |ψ j|2. Remember that we always normalize the states
such that

1 = 〈ψ|ψ〉= ∑
j
|ψ j|2,

so this interpretation as a probability makes sense.

After the measurement, the system has “collapsed” to the state |a j〉 and we can
measure A again to find the same result, a j.9

At this point you might be wondering what all the fuss is about. We said in the
beginning of this chapter that quantum mechanics is supposed to undermine our
classical intuition that measurements does not affect the system. But, now we are
saying that if we measure an observable A and find that the system is in, say, the
state |a1〉, then making another measurement asking if the system is in state |a1〉
will give a positive answer with probability one. Is this not exactly what we said
about the experiment with throwing a die and covering it? Can we not just say that
the system was in state |a1〉 all along?

Well, the tricky thing with quantum mechanics is that if we now measure another
observable that is not commuting with A, say B, and find the result |b1〉, and then

9 The word “collapsed” here is a standard one used in much literature, but is definitely the subject
of much debate. What exactly happens in the moment of measurement is at the core of the various
interpretations of quantum mechanics that have appeared over the years, as we will briefly discuss
later on.
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afterwards return to measure A again, it is no longer true that we are certain to find
the result a1. We are basically back at square one and the only thing we can say is
that there is a probability |〈b1|a1〉|2 to find the result a1. This would be like throwing
the die, looking at the number on top, then looking at one of the numbers on the side
and then finally looking at the number on top again to find that it is no longer the
same.

With the above interpretations we can define the expectation value of an observable
A in the state |ψ〉 in the ordinary way. This is denoted 〈A〉ψ and defined by

〈A〉ψ := 〈ψ|A|ψ〉= ∑
j

a j|〈ψ|a j〉|2,

where |a j〉 is the complete set of eigenvectors of A.

Let us consider a simple example, namely that of a two-level system. This means
that we have a two-dimensional vector space.10 We introduce an orthonormal basis

{|u〉, |d〉},

such that we can express any state as

|ψ〉= α|u〉+β |d〉, |α|2 + |β |2 = 1.

Next, we introduce an observable σz defined by

σz|u〉= |u〉, σz|d〉=−|d〉.

I.e., the basis vectors are eigenvectors of σz with eigenvalues ±1, respectively.

We now measure σz and get some result. Let us assume that this is +1, and the state
collapses to |u〉. As said before, we can now measure σz again and again and every
time we will get the result +1.

But, there is of course nothing special with the basis defined by |u〉 and |d〉, we
could as easily pick another basis. For example,11

|l〉 :=
1√
2
(|u〉+ |d〉), |r〉 :=

1√
2
(|u〉− |d〉).

Related to this basis we can introduce a new observable, σx, that has these vectors
as eigenvectors,

σx|l〉= |l〉, σx|r〉=−|r〉,

10 This kind of system will of course be the main protagonist of this course, since the qubit is a
two-level system. But for now we simply think of it in slightly more abstract terms.
11 as an exercise you can show that this is an orthonormal set of vectors,
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and which does not commute with σz.12 If we now measure σx in our system, which
has collapsed to |u〉 after the first measurement, we will get the results ±1 with
probabilities

|〈u|l〉|2 = 1
2
|〈u|(|u〉+ |d〉)|2 = 1

2
,

|〈u|r〉|2 = 1
2
|〈u|(|u〉− |d〉)|2 = 1

2
.

Let us again assume that the result is +1 such that the state collapses to |l〉. Now
you might start to see the problem. If we return to measure σz, we will no longer
find +1 with probability one but instead we have

|〈l|u〉|2 = 1
2
,

|〈l|d〉|2 = 1
2
.

The two outcomes are now equally probable. This is part of the mysterious and
indeterministic nature of quantum mechanics. It is, perhaps, easy to see that, if the
observables do commute we can measure them simultaneously. Since we can then
diagonalize them in the same basis.

The uncertainty in measuring non-commuting observables is captured by the famous
Heisenberg’s uncertainty principle. This principle is so fundamental and important
in quantum mechanics, so let us take a few lines to derive it.

When we talk about uncertainty in this setting we typically mean with respect to
the standard deviation, ∆A, for some observable A. This is defined by the following
equation,

(∆A)2
ψ

:= ∑(a j−〈A〉)2
ψ |〈ψ|a j〉|2.

We may simplify things and assume that the expectation value of A is zero, which
implies that we have the simpler form

(∆A)2
ψ = 〈ψ|A2|ψ〉.

Let us now consider two observables A and B. The Cauchy-Schwartz inequality,

2|X ||Y | ≥ |〈X |Y 〉+ 〈Y |X〉|,

applied to the combinations |X〉= A|ψ〉 and |Y 〉= iB|ψ〉 gives us 13

∆A∆B≥ 1
2
|〈ψ|[A,B]|ψ〉|.

12 This follows from the definitions.
13 here we are assuming that the expectation values of both A and B are zero, as an exercise you
can fill in the details of the derivation,
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This is the uncertainty principle in its general form. In words it simply says that
the product of the uncertainties in the two observables A and B, can not be smaller
than the expectation value of the commutator of A and B. This is exactly what we
mentioned earlier, namely that if two observables does not commute, then we can
not measure them with certainty at the same time.

This is an enormously important consequence of the laws of quantum mechanics,
and it has many important consequences of its own. It is for example believed to be
the reason why there are galaxies and planets in the universe as well as part of the
leading explanation to why the universe is expanding with an accelerating speed.

Let us finally note two important facts about quantum states. Firstly, if we have
two states that only differ by an overall phase, say, |ψ〉 and |ϕ〉 = eiγ |ψ〉, then the
statistical properties of these states are the same. This is easily seen from the fact
that we have

|ϕ〉= eiγ |ψ〉 =⇒ 〈ϕ|= 〈ψ|e−iγ ,

and we thus have

〈ϕ|ϕ〉= 〈ψ|e−iγ eiγ |ψ〉= 〈ψ|ψ〉= ∑
j
|ψ j|2.

For this reason, in quantum mechanics, we do not distinguish between states that
differ only by an overall phase.

Secondly, we can notice is that we can only distinguish two states with complete
certainty if they are orthogonal, otherwise they will have some component along the
same direction and the result of the measurement has some probability of being the
same for the two states.

[width= colback=gray!50,title=Summary observables and measurements, colback-
title=gray!20,coltitle=black]

• Observables in quantum mechanics are represented as linear operators acting on
the state space. They act on a ket from the left, A|ψ〉, and on a bra from the right
〈ψ|A†, where † denotes the Hermitian conjugate.

• Normal operators are defined by having A†A = AA†, and such operators satisfy
the spectral decomposition theorem.

• Unitary operators are defined by having A† = A−1.

• Hermitian operators are defined by having A† = A. They are normal operators
and their eigenvalues are all real.

• Physical observables are described by Hermitian operators.

• The commutator between two operators A and B is denoted [A,B] = AB−BA.
Two observables can only be simultaneously diagonalizable if they commute,
i.e. if [A,B] = 0.
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• Measurements “collapses” the quantum state into an eigenstate of the measured
observable.

• Heisenberg’s uncertainty principle states that we can not know two properties of
a quantum system simultaneously, unless their respective operators commute.

1.3 Evolution

1.3.1 Unitary operators

An interesting question to ask at this point might be how a quantum system evolves
in time? To answer this, we first consider a system that at some time t is in the state
|ψ(t)〉. We then ask how this is related to the state at some other time, say t = 0?
We encode this change in an operator that we call U(t) such that we have

|ψ(t)〉=U(t)|ψ(0)〉.

Now, to be able to say something more about this mysterious operator U(t) we want
to introduce some restrictions. First of all, we want to demand that it is linear. This
is natural from what we have discussed before. Quantum operators are typically
linear. Less trivial is the statement that we want to enforce the operator to preserve
distinguishability. This means that, if we have two orthogonal states, such that they
are distinguishable by a measurement, we want them to still be orthogonal after
the time evolution. Furthermore, we want the probabilities to be preserved, i.e., the
normalization should remain intact.

Let us see what consequences this has. If we pick two elements |a j〉 and |ak〉 of an
orthonormal basis to represent the states at t = 0, we have the condition

〈a j|ak〉= δ jk,

where δ jk is the Kronecker symbol.14 But if we now let them evolve in time using
U(t) we want to have

〈a j|U†(t)U(t)|ak〉= δ jk,

and we see that U†(t)U(t) acts as the unit operator. From this you can prove that the
same is true for the action on any states. We thus need the time evolution operator to
satisfy U†(t)U(t) = 1. This is exactly what we mentioned earlier as the definition
of a unitary operator. So, time evolution in quantum mechanics is described by a
unitary operator.

14 δ jk = 1 if j = k and 0 if j 6= k.
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1.3.2 The Schrödinger equation

A slightly different view of the evolution of a system is due to thinking about a
very important operator in quantum mechanics, namely the Hamilton operator, or
sometimes just the Hamiltonian. This is the observable corresponding to the energy
of the system.15 The Hamiltonian determines the evolution of the system through
the Schrödinger equation16

i
d|ψ〉

dt
= H|ψ〉. (1.1)

More specifically, this is called the time-dependent Schrödinger equation. Here,
(pronounced h-bar) is the famous Planck’s constant, ∼ 1.0546× 10−34kgm2/s.17

As you see it is a very small constant, and this is basically the reason why quantum
physics is not part of our daily intuitions of the behaviour of things.

The Hamiltonian is Hermitian and we can expand it in its complete set of eigenvec-
tors,

H = ∑
j

E j|E j〉〈E j|.

These eigenstates are called the energy eigenstates and the corresponding eigenval-
ues are the results of a measurement of the energy of the system. Since the |E j〉 are
eigenstates of the Hamiltonian we have

H|E j〉= E j|E j〉,

which is sometimes called the time-independent Schrödinger equation.

By solving Schrödinger’s equation, we find the connection to the operator U(t)
discussed earlier. Namely,

U(t) = e−
i Ht . (1.2)

We thus see that we can consider two different pictures, one where the state itself
changes with time. The change is governed by the Schrödinger equation (1.1) and
the corresponding picture is aptly called the Schrödinger picture. In the other picture
we can instead think of the states as being constant while the time dependence is all
due to the operators, as in Eq. (1.2). This picture is called the Heisenberg picture.

15 The Hamiltonian, named after William Rowan Hamilton, as a quantity describing the energy of
a system is of course also important in classical physics. In classical mechanics it is however not
an operator but an ordinary function.
16 Named after its inventor, the cat-friendly Austrian Erwin Schrödinger.
17 The German physicist Max Planck was the person who, sort of by mistake, started the whole
field of quantum physics. He introduced a constant which he called h, which was later divided by
2π to give the constant := h

2π
, which we now call Planck’s constant.
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1.3.3 A note on (in)determinism

As we have mentioned already in the introduction, and seen in the discussion of
measurements, quantum mechanics is inherently non-deterministic. But the discus-
sion of time evolution of the quantum state looks very deterministic, right? This is
true. The time evolution of the quantum state is a deterministic process, but this does
not necessarily mean that quantum mechanics is deterministic.

In classical physics, making measurements does not affect the system and the result
of a measurement is equivalent to the state of the system, both before and after the
measurement. This is the basis of the determinism in classical physics. By knowing
the state and knowing the equations of motion, we can determine where the state
came from and where it is going. As we have seen, this is no longer true in quantum
physics. Time evolution of the quantum state is deterministic, but knowing the state
does not tell you with certainty the result of a general measurement.

[width= colback=gray!50,title=Summary: Quantum postulates, colbacktitle=gray!20,coltitle=black]
Let us summarize what we have learned so far into four postulates of quantum me-
chanics.

1. States are described by unit vectors in a complex vector space (in fact a Hilbert
space), and observables are described by linear Hermitian operators.

2. The possible outcomes of a measurement are given by the eigenvalues of the
operator corresponding to the observable being measured.

3. If the system is in a state |ψ〉, and we measure an observable A with eigenvectors
|a j〉 and eigenvalues a j, the probability of measuring eigenvalue a j is given by

P(a j) = |〈a j|ψ〉|2 = 〈ψ|a j〉〈a j|ψ〉.

4. The evolution of a quantum system is described by unitary operators.

1.4 What actually is the quantum state?

At this point, you might be asking yourself what the meaning of the quantum state
is. After all, measurements tells us that eventually the state will not be in a superpo-
sition, the thing we observe is a definitive classical state, so how do we know that
the state was ever in a superposition of other states? Well, such questions have given
rise to a large number of debates on the interpretation of quantum mechanics. 18

18 See for example Wikipedia

https://en.wikipedia.org/wiki/Interpretations_of_quantum_mechanics
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Many early interpretations of quantum mechanics involved hidden variables, i.e.,
that there are some hidden variables that we do not know about which determines
the measurements in a deterministic fashion. These have been essentially refuted by
a number of results, such as Gleason’s theorem and variations thereof. These type of
results typically go under the name of Bell’s theorem, and in principle they rule out
almost all hidden variables theories. The experimental verification of these results
was the subject of the Nobel prize in physics 2022.19

In contrast, the widely considered Copenhagen interpretation of quantum mechanics
(with variations) is essentially Bayesian. In this interpretation, the nature of quan-
tum mechanics is essentially non-deterministic, and we should not require one to
consider the “exponential” dimension of the quantum state prior to measurement
any more so than we require a person throwing a die to consider the probability dis-
tribution over the outcomes. Measurements give rise to a (practically) irreversible
process in which the state is affected.

Another famous interpretation is the many-worlds interpretation due to Hugh Ev-
erett. Here, time is considered as a tree, having many branches and each branch
corresponds to a possible result of a measurement. This gives rise to an uncountable
number of worlds or universes. The many-worlds interpretation is thus inherently
deterministic, as the universal wave function never collapses to one particular state.

Finally, let us mention the de Broglie-Bohm interpretation. This is a kind of hidden
variables theory where the problems of Bell’s theorem are circumvented by embrac-
ing non-locality. Locality is basically the concept that only things near to each other
can affect each other. This is one of the main building blocks of Einstein’s theory
of special relativity. The de Broglie-Bohm interpretation is thus a deterministic the-
ory and particles have a definite configuration at all times, even when not observed.
This has gained some interest in recent years and researcher are currently working
on how to align it with the ideas of special relativity.

1.5 The qubit

Let us now introduce the main protagonist of the course, the qubit. In a classical
computer we use classical bits that are systems whose states takes values in the set
{0,1}. The corresponding quantum system is called a qubit (sometimes QBit, q-
bit or quantum bit). This system is described by a two-dimensional complex vector
space. To make the connection to classical bits even stronger we denote a set of
basis vectors in this state space as

{|0〉, |1〉}.
19 Awarded to the three experimentalists Alain Aspect, John Clauser and Anton Zeilinger.
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Note that, as was mentioned before, we use the notation |0〉 to denote a basis vector,
not the zero vector. This basis is typically referred to as the computational basis.
Another frequently appearing basis is given by the states

|±〉= 1√
2
(|0〉± |1〉).

You may recognize these bases as the u,d and l,r basis we studied earlier. The |±〉
basis is sometimes called the Hadamard basis. Any qubit can be expanded in either
of these bases,

|ψ〉= α0|0〉+α1|1〉= α+|+〉+α−|−〉,
for some numbers α j, with the extra conditions |α0|2 + |α1|2 = |α+|2 + |α−|2 = 1.

We will often represent the computational basis by the vectors

|0〉=
(

1
0

)
, |1〉=

(
0
1

)
.

Linear operators acting on a qubit will now be described by 2× 2 complex matri-
ces. Of special importance are the so called Pauli operators.20 These are a set of
three matrices that together with the identity matrix spans the vector space of 2×2
Hermitian matrices. In the computational basis, they read

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

As an easy, but informative and extremely useful, exercise, we can study how the
Pauli operators act on our basis states. The Pauli matrices are some of the most used
operation in quantum circuits, and these kinds of actions on the basis states will be
used many many times throughout the course. We find21

σx


|0〉
|1〉
|+〉
|−〉

=


|1〉
|0〉
|+〉
−|−〉

 , σy


|0〉
|1〉
|+〉
|−〉

=


i|1〉
−i|0〉
−i|−〉
i|+〉

 , σz


|0〉
|1〉
|+〉
|−〉

=


|0〉
−|1〉
|−〉
|+〉

 .

When discussing quantum gates, the σx operator is sometimes referred to as the
NOT gate, since it interchanges |0〉 and |1〉.

20 Named after the Austrian physicist Wolfgang Pauli, who is counted as one of the main inventors
of quantum mechanics.
21 perhaps you recognize some of these properties from when we studied the up/down/left/right
system earlier,
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1.5.1 The Bloch sphere

We know that we can express any qubit as a superposition of the two basis vectors
|0〉, |1〉, and that the corresponding coefficients must satisfy |α0|2 + |α1|2 = 1. We
can then use a little trigonometry to express any qubit as

|ψ〉= eiγ (cos θ

2 |0〉+ eiφ sin θ

2 |1〉
)
.

Where γ , φ and θ are some real numbers. However, we also saw earlier that we can
not distinguish states that only differ by an overall phase, so we can disregard the
overall phase factor eiγ . We can thus describe any qubit in terms of two real numbers
φ and θ through the identification

|ψ〉= cos θ

2 |0〉+ eiφ sin θ

2 |1〉.

This is simply the spherical coordinates of the unit sphere, and we have thus found
that any qubit can be represented by a point on the unit sphere. This representation
of the state space of a qubit as a sphere goes under the name of the Bloch sphere.
See Figure 3.1 for an example of how we can visualize the state |+〉 on the Bloch
sphere. Here we clearly see the difference between a classical bit and a qubit. A
classical bit can only take the values 1 or 2 while the qubit can in principle be in any
state that correspond to a point on the Bloch sphere, i.e., we have an continuum of
possible states.

x

y

|0

|1

Fig. 1.1: The Bloch sphere. The vector denotes the qubit state |ψ〉= |+〉= 1√
2
(|0〉+

|1〉). The labels x and y represent the Euclidean x and y directions.

It can be easily seen from the previous calculations that the Pauli matrices act as
rotations along the different axes of the Bloch sphere. For example, acting with σx

on |0〉 rotates the state 180◦, or π radians, around the x-axis to give the state |1〉, and
so on. All the standard one qubit gates can be visualized in a similar manner as their
action on the Bloch sphere.
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1.5.2 Several qubits

Just as before, we can combine simple systems into larger ones by using the tensor
product of vector spaces. This will be vital when constructing quantum circuits,
since, obviously, having just one qubit would perhaps not be all that exciting.

So, using the tensor product we can build larger systems of several qubits, for ex-
ample

|0〉⊗ |0〉⊗ |+〉⊗ |1〉⊗ · · ·⊗ |1〉.
We will often be lazy and use the notation

|ψn−1 . . .ψ0〉 := |ψn−1〉⊗ |ψn−2〉⊗ · · ·⊗ |ψ0〉.

For example, for the two-qubit system, given by a four-dimensional vector space,
we then have the basis vectors

|00〉= |0〉⊗ |0〉, |01〉= |0〉⊗ |1〉, |10〉= |1〉⊗ |0〉, |11〉= |1〉⊗ |1〉.

It is easy to show that these span the vector space of states. Sometimes a further
simplification of notation is used for these types of combined systems where we
imagine the product to indicate a binary representation of an integer, so that we write
for example |01〉= |1〉2 and |11〉= |3〉2 and so on, where the subscript indicates how
many qubits there are in the system. The subscript is of course needed because 001
and 1 are both binary representations of the number 1, while here the former would
be a three qubit system and the latter a one qubit system.

1.5.3 Physical implementations

There are several physical implementations of a qubit, including:

• Superconducting qubits: These qubits are made from tiny loops of superconduct-
ing wire, which can carry electrical current without resistance. The state of a
superconducting qubit can be controlled by applying electromagnetic pulses to
the loop.

• Trapped-ion qubits: These qubits are made by trapping a single ion (an electri-
cally charged atom) in a magnetic or electric field. The state of a trapped-ion
qubit can be controlled by shining laser light on the ion.
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• Topological qubits: These qubits are based on the properties of certain materials,
such as topological insulators, that can carry electrical current on their surface
while insulating inside.

• Quantum dots: These qubits are made by confining a single electron or hole (an
absence of an electron) in a tiny semiconductor structure called a quantum dot.

• Nuclear Magnetic Resonance (NMR) qubits: These qubits are based on the spin
of the nuclei of certain atoms.

• Photonic qubits: These qubits are based on the properties of individual photons
(particles of light). For example, the polarization state of a photon can be used as
a qubit, with the two possible states being horizontal and vertical polarization.

• Single-molecule spin qubits: These qubits are based on the spin of individual
electrons or nuclei in a single molecule. The state of the qubit can be controlled
by applying magnetic fields to the molecule. These qubits are still in the research
stage and not yet commercialized.

1.6 The harmonic oscillator

Models of most physical implementations of qubits rely on various variations of
the quantum harmonic oscillator. To give some intuition behind the physical qubits,
as well as to illustrate the many concepts we have introduced so far, we will show
how to extend the classical harmonic oscillator to the quantum harmonic oscillator,
highlighting the differences.22

1.6.1 The classical harmonic oscillator

Classical systems follow Newton’s three laws of mechanics. In particular, the second
law states that the force is equal to the mass times the acceleration,

F = ma.

22 The harmonic oscillator could very well be the single most important system in all of physics,
so a basic knowledge of this system is probably a good thing to have in life.
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A harmonic oscillator is a particle that undergoes harmonic motion around an equi-
librium point. Think for example of a spring with a mass attached to its end such
that it bounces back and forth around an equilibrium.

Let us focus on the one-dimensional case and set the equilibrium point to be x = 0.
The system is described by a mass m and a restoring force that pushes the mass
towards the equilibrium point,

F =−mω
2x,

where ω is called the angular frequency. The minus sign tells us that the force is
driving the spring back towards its equilibrium point. Combining this with Newton’s
second law we get

ma = mẍ =−mω
2x.

The solution of this second order differential equation is

x(t) = Acos(ωt +φ),

where A is the amplitude of the oscillations (giving the turning points of the motion)
and φ the initial phase.

SOME PICTURES COULD DEFINITELY BE ADDED IN THE ABOVE!

The potential energy of the system is given by

V =
1
2

mω
2x2.

This gives a parabola as shown in Figure 1.2. The reason why the harmonic oscilla-
tor is so important as a physical system is that almost any smooth function can be
approximated by a parabola near its minimum points.
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Fig. 1.2: The potential energy (top) and probability density (bottom) of the classical
harmonic oscillator, with amplitude A.
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Remember that the total energy of the system is given by the sum of the potential
energy, V , and the kinetic energy 1

2 mv2. At the turning points x = ±A, the veloc-
ity, and therefore the kinetic energy, is zero, and the potential energy reaches its
maximum. The total energy of the system thus simply says something about how
far away from the equilibrium it can move. For example, the zero-energy harmonic
oscillator simply sits still at its equilibrium. At the equilibrium point, on the other
hand, the kinetic energy reaches its maximum and the potential energy is zero, this
means that the particle attains the greatest velocity here. This further implies that
for a classical harmonic oscillator, the probability is highest to find it close to the
turning points x = ±A, since this is where it moves at its slowest, and thus spends
the most time. This is shown in the bottom picture of Fig. 1.2.

1.6.2 The quantum harmonic oscillator

The quantum harmonic oscillator is, as the name suggests, the quantum analogue
of the classical system. As we discussed earlier, in quantum mechanics (and also in
classical mechanics) an important role is played by the Hamiltonian of the system.
This is simply constructed as the sum of the kinetic and potential energy. So to
construct the Hamiltonian we simply take the expression for the classical kinetic
and potential energy and sum them,

H =
1
2

mv2 +
1
2

mω
2x2.

But in quantum mechanics, as we have seen, observables should be operators, so we
also promote the position and momentum (p = mv) variables to operators.23 This
results in the expression

Ĥ =
p̂2

2m
+

1
2

mω
2x̂2,

where we, in this section only, adopted the very common practice of putting hats
on quantum operators, to distinguish them from their classical variable analogues.
Note that, in contrast to most of the rest of this course, we are here considering
an infinite-dimensional Hilbert space of states, since both x̂ and p̂ take continuous
values. This does introduce some extra subtleties that we however simply gloss over
at the moment.

In quantum mechanics, the energy of the system is described by the time-independent
Schrödinger equation

Ĥ|ψE〉= E|ψE〉,
23 There are many reasons why we use momentum instead of velocity as the go-to operator in
quantum mechanics, the most important one being that momentum is a conserved quantity, while
velocity is not.
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where the subscript E on ψE is there to remind us that these are the eigenvectors of
Ĥ corresponding to the energy eigenvalues E. To solve this, we express the wave
function ψE(x) = 〈x|ψE〉 in the coordinate basis. In this basis we can represent the
momentum operator p̂ as a derivative p̂ =−i ∂

∂x , and the equation takes the form

−
2

2m
∂ 2ψE(x)

∂ x2 +
1
2

mω
2x2

ψE(x) = EψE(x).

This does not look like something we want to explicitly solve in this course, you
can take a proper course on quantum mechanics or differential equations for that.24

Instead, we simply state that under the assumptions that the wave function is nor-
malizable and symmetric around the equilibrium x = 0, we have an infinite family
of solutions labeled by a level (or quantum number) n

ψn(x) =
1√
2nn!

(mω

π

)1/4
e−

mωx2
2 Hn

(√
mω

x
)
, n = 0,1,2, . . . .

Here, Hn(y) are the so called (physicist’s) Hermite polynomials, with the first few
being

H0(y) =1,

H1(y) =2y,

H2(y) =4y2−2,

H3(y) =8y3−12y,
...

The corresponding energy eigenvalues are

En = ω(n+ 1
2 ).

These are the values that would be returned upon a measurement of the Hamiltonian
of the quantum harmonic oscillator. Two important things to note are, first that the
energies are quantized, i.e., they come in discrete steps; and secondly the lowest
value is not equal to zero, but rather E0 =

ω

2 . This second point is a consequence of
the uncertainty principle.

To connect with the classical system we can calculate the amplitudes, An, of a clas-
sical harmonic oscillator with the corresponding energies of the quantum one. We
find

En =
1
2

mω
2A2

n =⇒ An =
√
(2n+1)

mω
.

24 Of course you are welcome to solve it yourselves. A nice trick one can use is to first guess or
argue for the expression of the lowest energy state, and then use the fact that [x̂, p̂] = i together with
the algebra given by introducing the creation and annihilation operators a± ∝ p̂± iω x̂ to construct
the higher energy states.
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Note that these increase with the quantum number n.

Figure 1.3 shows the probability amplitudes, ψn(x), and probability densities,
|ψn(x)|2 of finding the system at the location x, for the first few energy levels in
the positional basis. We note two big differences with the classical oscillator. First,
there is a non-zero probability of finding the particle outside the values x = ±An,
this is not possible in the classical system. This is due to something called quantum
tunneling. Secondly, the probability density distribution for the lowest-energy state
ψ0(x), is highest at the origin x = 0, while for the higher values of n we see that
the system starts looking more like the classical one, i.e., that it is most likely to
find the system near the turning points. This is an illustration of something called
the Bohr correspondence principle. Namely that quantum physics should become
classical physics in the limit of large quantum numbers (or when becomes small in
comparison to the energy).

-A0 0 A0

n=0

-A0 0 A0

-A1 0 A1

n=1

-A1 0 A1

-A2 0 A2

n=2

-A2 0 A2

-A3 0 A3

n=3

-A3 0 A3

-A6 0 A6

n=6

-A6 0 A6

-A10 0 A10

n=10

-A10 0 A10

Fig. 1.3: The probability amplitudes (left) and probability densities (right) for some
levels of the quantum harmonic oscillator. The classical amplitudes An are indicated.

2D HARMONIC OSCILLATOR??



30 1 Quantum Physics 101

1.7 Entanglement

Let us end this chapter by discussing one of the most mysterious concepts in quan-
tum mechanics, namely that of entanglement. We will also elaborate on some of its
important consequences for quantum computers.

1.7.1 Product states

We have seen that if we have two physical systems |ψA〉 and |ψB〉, we can combine
them into a composite system

|ψAB〉= |ψA〉⊗ |ψB〉.

Let us study this concept in more detail. For simplicity, let us consider a two-qubit
system. We then have that both systems |ψA〉 and |ψB〉 can be expressed as a linear
combination of the basis states |0〉 and |1〉,

|ψA〉= α0|0〉+α1|1〉, |ψB〉= β0|0〉+β1|1〉,

with the ordinary normalization conditions |α0|2 + |α1|2 = |β0|2 + |β1|2 = 1. The
combined system looks like

|ψAB〉=(α0|0〉+α1|1〉)⊗(β0|0〉+β1|1〉)=α0β0|00〉+α0β1|01〉+α1β0|10〉+α1β1|11〉.
(1.3)

Furthermore, we have seen that we do not need to consider overall phases for the two
individual systems. All in all this means that we have four real degrees of freedom in
the combined system. Two coming from each qubit. But, let us now instead consider
the most general two-qubit system

γ00|00〉+ γ01|01〉+ γ10|10〉+ γ11|11〉,

with the normalization condition now being

|γ00|2 + |γ01|2 + |γ10|2 + |γ11|2 = 1.

Here, we only have one overall phase to disregard. The generic two-qubit system
thus have six real degrees of freedom. Which of course is larger than the four we
had before. It is easy to see that the first case is a special case of the more general
second case. The extra degrees of freedom between the two cases are exactly what
give rise to the mysterious concept of entanglement.

A state that can be written on the form (1.3), or more generally as a product
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|ψ〉= |ψA〉⊗ |ψB〉⊗ . . . ,

is, somewhat naturally, called a product state, while those that can not be written on
this form are called entangled. A simple example, that will play an important role
later, would be the state

|ψ−〉 :=
1√
2
(|01〉− |10〉).

This is called a maximally entangled state for reasons that will become clear later.

1.7.2 Non-locality

In 1935, Einstein, Podolsky and Rosen (EPR) published a paper called “Can
quantum-mechanical description of physical reality be considered complete?” [1].
In this paper, they considered a simple thought experiment that pinpointed some of
the mysteries of entanglement. EPR were interested in the question of completeness
of a physical theory. They defined a complete theory as one where each element
of physical reality25 must have a counterpart in the physical theory. They proposed
one simple requirement for an element of physical reality such that “if, without in
any way disturbing a system, we can predict with certainty (i.e., a probability equal
to unity) the value of a physical quantity, then there exists an element of physi-
cal reality corresponding to this physical quantity.” [1]. They would thus say that
two physical quantities corresponding to two non-commuting observables could not
have a simultaneous reality, since they can not be measured simultaneously.

We will now give a simple example highlighting how quantum mechanics, or more
specifically entanglement, challenges this simple idea.

Let us start with stating a simple fact. A quick calculation shows that for a generic
qubit state, |ψ〉= α|0〉+β |1〉, we have the result

〈σx〉2ψ + 〈σy〉2ψ + 〈σz〉2ψ = 1.

This can be interpreted as saying that there is always some direction that has eigen-
value +1 for the qubit. It is furthermore easy to check that this continues to hold
for the product states (1.3). Let us now look at the entangled state |ψ−〉 which we
defined above. To this end, we calculate the expectation values of the operators
σx,y,z⊗1 and 1⊗σx,y,z.26 The result turns out to be zero for all choices. Having
a zero expectation value of course simply means that both outcomes are equally

25 whatever that is,
26 By the notation σx,y,z we simply mean that we can take any of the three indices.
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likely. We thus see that, even though we know the exact state the system is in,
namely |ψ−〉, we can not say anything about the individual pieces, i.e., the states
of the two individual qubits.

Next, we can note that an operator such as σz⊗σz will have |ψ−〉 as an eigenstate,
more specifically, we have

(σz⊗σz)|ψ−〉=−|ψ−〉.

Which of course tells us that 〈σz⊗σz〉ψ− = −1. This is peculiar for the following
reason: We can imagine having the two-qubit system |ψ−〉 and distributing each
qubit to two people, say Alice and Bob. We then imagine that Alice flies off to Mars
with her qubit and Bob stays behind here on Earth. If at Mars, Alice suddenly (and
randomly) decides to measure the spin along the z-axis of her qubit (i.e. measure
σz), she will find one of the results ±1, but since the combined eigenvalue of hers
and Bob’s measurement of σz must be equal to−1, she will immediately know what
the result of Bob’s measurement would be. For example, if Alice finds the result +1
she immediately knows that Bob must find −1 and vice versa. This is what Einstein
famously called spooky action at a distance.

CONNECT BACK TO THE EPR PAPER!!!

1.7.3 Bell inequalities and CHSH

The EPR paper did not receive a lot of attention after its publication. By many it
was mostly considered to be some philosophical detail that one need not care about
when doing physics. It was not until John Bell in 1964, almost 30 years after the EPR
paper, published an idea for an experiment that could make use of the entanglement
introduced by EPR to make predictions about the nature of quantum mechanics.

We will discuss a variant of Bell’s proposed experiment due to Clauser, Horne,
Shimony and Holt (CHSH) [2].

We consider the following game. We have two players, Alice (A) and Bob (B) and
one game host, Charlie (C). Charlie chooses two questions xy ∈ {00,01,10,11}
uniformly and Alice and Bob will answer with a single bit a and b, respectively.
They will win if a⊕b = x∧ y.27 In other words, we need

a(0)⊕b(0) = 0,

a(0)⊕b(1) = 0,

a(1)⊕b(0) = 0,

a(1)⊕b(1) = 1.

(1.4)

27 Here, ⊕ means addition modulo 2.
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If we consider classical (and deterministic) strategies, we can easily see that there
are 16 possible ones. For example, one strategy would be for both Alice and Bob to
always answer every question with zero. By comparing the different strategies with
the winning ones of (1.4) we will see that there is no classical strategy that can win
every time. The best we can do is to choose a strategy that wins 3/4 of the times.
One such example is the strategy of always answering zero to every question.28

The big question is now if we can do better by considering quantum strategies. For
simplicity we consider the answers to be either±1 instead of 0 and 1. This of course
makes no real difference, we can for example consider the map a 7→ (−1)a to take
us from one convention to the other.

In the quantum version we consider Alice and Bob to share an entangled state, say

|ϕ+〉 :=
1√
2
(|00〉+ |11〉),

such that they have one qubit each of this state. Before answering the question they
both make a measurement on their corresponding qubit, such that a(0) corresponds
to the measurement of σz, a(1) of σx, b(0) of H = 1√

2
(σz+σx) and b(1) of 1√

2
(σz−

σx). By calculating the corresponding expectation values,

〈a(0)⊗b(0)〉ϕ+ = 〈a(0)⊗b(1)〉ϕ+ = 〈a(1)⊗b(0)〉ϕ+ =
1√
2
, 〈a(1)⊗b(1)〉ϕ+ =− 1√

2
.

These expectation values measures the expectation that Alice and Bob win minus
the expectation that they loose on each of the questions {00,01,10} and minus this
on the question xy = 11. Therefore, we find that the total probability of winning
minus the probability of loosing is

1
4
〈ϕ+|a(0)⊕b(0)+a(0)⊗b(1)+a(1)⊗b(0)−a(1)⊗b(1)|ϕ+〉= 1√

2
,

and the probability of winning is therefore

1
2

(
1+

1√
2

)
∼ 0.85.

This is of course better than the 3/4 probability in the classical setting.

In physics literature, this is more often stated as the fact that the inequality, known
as a Bell inequality, 29

a(0)b(0)+a(0)b(1)+a(1)b(0)−a(1)b(1)≤ 2,

28 As an exercise you can assure yourself that we can not do better by considering probabilistic
strategies.
29 more specifically here the CHSH inequality,



34 1 Quantum Physics 101

which clearly holds for classical variables a,b ∈ [−1,1], can be violated by consid-
ering the above quantum situation, which gives

〈a(0)⊗b(0)〉ϕ+ + 〈a(0)⊗b(1)〉ϕ+ + 〈a(1)⊗b(0)〉ϕ+ −〈a(1)⊗b(1)〉ϕ+ = 2
√

2.

1.7.4 The GHZ paradox

Greenberger, Horn and Zeilinger (GHZ) [3] came up with a sort of deterministic
variant of the Bell inequality game which perhaps gives an even more striking para-
dox than the earlier discussion. Namely, it gives a problem where the quantum strat-
egy can win with certainty every time, while the classical can not.

We now imagine a three-party game where Alice, Bob and Charlie each are asked
one out of two questions x, y and z, with possible answers again given by a bit, 0 or
1. They now win if a⊕b⊕ c = x∨ y∨ z. The winning strategies should thus satisfy

a(0)⊕b(0)⊕ c(0) = 0,

a(0)⊕b(1)⊕ c(1) = 1,

a(1)⊕b(0)⊕ c(1) = 1,

a(1)⊕b(1)⊕ c(0) = 1.

It is straightforward to once again assure us that no classical strategy can do better
than win 75% of the time.

For the quantum strategy, we consider the case that Alice, Bob and Charlie are each
given one qubit from the entangled state

|GHZ〉= 1√
2
(|000〉+ |111〉).

The measurements can then correspond to σx and σy, since we can easily check that

σx⊗σx⊗σx|GHZ〉=+|GHZ〉,
σx⊗σy⊗σy|GHZ〉=−|GHZ〉,
σy⊗σx⊗σy|GHZ〉=−|GHZ〉,
σy⊗σy⊗σx|GHZ〉=−|GHZ〉.

Where we again considered the answers ±1 instead of 0 and 1. By the same argu-
ment as in the CHSH game of before we can now see that the GHZ game has a
strategy that wins every time.
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1.7.5 Bell basis and measurements

We have seen two examples of maximally entangled two-qubit states, |ψ−〉 and
|ϕ+〉. They are in fact two out of four basis states of maximally entangled states.
This basis is called the Bell basis,

|ϕ±〉 :=
1√
2
(|00〉± |11〉),

|ψ±〉 :=
1√
2
(|01〉± |10〉).

As we have seen, and will continue to see, they play an important role in various
thought experiments involving quantum entanglement.

Due to their importance in quantum theory, it is worthwhile to consider how we can
construct the Bell states out of two generic qubits. If we start from a state in the
computational basis we can create a Bell state by acting with the Hadamard gate,
H = 1√

2
(σx+σz) on the first qubit and then the so called controlled NOT, or CNOT,

gate, with the newly transformed first qubit as the control. This gate acts by first
controlling the state of the control qubit. If this is 0 it does nothing to the other
qubit, while if it is 1 it acts with σx on the other qubit, flipping it between 0 and 1.30

For example, if we start from the state |00〉, we find first that

H⊗1|00〉= 1√
2
(|0〉+ |1〉)|0〉,

and the CNOT thus transforms this into

1√
2

CNOT(|0〉+ |1〉)|0〉= 1√
2
(|00〉+ |11〉) = |ϕ+〉.

Similarly, we find that the same circuit transforms |11〉 into |ϕ−〉, |01〉 into |ψ+〉
and |10〉 into |ψ−〉.
Equally important is the Bell measurement. Given two maximally entangled qubits
we can perform a Bell measurement to determine which of the Bell states the en-
tangled qubits are in, and thus entangle the information. This measurement is just
the Bell creation circuit, just presented, run in the opposite order. We start by acting
with the CNOT gate, followed by the Hadamard on the control qubit. This is a key
ingredient in the quantum teleportation protocol, which we discuss next.

30 These gates will be more properly introduced later as they are of course very important for the
course.
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1.7.6 Teleportation

The notion of entanglement is a very powerful one. To show some of its conse-
quences, we will now discuss how quantum mechanics allows a form of teleporta-
tion of information.

We return again to our dear friends Alice and Bob. Alice was recently given a qubit

|ψ〉= α|0〉+β |1〉,

that she wants to send to Bob. However, they are very far away from each other
and only have access to a measuring device and a telephone. So this seems hard.
But perhaps there is a way? In other words, Alice needs to share some classical
information over the phone such that Bob can recreate her state |ψ〉. There is a deep
result in quantum mechanics called the no-cloning theorem that states that Bob can
not simply copy Alice’s state exactly.31 Instead what we will see is that Alice will
make a certain measurement changing her state but allowing her to retrieve some
information that she can send to Bob such that he can rebuild the original state |ψ〉.
This procedure is then what is called quantum teleportation.

First of all, let us note that we have seen that quantum mechanics does not allow
for any direct measurement of Alice to simply get the numbers α and β such that
she can communicate them to Bob. Since the measurement would change the state
and she would not get the complete information of the original state. Instead we will
come up with another prescription.

For this to work we imagine that besides the original qubit |ψ〉, Alice and Bob both
have one qubit each from an entangled Bell pair |ϕAB〉. The steps of the procedure
are easy enough and given by:

1. Alice makes a Bell measurement of her combined system of two qubits |ψ〉 and
|ϕA〉;

2. Alice makes a measurement to decide which states |00〉, |01〉, |10〉 or |11〉 her
combined system is in;

3. depending on the outcome she gives an instruction to Bob, as follows:

• if |00〉 do nothing;

• if |01〉 apply σx;

• if |10〉, apply σz;

31 You could try and derive this theorem, everything you need has been discussed in the course
already.
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• if |11〉, apply σzσx.

4. if Bob follows Alice’s instructions he will now have the state |ψ〉.

So why does this work? Let us do the maths. For the Bell pair we take |ϕAB〉= |ϕ+〉.
The original system is then

|ψ〉⊗|ϕAB〉=
1√
2
(α|0〉+β |1〉)⊗(|00〉+|11〉)= 1√

2
(α|000〉+α|011〉+β |100〉+β |111〉) .

Alice then makes a Bell measurement on the first two qubits of this system. Remem-
ber that this means CNOT followed by Hadamard on the first qubit:

(H⊗1⊗1)(CNOT⊗1)(|ψ〉⊗ |ϕAB〉=(H⊗1⊗1) 1√
2
(α|000〉+α|011〉+β |110〉+β |101〉)

=
1
2
(α (|000〉+ |011〉+ |100〉+ |111〉)+β (|010〉− |110〉+ |001〉− |101〉)) .

This can be rearranged into

1
2
(|00〉(α|0〉+β |1〉)+ |01〉(α|1〉+β |0〉)+ |10〉(α|0〉−β |1〉)+ |11〉(α|1〉−β |0〉)) .

Next, Alice measures her two qubits. This will give one of the results |00〉, |01〉, |10〉
or |11〉, with equal probability, projecting Bob’s state to the corresponding parenthe-
sis in the above expression. We thus see that if Alice obtains the result correspond-
ing to |00〉 Bob’s state will be |ψ〉, which is what we wanted, so no further action
is needed. If Alice finds |01〉, Bob’s state is α|1〉+β |0〉, and acting on this with σx

gives |ψ〉. Similarly, if Alice finds |10〉 Bob should act with σz and |11〉 means that
he should act with σzσx to get |ψ〉.
As we stated in the beginning, we also see that Alice’s qubit is of course no longer
in the state |ψ〉, it has collapsed to an eigenstate of her measurement. We thus say
that she has teleported her state to Bob.

1.8 Further reading





Chapter 2

Theoretical Computer Science 101

Before we consider quantum computing, it is worthwhile to review classical com-
puting. Modern computers are very complicated. People hence study many abstrac-
tions of the workings of a computer, called “models of computation”. In this chapter,
we will introduce three such models of computation.

2.1 Traditional Computer Science

Computer Science grew out of the work led by David Hilbert, who made significant
contributions to the field of mathematics, including the development of formal ax-
iomatic systems, which laid the foundation for the study of mathematical logic and
the formalization of algorithms. His work in these areas has influenced the devel-
opment of theoretical computer science, including the study of computability and
complexity theory. Additionally, Hilbert’s work on geometry and his development
of the concept of Hilbert spaces have had an impact on the field of computer graph-
ics as well as quantum mechanics. In the context of this chapter it is important to
stress that it is Hilbert who tried to distinguish between problems that can be solved
by simple methods and those which can not.

Much of computer science uses a language-inspired definition of a decision prob-
lem. One starts with an finite alphabet A. By stringing elements of the alphabet
one after another, one obtains strings of finite or countably infinite length. A set of
strings is called a language. A decision problem is defined by a fixed set S, which is
a subset of the language U of all possible strings over the alphabet A. A particular
instance of the decision problem is to decide, given an element u ∈U , whether u is
included in S.

Example 2.1 (Primality testing.). For example, alphabet could be composed of bi-
nary digits A = {0,1}, U could be the set of all natural numbers encoded in binary,

39

https://en.wikipedia.org/wiki/David_Hilbert


40 2 Theoretical Computer Science 101

and set S could be the binary encodings of prime numbers. The decision problem is
the inclusion of an arbitrary binary encoding of a natural number in the set of S. ♦

Several models of computation were devised. Alan Turing introduced a model,
where characters are stored on an infinitely long tape, with a read/write head scan-
ning one square at any given time and having very simple rules for changing its in-
ternal state based on the symbol read and current state. Another influential model,
called Lambda Calculus, has been introduced by Alonzo Church. Many of these
formalisms turn out to be equivalent in computational power, i.e., any computation
that can be carried out with one can be carried out with any of the others. As it turns
out, quantum computing may be one of the first models, where this is not the case.

2.1.1 Turing Machines

Formally, one can define a Turing machine using:

• a finite, non-empty set Q of objects, representing states

• a subset F of Q, corresponding to “accepting” states, where computation halts

• q0 ∈ Q, the initial state

• a finite, non-empty set Γ of objects, representing the symbols to be used on a
tape

• a partial function δ : (Q\F)×Γ →Q×Γ ×{−1,0,1} where for a combination
of a state and symbol read from the tape, we get the next state, the symbol to
write onto the tape, and an instruction to shift the tape left (-1), right (+1), or
keep in its position (0).

Notice that here we assume the input is on the tape, at the beginning.

Example 2.2 (There and Back Again.). Let us, for example, construct a machine,
which scans over an integer encoded in binary and delimited by “blank” on the tape
from left to right, and back. This is not very useful, but will be easy to understand:

• Q = {goingright,goingleft,halt}
• F = {halt}
• q0 = goingright

• Γ = {0,1,“blank′′}
• δ given by the table below:

https://en.wikipedia.org/wiki/Alan_Turing
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Current state Scanned symbol Print symbol Move tape Next state
goingright 0 0 1 goingright
goingright 1 1 1 goingright
goingright blank blank -1 goingleft
goingleft 0 0 -1 goingleft
goingleft 1 1 -1 goingleft
goingleft blank blank 0 halt

♦

Exercise 2.3. Consider the following simulator of a Turing machine (TM):

1 def turing(code, tape, initPos = 0, initState = "1"):
position = initPos
state = initState
while state != "halt":

print f"{state} : {position} in {tape}"
6 symbol = tape[position]

(symbol, direction, state) = code[state][symbol]
if symbol != "noWrite": tape[position] = symbol
position += direction

code/ch1/turing.py

Implement a TM, which checks whether an integer, which is encoded on the tape as
in binary and delimited by “blank” on both ends of the tape, is odd. If so, it should
replace all symbols representing the integer with “1”. Otherwise, it should replace
all symbols representing the integer with “0”.

Exercise 2.4. Consider the same simulator of a Turing machine (TM) as in Ex-
ercise 2.3. Implement a TM, which adds two integers, which are encoded on the
tape in binary and delimited by “blank” on both ends of the tape and between the
numbers. Replace both numbers with the result.

Exercise 2.5. Consider the simulator of a Turing machine (TM) of Exercise 2.3.
Implement a TM, which multiplies two integers, which are encoded on the tape in
unary and and delimited by “blank” on both ends and between the numbers. Do not
replace the numbers, but append the result after yet another blank.

Hint: Unary encoding means the number of a ocurrences of a particular symbols
(e.g., “1”) is equal to the number (e.g., “11111” stands for 5).

2.1.2 Computability

Computability studies these models of computation, and asks which problems can
be proven to be unsolvable by a computers. For example:
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Example 2.6 (The Halting Problem). Given a program and an input to the program,
will the program eventually stop when given that input? ♦

A silly solution would be to just run the program with the given input, for a rea-
sonable amount of time. If the program stops, we know the program stops. But if
the program doesn’t stop in a “reasonable” amount of time, we cannot conclude that
it won’t stop. Maybe we didn’t wait long enough. Alan Turing proved the Halting
problem to be undecidable in 1936.

2.1.3 Complexity theory

Some problems are solvable by a computer, but require such a long time to compute
that solution is impractical. Here, we express the run time as a function from the
dimensions of the input to the numbers of steps of a Turing machine (or similar).

Example 2.7 (Fischer-Rabin Theorem.). For example, let us have a logic featuring
0, 1, the usual addition, and where the axioms are a closure of the following:

• ¬(0 = x+1)

• x+1 = y+1⇒ x = y

• x+0 = x

• x+(y+1) = (x+ y)+1

• For a first-order formula P(x) (i.e., with the universal and existential quantifiers)
with a free variable x, (P(0)∧∀x(P(x)⇒ P(x+1)))⇒∀yP(y) (“induction”).

This is known as the Presburger arithmetic. Fischer and Rabin proved in 1974 that
every classical algorithm that decides the truth of statement of length n in Presburger
arithmetic has a runtime of at least 22cn

for some constant c, because it may need to
produce output of that size. Hence, this problem needs more than exponential run
time. ♦

Complexity theory deals with questions concerning the time or space requirements
of given problems: the computational cost. For algorithms working with finite
strings from a finite alphabet, this is often surprisingly easy.

2.1.4 Computational Complexity of Discrete Algorithms

The term analysis of algorithms is used to describe general approaches to putting
the study of the performance of computer programs on a scientific basis. One such

https://en.wikipedia.org/wiki/Halting_problem
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Notation Definition Analogy
f (n) = O(g(n)) see Def. 2.9 ≤
f (n) = o(g(n)) see Def. <
f (n) = Ω(g(n)) g(n) = O( f (n)) ≥
f (n) = ω(g(n)) g(n) = o( f (n)) >
f (n) =Θ(g(n)) f (n) = O(g(n)) and g(n) = O( f (n)) =

Table 2.1: An overview of the Bachmann–Landau notation.

approach1 concentrates on determining the growth of the worst-case performance
of the algorithm (an “upper bound”): An algorithm’s “order” suggests asymptotics
of the number of operations carried out by the algorithm on a particular input, as a
function of the dimensions of the input.

Example 2.8. For example, we might find that a certain algorithm takes time
T (n) = 3n2−2n+6 to complete a problem of size n. If we ignore

• constants (which makes sense because those depend on the particular hard-
ware/virtual machine the program is run on), and

• slower growing terms such as 2n,

we could say “T (n) grows at the order of n2”. ♦

2.1.5 The Bachmann–Landau Notation

Let us introduce a formalisation of the notion of asymptotics. The formalisation
known as “Big O notation” or “Bachmann–Landau notation” goes back at least to
1892 and Paul Gustav Heinrich Bachmann, according to some sources, although it
was reinvented many times over. Suppose our A requires T (n) operations to com-
plete the algorithm in the longest possible case. Then we may say A is O(g(n)) if
|T (n)/g(n)| is bounded from above as n→ ∞. The fastest growing term in T (n)
dominates all the others as n gets bigger and so is the most significant measure of
complexity.

Similarly to “Big O”, there are 4 more notions, as summarised in Table 2.1. For-
mally, suppose f and g are two real-valued functions defined on some subset of
Rand consider the following:

1 Introduced by Hartmanis and Stearns in: Juris Hartmanis and Richard Stearns (1965), On the
computational complexity of algorithms, Trans. Amer. Math. Soc., 117:285–306; and popularised
by Aho, Hopcroft and Ullman.
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Definition 2.9. We write:

f (x) = O(g(x)) (or, to be more precise, f (x) = O(g(x)) for x→ ∞)

if and only if there exist constants N and C > 0 such that

| f (x)| ≤C|g(x)| for all x > N or, equivalently,
| f (x)|
|g(x)| ≤C for all x > N.

That is, | f (x)/g(x)| is bounded from above as x→ ∞. Intuitively, this means that f
does not grow faster than g. The letter “O” is read as “order” or just “Oh”.

Definition 2.10. We also write:

f (x) = Ω(g(x)) (for x→ ∞)

if and only if there exist constants N and C > 0 such that

| f (x)| ≥C|g(x)| for all x > N or, equivalently,
| f (x)|
|g(x)| ≥C for all x > N.

That is, | f (x)/g(x)| is bounded from below by a positive (i.e., non-zero) number
as x→ ∞. Intuitively, this means that f does not grow more slowly than g (i.e.,
g(x) = O( f (x))). The letter “Ω” is read as “omega” or just “bounded from below
by”.

Definition 2.11.
f (x) =Θ(g(x)) (for x→ ∞)

if and only if there exist constants N, C and D > 0 such that

D|g(x)| ≤ | f (x)| ≤C|g(x)| for all x>N or, equivalently, D≤ | f (x)||g(x)| ≤C for all x>N.

That is, | f (x)/g(x)| is bounded from both above and below by positive numbers as
x→ ∞. Intuitively, this means that f grows roughly at the same rate as g.

Example 2.12. Let us consider algorithm A with parameter n and polynomial run-
time O(nk). By our definition of O, the algorithm is of order O(nk) if |T (n)/nk|
is bounded from above as n→ ∞, or — equivalently — there are real constants
a0,a1, . . . ,ak with ak > 0 so that A requires

aknk +ak−1nk−1 + · · ·+a1n+a0

operations to complete in the worst case. Note that k is an integer constant indepen-
dent of the algorithm input and independent of the parameter n. It may be that there
is no such polynomial for the number of operations in terms of n. If there is such
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Notation Name
O(1) constant
O(log(n)) logarithmic
O((log(n))c) polylogarithmic
O(n) linear
O(n2) quadratic
O(nc) polynomial
O(cn) exponential
O(n!) factorial

Table 2.2: Classes of functions commonly encountered in algorithm analysis

a polynomial, A is usually considered “good” as it does not require “very many”
operations. ♦

This notation can also be used with multiple parameters and with other expressions
on the right side of the equal sign. The notation:

f (n,m) = n2 +m3 +O(n+m)

represents the statement:

there exist C,N such that, for all n,m > N : f (n,m)≤ n2 +m3 +C(n+m).

Similarly, O(mn2) would mean the number of operations the algorithm carries out
is a polynomial in two indeterminates n and m, with the highest degree term being
mn2, e.g., 2mn2 +4mn−6n2−2n+7. This is most useful if we can relate m and n
(e.g., in dense graphs m = O(n2), so O(mn2) would mean O(n4) there).

Let us list a number of classes of functions that are commonly encountered in the
analysis of algorithms.

Here, c is some arbitrary constant positive real number. Once again, if a function
f (n) is a sum of functions, the fastest growing one determines the order of f (n).
E.g.: If f (n) = 10log(n)+5(log(n))3 +7n+3n2 +6n3, then f (n) = O(n3).

One caveat here: the number of summands must be constant and may not depend on
n.

Note that O(nc) and O(cn) are very different. The former is polynomial, the latter
is exponential and grows much, much faster, no matter how big the constant c is.
A function that grows faster than O(nc) is called superpolynomial. One that grows
slower than O(cn) is called subexponential. An algorithm can require time that is
both superpolynomial and subexponential.

Note, too, that O(logn) is exactly the same as O(log(nc)). The logarithms differ
only by a constant factor, and the big O notation ignores that. Similarly, logs with
different constant bases are equivalent.
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Input n

Ou
tp

ut

Asymptotic Behavior of Algorithms
Constant
Linear
Logarithmic
Polynomial
Exponential

Fig. 2.1: Schematic of the asymptotic runtime of algorithms as a function of their
input size n.

Exercise 2.13. Prove that any later function in the above table grows faster than
any earlier function. Hint: you need several small proofs. Also, each function is
differentiable.

2.1.6 P and NP

Perhaps the best known question in Computer Science asks whether it can be harder
to solve a problem than to check a given solution.

In complexity theory there are two commonly used classes of (decision) problems:

• The class P consists of all those decision problems that can be solved on a deter-
ministic Turing machine in an amount of time that is polynomial in the size of
the input, i.e., O(nk) for some constant k. Intuitively, we think of the problems in
P as those that can be solved “reasonably fast”.

• The class NP consists of all those decision problems whose solutions (called wit-
nesses) can be verified in polynomial time on a Turing machine. That is, given a
proposed solution to the problem, we can check it really is a solution in polyno-
mial time.

Formally: A language L ⊂ {0,1}∗ is in NP, if there exists a deterministic Turing
machine M and a polynomial p such that upon receipt of:

• an input string x, e.g., x ∈ {0,1}∗,
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• a witness of length p(|x|)

M runs in time polynomial in |x| and

• for all x ∈ L, there exists y such that M accepts (x,y) (“completeness”),

• for all x 6∈ L, for all y, (x,y) is rejected (“soundness”).

2.2 Randomized Algorithms

It seems quite unlikely that the Turing machine can produce a truly random num-
ber. But would the availability of a source of randomness make a Turing machine
more powerful? We will formalise the question using the classes of Probabilistic
Polynomial Time (PP) and Bounded-Error Probabilistic Polynomial Time (BPP),
where BPP ⊂ PP. It is not known whether BPP is equal to P or NP, i.e., whether
the source of randomness helps at all or whether having access to a source of ran-
domness makes a deterministic Turing machine as powerful as a non-deterministic
Turing machine, despite much attention paid to the questions over the past couple
of decades. On the other hand, it is known NP ⊂ PP and, in a somewhat different
formalisation of [4], we will see that the source of randomness does render many
classes of computation (LOGSPACEA, PA, NPA, PPA, and PSPACEA) properly con-
tained in this order, with probability 1 with respect to random oracles A.

2.2.1 Definitions

In two important definitions of randomise computation, one considers a determinis-
tic Turing machine M, which receives:

• an input string x, e.g., x ∈ {0,1}∗,
• a realisation y, e.g., y ∈ {0,1}∗, of a random variable Y

and

• accepts the input (x,y) for all x that we would like to be accepted with a certain
probability,

• rejects (x,y) for all x we would like to be rejected with a certain probability,
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where the probability is with respect to Y .

PP. A language L⊂ {0,1}∗ is in PP, if there exists a deterministic Turing machine
M and a polynomial p such that upon receipt of:

• an input string x, e.g., x ∈ {0,1}∗,
• a realisation y of length p(|x|), e.g., y ∈ {0,1}p(|x|), of a random variable Y

M runs in time polynomial in |x| and

• for all x ∈ L, (x,y) is accepted with a probability strictly greater than 1/2,

• for all x 6∈ L, (x,y) is accepted with a probability less than or equal than 1/2,

where the probability is with respect to Y .

In PP, we hence ask only for some “distinguishability”. The “distinguishing” can,
however, take arbitrarily long. Consider, for instance, a Turing machine M of the
definition, that

• for all x ∈ L, (x,y) is accepted with probability 1/2+1/2|x|
• for all x 6∈ L, (x,y) is accepted with probability 1/2−1/2|x|.

For any number of trials, there is an |x| that makes those necessary to achieve a
fixed probability of the answer being correct. Notice that the number of trials grows
expoentnially with |x|.
Alternatively, PP is the set of languages, for which there is a variant of a non-
deterministic Turing machine that stops in polynomial time with the acceptance
condition being that more than one half of computational paths accept. One hence
sometimes refers to PP as Majority-P. It is hence clear that NP ⊆ PP.

PP is a often thought of as a counting class. Recall that the permanent of an n× n
matrix A = (ai j) is

perm(A) = ∑
σ∈Sn

n

∏
i=1

ai,σ(i). (2.1)

[5] showed that computing permanents is at least as hard as many so-called counting
problems (#P-hard), and it is hard (#P-complete) even for matrices with entries 0 or
1. The language {(A,k)| the permanent of A is at least k} is complete for PP, but it
is believed to be outside of P. Alternatively, in terms of the number of accepting and
rejecting paths, PP can be seen as computing the high-order bit of a #P function.

BPP. Let ε be a constant 0 < ε < 1/2. A language L ⊂ {0,1}∗ is in BPP, if there
exists a deterministic Turing machine M and a polynomial p such that upon receipt
of:
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• an input string x, e.g., x ∈ {0,1}∗,
• a realisation y, e.g., y ∈ {0,1}p(|x|), of a random variable Y in dimension p(|x|)

M runs in time polynomial in |x| and

• for all x ∈ L, (x,y) is accepted with a probability strictly greater than 1− ε ,

• for all x 6∈ L, (x,y) is accepted with a probability less than or equal than ε ,

where the probability is with respect to Y .

BPP can be seen as a subset of PP, for which there are efficient probabilistic algo-
rithms. Because the constant ε is independent of the dimension |x|, we can achieve
any desired probability of correctness with the number of trials independent of |x|
by the so-called amplification of probability. The majority vote of k trials will be
wrong with probability:

∑
S⊆{1,2,...,k},|S|≤k/2

(1− ε)|S|εk−|S| (2.2)

= ((1− ε)ε)k/2
∑

S⊆{1,2,...,k},|S|≤k/2

(
ε

1− ε

)k/2−|S|
(2.3)

< 2k(
√

(1− ε)ε)k = λ
k (2.4)

for some λ = 2
√

ε(1− ε)< 1. Cf. 4.1 in [6]. How large is this class within PP?

It turns out that BPP is a substantial subset of PP. [4] have shown that for a language
L⊂ {0,1}∗, the following are equivalent:

• L ∈ BPP.

• For almost all oracles A, L ∈ PA, wherein the almost all is with respect to a
particular measure over the oracles.

It turns out that BPP has yet another definition, due to [7, Section 20.2], which is
very instructive. It uses a seemingly different model of computation. There, one
works with 2N-dimensional vector v ∈ [0,1]2

N
, which we index with values from

{0,1}N , and which satisfies ∑i∈{0,1}N vi = 1. This vector should be seen as a rep-
resentation of a probability mass function of a random variable over {0,1}N . One
cannot access the values of v directly; rather, one obtains i∈{0,1}N with probability
vi, when one attempts to access v.

Let us introduce a special notation |i〉 for the representation of (so-called degenerate)
distributions, where all the mass is concentrated in vi = 1 for some i ∈ {0,1}N .
Because |i〉i∈{0,1}N is a basis for R2N

, any v can be represented as ∑i∈{0,1}N vi |i〉. For
the example of N = 1, we have v = v0 |0〉+v1 |1〉. The only operations permitted are
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linear stochastic functions U : R2N → R2N
applied to the vector v, where linearity

suggests U(v) =∑i∈{0,1}N viU(|i〉) and stochasticity suggests ∑i∈{0,1}N U(v)i = 1 for
all v satisfying ∑i∈{0,1}N vi = 1. Notice that U can be represented by a matrix with
non-negative entries, wherein each column sums up to 1. U can be a composition of
multiple linear stochastic functions U =UL,UL−1, · · ·U2,U1,Ui : R2N →R2N

, where
each Ui will represent the so-called gate and L will be the known as the depth of the
circuit.

Let a probability threshold be a constant strictly larger than 1/2. A language L ⊂
{0,1}n is in BPP, if and only if its corresponding indicator function F(x) : {0,1}n→
{0,1} can be computed probabilistically in polynomial time such that:

1. one starts with v ∈ [0,1]2N
, for some N ≥ n dependent on F , with an initial state

|x,0N−n〉 consisting of the input padded to length N by zeros;

2. applies a linear stochastic function U : R2N →R2N
to v, whose matrix represen-

tation can be computed in a sparse format by a Turing machine from all-ones
input in time polynomial in n

3. obtains a random variable Y , wherein F(x) is followed by N−1 arbitrary sub-
sequent symbols with probability at least as high as the probability threshold,
wherein the random variable Y has value y with probability vy for the value v of
some final register.

Exercise 2.14. Prove the equivalence. Hint: find a way of generating N−n Bernoulli
random variables by a suitable U .

2.3 Quantum Algorithms

Now, one can obtain the class of BQP by replacing the real-valued vectors with
complex-valued vectors:

Let a probability threshold be a constant strictly larger than 1/2. A language L ⊂
{0,1}n is in BQP, if and only if its corresponding indicator function F(x) : {0,1}n→
{0,1} can be computed probabilistically such that:

1. one starts with an N-qubit register, for some N ≥ n dependent on F , with an
initial state |x,0N−n〉 consisting of the input padded to length N by zeros;

2. applies a linear function U : C2N → C2N
to v, whose matrix representation (a

unitary matrix in C2N×2N
) can be computed in a sparse format by a Turing

machine from all-ones input in time polynomial in n



DECIDABLE

EXPTIME

PSPACE

#P

PP

QMA

NP coNP
BQP

BPP

RP coRP

ZPP

P

Fig. 2.2: An overview of some of the non-strict inclusions among complexity
classes.

3. obtains a random variable Y , wherein F(x) is followed by N−1 arbitrary sub-
sequent symbols with probability at least as high as the probability threshold,
wherein the random variable Y has value y with probability |vy|2 for the value v
of some final register.

See Figure 2.2 for an overview if the complexity classes discussed.





Chapter 3

Quantum Computing 101

3.1 What we have seen so far?

In quantum computing, instead of symbols from finite alphabets (e.g., bits), one
works with vectors in suitable complex vector spaces. An extension of BPP to this
setting is known as BQP.

3.1.1 Qubits

One of the main differences between classical and quantum physics is the fact that
quantum states are described by vectors in a complex vector space, rather than bi-
nary strings. Abstractly, we use the Dirac, or bra-ket, notation to denote a state
vector. If the system is in some state, let us call it ψ , we denote this as

|ψ〉.

This is called a ket. The ψ is just a label of the state while the encasing |·〉 is there
to remind us that this is a vector.

The ket vectors satisfy the ordinary axioms of a vector space. Under addition, the
vector space is closed, associative and commutative. There is a unique zero element,
which we denote simply by 0, such that

|ψ〉+0 = |ψ〉. (3.1)

The reason why we do not use |0〉 to denote the zero vector is because we want to
reserve that notation for something completely different, as we will see in a short
while. There is also a unique vector (−|ψ〉) such that

53
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|ψ〉+(−|ψ〉) = 0. (3.2)

The vector space is linear and distributive under scalar multiplication. This means
that for some complex numbers z,z1,z2 ∈ C,

|(z1 + z2)ψ〉= z1|ψ〉+ z2|ψ〉, z(|ψ〉+ |ϕ〉) = z|ψ〉+ z|ϕ〉. (3.3)

Formally, single qubit can be seen as a two-dimensional complex space, C2, asso-
ciated with an inner product and a basis. The standard complex inner product is
vi

†wi. The standard basis is {|0〉 , |1〉}. Together with the inner product, we call C2

a Hilbert space, sometimes denoted H2. The usual representation of the state of a
qubit is that of unit vector R3 on the so-called Bloch sphere, see Fig. 3.1, which
is isomorphic to the complex projective plane CP1. As such, a qubit’s state can be
completely characterized as the unit vector on the unit sphere. A quantum state |ψ〉
and a quantum state c |ψ〉, c ∈C are indistinguishable. Sometimes, this phase factor
is called “global gauge”.

x

y

|0

|1

Fig. 3.1: The Bloch sphere. The vector in red denotes the qubit state |ψ〉= 1√
2
|0〉+

1√
2
|1〉 which is also denoted as |+〉. The labels x and y represent the Euclidean x

and y directions. It is common to use the term (Pauli) z-basis for the standard basis.

3.1.2 Superposition

Formally, just as in any other vector space, we can represent vectors as combinations
of basis states. Let the arbitrary state of a qubit be denoted as |ψ〉 ∈H2. How do we
describe this state in terms of the two basis states of H2? Let us have two complex
numbers cx ∈ C with x ∈ {|0〉 , |1〉}, which we will call amplitudes. These satisfy
∑x∈{|0〉,|1〉} |cx|2 = 1. The general state |ψ〉 of the qubit, can be seen as:
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|ψ〉= ∑
x∈{|0〉,|1〉}

cx |x〉 . (3.4)

The squares of the amplitudes can be thought as the probabilities of finding the qubit
in a particular basis state.

In quantum mechanics, observable quantities always are Hermitian operators. Often,
one can think of them as Hermitian matrices, that is, complex matrices H with the
property H = H†. As a map, an observable simply corresponds to an endomorphism
in the Hilbert space, H : H →H . An observable H is measured by considering its
expectation value when acting on a state |ψ〉.

〈H〉= 〈ψ|H|ψ〉= 〈ψ|Hψ〉 . (3.5)

One of the most important observables in quantum mechanics is the Hamiltonian
of a quantum system. When acting on a state, the Hamiltonian provides the energy
of the state. The Hamiltonians play a fundamental role in many quantum simula-
tion algorithms. However, as described above, the Hamiltonian seems to be a very
physical concept. Within quantum computation, the role of the Hamiltonian can es-
sentially be assumed by any Hermitian operator. It is customary to call operators that
act on qubits as (quantum) gates which are usually discussed in the circuit model of
quantum computation, see Sec. 3.5.

3.1.3 Entanglement

If we imagine that we have several quantum systems, each in some state represented
by some state vector, we can combine the separate system into a combined system
using the tensor product of vector spaces,⊗. If we imagine that we have one system
where the state is given by |ψ〉 and another where the state is given by |ϕ〉, the state
of the composite system is given by

|ψ〉⊗ |ϕ〉. (3.6)

States that can be written in this simple way are called product states. Otherwise,
we call states entangled. Note that the tensor product does not commute in general.

A system of n qubits (also known as a quantum register) has a state space C2n
,

which can be seen as a tensor product C2⊗ ·· ·⊗C2 of the 2-dimensional single-
qubit Hilbert spaces, which we denote (C2)⊗n. There, each factor corresponds to
one qubit. A system of n qubits is associated with the complex inner product 〈v|w〉=
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∑i v∗i wi and the standard basis {|x1x2 . . .xn〉 : x j ∈ 0,1}. We denote the tensor product
of N spaces C2, together with the inner products and the standard basis, by B⊗N .

Entanglement is a quantum mechanical phenomenon where the properties of two
or more quantum states become correlated. When entangled, the properties of the
qubits are linked in such a way that the state of one qubit cannot be described in-
dependently of the other(s). Multi-qubit states that cannot be written as separable
states are called entangled states. Measuring one qubit of an entangled state will
instantaneously affect the properties of the other qubits, regardless of the distance
between them. This is known as “spooky action at a distance” and is one of the most
mysterious and intriguing aspects of quantum mechanics. We will see that entangle-
ment is necessary but not sufficient for quantum speed-up.

3.1.4 BQP

Several models of quantum computation have been devised. Crucially, they do not
allow for deciding any problems that are not decidable on a classical computer.

Let a probability threshold be a constant strictly larger than 1/2. A language L ⊂
{0,1}n is in BPP or BQP, respectively, if and only if its corresponding indicator
function F(x) : {0,1}n → {0,1} can be computed probabilistically in polynomial
time such that:

1. one starts with register v∈ [0,1]2N
or C2N

, for some N ≥ n dependent on F , with
an initial state |x,0N−n〉 consisting of the input padded to length N by zeros;

2. applies a linear stochastic function U : R2N → R2N
or U : C2N → C2N

to v,
whose matrix representation can be computed in a sparse format by a Turing
machine from all-ones input in time polynomial in n

3. obtains a random variable Y , wherein F(x), i.e., a single 0 or 1, is followed by
N−1 arbitrary subsequent symbols with probability at least as high as the prob-
ability threshold, wherein the random variable Y has value y with probability vy

or with probability |vy|2, for the value v of register.

We know that P ⊆ BPP ⊆ BQP, although the proof is quite non-trivial: one has
to establish the power of reversible (classical) circuits and then of the restriction
thereof to (classical) permutations.

Exercise 3.1. To get a feel for this, notice that for any Boolean function f (x) :
{0,1}n → {0,1}, we can construct f̃ : {0,1}n+1 → {0,1}n+1 such that f̃ (x,y) =
(x,y⊕ f (x)), where ⊕ is the XOR operation. Show that this function is reversible.
Show how to get the output of f (x).

https://en.wikipedia.org/wiki/Quantum_entanglement
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We know that BQP⊆ PP. The proof is rather simple. (See previous lecture) Because
PP ⊆ PSPACE, i.e., the class of languages that can be recognised by a (classical)
Turing machine with a polynomial amount of space, we also know BQP⊆ PSPACE.
Interestingly, there is no material difference between what can be done by a Turing
machine with a polynomial amount of space and a quantum Turing machine with a
polynomial amount of space. Unfortunately, we do not know much about the rela-
tionship between BQP and non-deterministc Turing machines (NP), other than some
relativised results.

3.2 An Alternative Model of Fortnow

Following [8], we can get some more insight into the derivation of the result of
Arora and Barak.

Let us consider a k-tape extension of a Turing machine:

• a finite, non-empty set Q of objects, representing states

• a subset F of Q, corresponding to “accepting” states, where computation halts

• q0 ∈ Q, the initial state

• a finite, non-empty set Γ of objects, representing the symbols to be used on any
tape

• a partial function δ : (Q\F)×Γ k→ Q×Γ k×{−1,0,1}k, where for a combina-
tion of a state and k symbols read from the tape, we get the next state, the symbol
to write onto the k tapes, and an instruction to shift the k tapes left (-1), right
(+1), or keep in its position (0).

In the “Computation as Matrix Multiplication” view of Fortnow, we consider:

• one-step binary version of the transition function: δ ′ : Q×Γ k×Q×Γ k→{0,1},
which indicates whether the transition from a configuration ca to cb is permitted
ca,cb ∈C ⊆ (Q×Γ k).

• one-step transition matrix T representing δ ′ as a |C|× |C| binary matrix.

• multi-step transition matrix T r representing the r-step transition function as a
|C| × |C| binary matrix, where T r(ca,cb) = 1 if and only if M starting in con-
figuration ca will be in configuration cb when run for r steps. T r(ca,cb) is the
number of computation paths from ca to cb of length r and M accepts if and only
if T r(ca,cb)≥ 1. For polynomial-time machines, we can obtain the definition of
#P this way.
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One can extend this view to probabilistic machines:

• one-step [0,1] version of the transition function: δ ′′ : Q×Γ k×Q×Γ k→[0,1].

• probabilistic machines use the δ ′′ with the additional restriction that for any ini-
tial state and symbols on the tapes, the values of δ ′′ for all other arguments sum
up to one.

• corresponding one-step transition matrix T and multi-step transition matrices T r

are row and column stochastic.

• Entries of T r(cI ,cA) are the probabilities of acceptance by the probabilistic ma-
chine.

Let a 0 < ε < 1/2 be a constant. A language L ⊂ {0,1}n is in BPP, if and only if
there exists a probabilistic machine as above and a polynomial p such that

• For x in L, we have T p(cI ,cA)≥ 1/2+ ε .

• For x not in L, we have T p(cI ,cA)≤ 1/2− ε .

One can extend this view further to weird machines:

• one-step [−1,1] version of the transition function: δ ′′′ : Q×Γ k×Q×Γ k→[−1,1],
where the negative values can be intersected with rational numbers.

• weird machines use the δ ′′′ with the additional restriction that the corresponding
one-step transition matrix T and multi-step transition matrices T r are unitary.

• Squared entries of T r(cI ,cA) are the probabilities of acceptance by the weird
machine.

Let a 0 < ε < 1/2 be a constant. A language L ⊂ {0,1}n is in BQP, if and only if
there exists a weird machine as above and a polynomial p such that

• For x in L, we have (T p(cI ,cA))
2≥ 1/2+ ε .

• For x not in L, we have (T p(cI ,cA))
2≤ 1/2− ε .

[9] have shown that not only rational numbers suffice, but only a few of those suffice.

3.3 Quantum Turing Machines

This view of Fortnow, while based on Turing Machines, is not the Quantum Turing
Machine, in some sense the original definition of quantum computation:

[10] defined the quantum Turing machine with one tape for input and output and
one tape for intermediate results using:
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• still finite set Σ of symbols used for the inputs and outputs

• Hilbert space instead of a finite set Q of objects, representing states, with an
accepting subspace

• Hilbert space instead of a finite set Γ representing symbols to be used on the
intermediate result tape, with zero-vector instead of a blank symbol,

• partial function δ is now δ : Σ ×Q⊗Γ → Σ ×Q⊗Γ ×{L,R}, where each auto-
morphism of the Hilbert space is given by a unitary matrix.

The probabilistic element comes in the form of a measurement, which translates the
state to the output upon an accepting subspace is reached. Quantum Turing machines
and quantum circuits were shown [11] to be equivalent in the sense that they can
simulate each other in some distributional sense.

While elegant, the analogy with a Turing Machine may be somewhat confusing. It
is important to stress that: There is no branching based on the intermediate results
or states. Measurement required by either would collapse the intermediate result
or state. The addition of a probabilistic equivalent of branching, known as post-
selection, leads to a different complexity class, PostBQP = PP, as shown by [12].
There is no computation in the traditional sense. The state |ψ(nT )〉 at nth time step
is simply Un |ψ(0)〉 for some constant unitary operator U . In some sense, one hence
wishes to represent all possible solutions in the initial state already. There is no
notion a random access memory beyond the qubit register we work with.

3.4 Quantum Circuits

Last but not least, the standard model of quantum computing is known as the quan-
tum circuit model of [13], and it is not too different from the alternative definition
of BQP, due to Arora and Barak.

Let a probability threshold be a constant strictly larger than 1/2. Consider F :
{0,1}n→{0,1}m and N ≥max{n,m}. There, one:

1. starts with an initial state |x,0N−n〉 padded to length N.

2. applies a unitary operator U : B⊗N →B⊗N (realised by a circuit), which is a
composition of multiple unitary operators U =UL,UL−1, · · ·U2,U1,Ui : B⊗N→
B⊗N , where each Ui will be called a gate and L will be the known as the depth
of the circuit.

3. obtains F(x) followed by N−m arbitrary subsequent symbols with probability
at least as high as a probability threshold.
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Let ε be a constant 0 < ε < 1/2. A circuit U computes F : {0,1}∗→ {0,1}∗ if for
any x we have

∑
z
| 〈F(x),z|U〉x,0N−n|2 ≥ 1− ε. (3.7)

The expression on the left-hand side is, indeed, the probability of getting F(x)
padded with with arbitrary z in the measurement of the outcome of U applied to
the initial state |x,0N−n〉.
A function {0,1}∗ → {0,1}∗ is in BQP, if there exists a deterministic Turing ma-
chine M and a polynomial p such that M runs in time p(|x|) and produces a descrip-
tion of a quantum circuit that computes the function.

3.4.1 Building our first quantum circuits

We are now ready to start building quantum circuits. The ingredients will be qubits
and unitary operators or gates.

First of all we need to discuss where we will start, i.e., what is the initial state of
the system, or the input of the circuit, and how do we prepare that? A simple choice
of input vector that is most commonly used is to pick |0 . . .0〉 as the initial state
vector. Given some general initial state, how do we prepare it in the |0 . . .0〉? Well,
one very simple way is found by remembering that measurements will make the
system collapse to a given eigenvector of the observable being measured. We can
then simply make a measurement of σz on each qubit, which will return the results
±1 with some probabilities. If we get +1 we know that the qubit is in the state |0〉 as
desired, while if we find −1 we know that it will be in the state |1〉. Then we simply
keep the qubits that are in the |0〉 state and act with σx on the others, since we saw
previously that σx|1〉= |0〉. Now we have our input vector |ψ〉= |0 . . .0〉.
The quantum circuit will then start with a number of qubits in the |0〉 state and act
on this with some number of gates, or unitary operators. The most basic gates are :

• NOT =
(

0 1
1 0

)
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


and other

classical gates. When acting upon two qubits, he controlled-not, or CNOT, gate,
acts in the following way:



3.5 Looking beyond the Basics 61

|00〉 → |00〉,
|01〉 → |01〉,
|10〉 → |1〉⊗σx|0〉= |11〉,
|11〉 → |1〉⊗σx|1〉= |10〉.

(3.8)

CCNOT, also known as the Toffoli gate, is a controlled-controlled-gate acting on
three qubits. If the two first qubits are in the state |1〉, then it acts on the third
with the NOT gate. Otherwise it does nothing. For classical circuits, the Toffoli
gate is important, because similar to the NAND gate, any boolean function can
be implemented by using a combination of Toffoli gates. (This property is called
universality or functional completeness.)

• The Pauli matrices: σx, σy and σz. These are typically denoted by X, Y and Z in
the circuit diagrams. On the Bloch sphere we can visualize them as a π-rotation
of the qubit about the corresponding axis.

• The Hadamard gate: H := 1√
2
(σx +σz). It changes |0〉 → |+〉 and |1〉 → |−〉. So

it can be seen as a change of basis. On the Bloch sphere we can visualize it as
a π-rotation about the axis 1√

2
(x̂+ ẑ). Hadamard and CNOT make it possible to

entangle qubits.

• Phase shift gates changes the relative phase in the expansion in the computational
basis by sending |0〉 → |0〉 and |1〉 → eiϕ |1〉. Common examples are the T gate,
with ϕ = π/4,1 and the S gate, where ϕ = π/2. On the Bloch sphere, these gates
can be seen as a rotation of ϕ radians about the ẑ axis.

• The controlled-U gate acts on a number of qubits and uses the first as a control.
If this is |0〉 it does nothing, while if it is |1〉 it acts on the second qubit with the
operator U .

One example circuit is Figures 3.2. One important thing to note is that when we read
the circuits we read it from left to right, but when we write it down mathematically
the gates act in the opposite order.

3.5 Looking beyond the Basics

Let us now summarize a few important results briefly, following papers of [14], [15],
and [16]. These concern:

1 the T gate is confusingly also known as the π/8 gate,
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|0⟩ H |ψ⟩

|0⟩ H • |φ⟩

|0⟩ H |+⟩

1

Fig. 3.2: A simple example of a quantum circuit using the H and CNOT gates.

• “role of entanglement” and “interference”: are maximally-entangled states2 suf-
ficient and necessary?

• “universality”: what gates are sufficient to implement any unitary matrix in
SU(n)?

• “weak simulation”: can we sample from the distribution on the measurement of
a quantum circuit’s first qubit in polynomial time using a classical computer?

• “strong simulation”: can we compute the probability of measuring 1 on a quan-
tum circuit’s first qubit to any given precision in polynomial time a classical
computer?

A crucial questions relate to “universality”: what gates are sufficient to implement
any unitary matrix in SU(n)? Traditionally [17], one considers all one-qubit gates
plus CNOT. One often implements controlled rotations by a given angle, the phase
shift gate, and CNOT, which are sufficient. [15] based on [18] defines computa-
tional universal the set of gates that can be used to simulate to within ε error any
quantum circuit which uses n qubits and t gates from a strictly universal set with
only polylogarithmic overhead in (n, t,1/ε). Then, she shows that the set of Toffoli
and Hadamard gate is computationally universal. Contrast this with the classical
computation, where Toffoli on its own is universal.

We clearly need to be able to produce maximally entangled states, using CNOT, Tof-
foli, or similar. Let us consider the question of what gates produce maximally entan-
gled states from some separable states. One can consider, e.g., using Hadamard and
a non-local gate such as CNOT. (Non-local gate is from SU(4) \ SU(2)⊗ SU(2).)
[14] have shown that the local equivalence classes of two-qubit gates are in one-to-
one correspondence with the points in a tetrahedron, except on the base. Using this
tetrahedral representation of non-local gates, they have shown that exactly half the

2 States where if you take a partial trace over one of the subsystems, the resulting state has the
maximum entropy.
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non-local gates are perfect entanglers. This means that the second half of the non-
local gates are imperfect entanglers. While we need a perfect entangler, the role of
CNOT is hence not particularly “central”.

Having said that, even the role of Hadamard and CNOT is not particularly cen-
tral either. Hadamard, CNOT, and one particular phase shift gate (phase shift by
π/2) generate a group called the Clifford group. By a non-trivial Gottesman-Knill
theorem, the Clifford gates does not make a universal gate set. In particular, the
Gottesman-Knill theorem shows that a uniform family of Clifford circuit(s) acting
on the computational basis state |0〉N followed by a computational basis measure-
ment, can be simulated efficiently on a classical computer. (Actually, their simu-
lation of Clifford-gate circuits belongs to the complexity class ⊕L (“parity-L”) as
classical computation with NOT and CNOT gates, which is not believed to equal
to P.) This shows that while maximally entangled states are provably necessary, cf.
[19] to disallow efficient classical simulation, they are not sufficient.

In a striking result, [16] shows that circuits implementing unitaries from the Clif-
ford group (Clifford circuits), which may contain many Hadamard gates at different
places in the circuit, causing rounds of constructive and destructive interference, are
(efficiently) mapped to circuit that do not utilize any interference at all. In particu-
lar, to circuits where threre is one round of Hadamard gates applied to a subset of
the qubits, followed by a round of “classical gates” such as Toffoli, CNOT, NOT,
etc. Let C be an arbitrary n-qubit Clifford operation. Then there exist: (a) poly-size
circuits M1 and M2 composed of CNOT, PHASE and CPHASE gates and (b) a ten-
sor product of Hadamard gates and identities H = HS⊗ I acting nontrivially on a
subset S of the qubits, such that C ∝ M2H M1. Moreover, M1, M2 and H can be
determined efficiently.

In real world, all quantum systems interact with the environment. We often use clas-
sical distributions over quantum states to reason about such “partially known” quan-
tum states. Let us associate probability pk to the event of system being in state |αk〉.
Such a classical distribution is called a “mixed states”, as opposed the usual “pure”
state. A unitary matrix U acts on a mixture {pk, |αk〉} component-wise {pk,U |αk〉}.
In a simple model of an open quantum system due to [20], one assumes:

• single qubit faults: each qubit decoheres independently, or undergoes a fault with
probability η per step.

• all operations equal: no decoherence takes place inside the gates.

There, η is referred to as the decoherence rate. This is equivalent to a model, where
at each timestep, at each qubit i, we can have a fault with a probability ηi, as long
as ∑i ηi = η .

[20] have shown that for models of quantum computing with gates on up to log(n)
qubits, considering the noise model above introduces a delay into the simulation



by a probabilistic machine that is polynomial in the number of qubits and depth
of the circuit, for any decoherence rate. [21, 22] suggested that one can correct for
a substantial decoherence rate in a Clifford circuit using quantum error correcting
codes, at the expense of some overhead in terms of numbers of “physical” qubits.



Chapter 4

Quantum Algorithms I

4.1 What we have seen so far?

Quantum algorithms resemble randomized algorithms, except probability ampli-
tudes are complex. This makes it possible to work with interference. Reversibility
of quantum computing (modulo noise) means one has to use the interference to pick
out the solution of a functional problem. This solution needs to be represented al-
ready in some early superposition, and then see its complex probability amplitude
amplified.

4.2 Introduction

Fig. 4.1: All successful quantum algorithms resemble a boa constructor that ate an
elephant.

65
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Quantum algorithms ideally have only a modest amount of input. Typically, one uses
an initial state with only a single complex probability amplitude, whose magnitude
squares is 1. We can assume without loss of regularity that this corresponds to the
basis state of all zeros. Often, people assume that the input is “magically made
available” via oracles – but that is often “magical thinking”. Often, one loads the
input via controlled rotations, one scalar at a time.

Quantum algorithms then construct a maximally-entangled state on q qubits, whose
representation requires a 2q complex probability amplitudes. (In order for the state
to be maximally entangled, the complex probability amplitudes have to be equal.)
One can see the large entangled state as a root of a large tree, where in the leaves,
one applies Hadamard gates to individual qubits, and in the non-leaf nodes, one
applies CNOT. Then, applying a single-qubit gate may change all exponentially-
many complex probability amplitudes in parallel, at a unit cost in terms of the depth
of the quantum circuit.

Finally, the output needs to be very simple. Clearly, the measurement ends up with
a basis state, depending on the corresponding complex probability amplitude. In
some sense, one may wish the output were only a single complex probability ampli-
tude whose magnitude squares is 1. This is to be seen from the sample complexity
of parameter estimation in multivariate distributions: if we expect a non-trivial su-
perposition on the output, we will need very many copies of the circuit and very
many collapsing measurements to estimate the output state. Often, one employs
some classical post-processing.

4.3 A View from Theoretical Computer Science

4.3.1 Definitions

First, let us introduce some more complexity classes:

In the definition of [23]: FBPP, resp. FQPP is the class of polynomially-bounded
relations R⊆{0,1}∗×{0,1}∗ for which there exists a polynomial-time randomized,
resp. quantum algorithm A such that for all x for which there exists a y with (x,y)∈R
and all ε > 0,

P[(x,A(x,01/ε)) ∈ R]> 1− ε,

where the probability is over A’s outputs.

In the definition of [23]: FP/rpoly, resp. FBQP/qpoly is the class of polynomially-
bounded relations R ⊆ {0,1}∗×{0,1}∗ for which there exists a polynomial-time
deterministic classical algorithm A, resp. a polynomial-time quantum algorithm Q,
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a polynomial p(n,m), and an infinite list of advice distributions {Dn,m}n,m≥1, where
Dn,m is supported on

(
p(n,m)

)
, resp. advice states {|ψn,m〉}n,m≥1, where |ψn,m〉 is on

p(n,m) qubits, such that for all x for which there exists a y such that (x,y) ∈ R and
all m,

Pr∼Dn,m [(x,A(x,0
m,r)) ∈ R]> 1− 1

m
,

resp.

P[(x,Q(x,0m, |ψn,m〉)) ∈ R]> 1− 1
m
.

If you rely on your circuit calling an oracle, you often typically cannot prove any
“usual” separation between complexity classes, e.g., BPP 6= BQP. You can prove
only weaker “relativized” results, known as “oracle separations”. The strongest re-
sults consider unstructured, random oracles. In the classical/quantum random oracle
model of [24], a random function H is chosen at the beginning, anyone can classi-
cally/quantumly access H, i.e., apply a unitary |x〉 |y〉 7→ |x〉 |y⊕H(x)〉.

4.3.2 Results

[25] show that relative to an oracle chosen uniformly at random with probability 1
an NP-Complete problem cannot be solved on a quantum Turing machine (QTM)
in time o(2n/2). [26] show that relative to a random oracle with probability 1, there
are NP search problems solvable by BQP machines but not BPP machines. We will
revisit the results of Yamakawa and Zhandry later, in the chapter on security, be-
cause the same paper also shows that relative to a random oracle with probability 1,
there exist functions that are one-way, and even collision resistant, against classical
adversaries but are easily inverted quantumly.

From the point of view of Theoretical Computer Science, the situation in decision
problems is somewhat dire: We do not know any non-relativized separation between
P, BPP, and BQP. (Notice that with non-linear quantum mechanics [27], we could
actually solve NP-Complete and #P-Complete problems.)

In functional problems, the situation is somewhat better. In February 2023 [23] have
shown FP 6= FBPP, unconditionally, and FBQP/qpoly 6= FBQP/poly. Notice that the
FBQP/qpoly refers to a quantum advice, not to an oracle.



68 4 Quantum Algorithms I

4.4 Our first Quantum Algorithm: Deutsch–Jozsa

In the so-called Deutsch–Jozsa problem, we have

• a dimension n

• a black-box function f (x) : {0,1}n → {0,1} that has a rather unusual property:
either it is a constant function (there is y ∈ {0,1} such that for all x ∈ {0,1}n,
the output is y) or balanced (for precisely 2n−1 inputs, the output is 0, and for
precisely 2n−1 inputs, the output is 1)

The decision version of the problem asks whether the unknown function f is con-
stant. It is clear that classically, one may need to perform 2n−1+1 oracle calls in the
worst-case, but that there would be excellent randomized algorithms. Notice that for
n = 1, one asks whether f (0)+ f (1) mod 2 is zero.

Let us illustrate the algorithm of [28] for n = 1:

1. creates an initial, two-register state |0〉 |1〉
2. apply Hadamard transform to both registers: 1

2 ∑
1
x=0 |x〉(|0〉− |1〉)

3. apply the function via the oracle to obtain 1
2 ∑

1
x=0 |x〉(|0⊕ f (x)〉− |1⊕ f (x)〉)

4. apply the Hadamard transform on the first register again:

1
2

1

∑
x=0

(−1) f (x)

[
1√
2

1

∑
y=0

(−1)x⊕y |y〉
]
=

1

∑
y=0

[
1
2

1

∑
x=0

(−1) f (x)(−1)x⊕y

]
|y〉

5. obtain y by measuring the first register. The probability of measuring |0〉 is∣∣∣ 1
2 ∑

1
x=0(−1) f (x)

∣∣∣2, which evaluates to which evaluates to 1 for constant func-
tions (constructive interference) and to 0 for balanced functions (destructive
interference).

We have used 1 query to the oracle. This can be generalized to any n, without in-
creasing the number of queries!

4.5 First Few Tricks

If the algorithm seems hard to parse, do not despair. There are a few insights that
will help us elucidate its workings:
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• the Boolean group

• the oracle

• the Hadamard transform

• amplitude amplification.

We will also introduce the phase kickback, which we will need later.

4.5.1 Artihmetics modulo 2

First, let us consider the artihmetics modulo 2 and its relationship to the XOR oper-
ation (⊕, “must have one or the other but not both”). In n = 1 we have seen

(0+1) mod 2 = 1 mod 2 = 1 = (0⊕1) and

(1+1) mod 2 = 2 mod 2 = 0 = (1⊕1).

Beyond n = 1 the binary inner product � of bitvectors x,y ∈ {0,1}n is x1y1 + · · ·+
xnyn mod 2 = x1y1 ⊕ ·· · ⊕ xnyn, i.e., essentially counting ones that appear at the
corresponding positions in two bitstrings, modulo 2, and thus suggesting whether
the count is odd or even. One can formalize this in terms of finite field GF(2).

4.5.2 The Oracle

Next, let us consider the oracle. One assumes that for a function f , there is an
oracle U f that maps |x〉 |y〉 → |x〉 |y⊕ f (x)〉, where ⊕ denotes the XOR operation
(or addition modulo 2). This can be simplified to U f |x〉 = (−1) f (x) |x〉. Clearly,
|x〉 |0〉→ |x〉 | f (x)〉. Either way, this is a reversible operation and can be implemented
in a unitary.

In the case of Boolean function f on n = 1 bits, one can think of this as a CNOT
gate controlled by the value of f (x). In the top-left corner, you have I (the identity)
for f (0) = 0 and σx (flip) for f (0) = 1. Similarly in the bottom-right corner, you
have I (the identity) for f (1) = 0 and σx (flip) for f (1) = 1.

U f =


1− f (0) f (0) 0 0

f (0) 1− f (0) 0 0
0 0 1− f (1) f (1)
0 0 f (1) 1− f (1)
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4.5.3 Amplitude Amplification

In a way, the Deutsch–Jozsa algorithm also demonstrates the significance of allow-
ing quantum amplitudes to take both positive and negative values. In the Qiskit
Textbook and many other sources, this is illustrated starting with an interference
experiment (cf. Young’s double-slit interferometer, 1803): a particle can travel from
the source to an array of detectors through two slits. Each detector has a probability
of observing a particle that depends on the phases of the incoming waves. Same
phases increase the probability (constructive interference); very different phases re-
duce the probability (destructive interference). One can consider 2n possible paths
x and 2n possible detectors y, both labeled by bitstrings. The phase accumulated at
detector x along a path y equals C(−1) f (x)+x·y, where x · y is the binary inner prod-
uct and C is a normalizing constant. The probability of a particle at detector y is
P(y) = |C ∑x(−1) f (x)+x·y|2 with C = 2−n.

Now let us consider the probability of observing an all-zero string y, which is

|2−n
∑
x
(−1) f (x)+x·y|2 = |2−n

∑
x
(−1) f (x)+0|2,

in the two cases of the promise problem:

• if the f (x) = c, then the probability is |2−n
∑x(−1)c|2 = 1

• if the f (x) is balanced, then the probability is zero |2−n
∑x(−1) f (x)|2 = 0, because

the alternating sign will lead to a cancellation of the terms.

Exercise 4.1. Plot a diagram of the double-slit experiment and the 2n detectors and
the inference pattern for some n≥ 8.

4.5.4 The Hadamard Transform

We have seen the Hadamard gate:

H(|0〉) = 1√
2
|0〉+ 1√

2
|1〉=: |+〉 (4.1)

H(|1〉) = 1√
2
|0〉− 1√

2
|1〉=: |−〉 (4.2)

H(|+〉) = H
(

1√
2
|0〉+ 1√

2
|1〉
)
=

1
2

(
|0〉+ |1〉

)
+

1
2

(
|0〉− |1〉

)
= |0〉 (4.3)

H(|−〉) = H
(

1√
2
|0〉− 1√

2
|1〉
)
=

1
2

(
|0〉+ |1〉

)
− 1

2

(
|0〉− |1〉

)
= |1〉 (4.4)
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without really understanding it.

First, notice that for an n-qubit state |k〉, the application of Hadamards qubit-wise
yields:

H⊗n |k〉= 1√
2n

2n−1

∑
j=0

(−1)k� j | j〉 ,

where j� k = j1k1 ⊕ j2k2 ⊕ ·· · ⊕ jnkn and ⊕ is XOR as above. Second, this is
rooted in a non-trivial fact that the Hadamard transform is the Fourier transform on
the Boolean group (Z/2Z)n. (If this sounds difficult, notice that GF(2)is isomorphic
to the quotient ring of the ring of integers Z by the ideal 2Z of all even numbers,
GF(2) = Z/2Z.)

In the example of the second application of Hadamard in Deutsch–Jozsa for n = 1,
we obtain:

1
2

1

∑
x=0

(−1) f (x)

[
1√
2

1

∑
y=0

(−1)x⊕y |y〉
]
=

1

∑
y=0

[
1
2

1

∑
x=0

(−1) f (x)(−1)x⊕y

]
|y〉 .

More broadly, the Hadamard maps |x〉 to 2−n/2
∑y(−1)x�y |y〉. For our state 2−n/2

∑x(−1) f (x) |x〉,
this will amount to 2−n

∑x(−1) f (x)+x�y |y〉, just as in the interference experiment.

Exercise 4.2. Write down the Hadamard gate on n = 3.

4.5.5 Phase Kickback

In the previous chapter, we have seen the phase factor (“global phase”, “global
gauge”), whereby quantum states |ψ〉 and eiα |ψ〉 are indistinguishable by measure-
ment with any linear operator φ in the sense of | 〈φ〉ψ|2 = |eiα 〈φ〉ψ|2 = | 〈φ〉ψ|2.
(A phase-shift gate P(α) = eiα I multiplies any state by a global phase α .) If we
apply a control-U gate to |ψ〉, where |ψ〉 is an eigenstate of U , then

• |ψ〉 is unchanged

• the phase |0〉〈0|+ eiα |1〉〈1| is transferred to the input state |ψ〉 of the control
qubit.

Let us see the phase kickback in action. Let us consider a single-qubit gate U and its
eigenstate |ψ〉:

U |ψ〉= eiφ |ψ〉 .
We wish to estimate φ up to the period (2π). This is possible with an extra (“ancilla”)
qubit, one Hadamard gate on the ancilla qubit, and a CNOT gate. Notably, after
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applying the CNOT controlled by the ancilla qubit, the phase of the ancilla will be
φ :

XH⊗ I |0〉 |ψ〉= |0〉+ eiφ |1〉√
2

|ψ〉 ,

where we have used the fact that CNOT = [I0;0X ].

In the two-qubit Deutsch algorithm above, the first qubit acts as an ancilla qubit, and
the controlled qubit is in the eigenstate of the NOT gate with eigenvalue -1. φ = π .
Thus, we get 1√

2
|0〉+(−1) f (0)⊕ f (1) |1〉. The phase kick-back is either 0 or π , which

can be distinguished by measuring σx, or by applying Hadamard gate again and
then measuring in the computational basis. This will be important in the following
discussion of Simon’s algorithm.

4.6 The Proof (Sketch) of our first Oracle Separation

Let us illustrate the first, historically, and most commonly taught “oracle separation”
between BPP and BQP on Simon’s problem. This is not a problem, which would
be useful on its own, more akin a “guessing game”. It uses a highly structured,
“periodic” oracle. We will see, however, that the crucial concept of “period finding”
underlies the famous Shor factoring algorithm. (Daniel Simon actually recalls1 that
Shor developed his factoring algorithm having seen a preprint of his.)

In the so-called Simon’s problem, we have

• a dimension n

• a black-box function f (x) : {0,1}n→ {0,1}n that has a rather unusual property:
for all x,y ∈ {0,1}n, f (x) = f (y) if any only if x⊕y ∈ {0n,s} for some unknown
secret s ∈ {0,1}n,

where ⊕ denotes the elementwise XOR operation. Notice that x⊕ y = 0n, if and
only if a = b. Thus,

• either the secret is s = 0n and the function is a bijection (“one-to-one”, invertible)

• or the secret is s 6= 0n and the function is not a bijection, but rather “two-to-one”.

The decision version of the problem asks whether the unknown function f is a
bijection (and thus whether s = 0n).

Exercise 4.3. To get a feel for this, pick an f (x) : {0,1}3 → {0,1}3. Ask your
neighbour to guess whether it’s a bijection. How many queries did he need?

1 https://aws.amazon.com/blogs/quantum-computing/simons-algorithm/
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Notice that there is no input. Hence, it is impossible to reason about the description
complexity of the input. Let us measure the complexity of (a classical or quantum
algorithm) by the number of evaluations of f at distinct values (x) it requires. (This is
also known as the number of oracle queries or oracle complexity.) In a deterministic
Turing machine, one may try 2n inputs one by one until one obtains two inputs
producing the same output, or decides that no two match. In a probabilistic machine,
one may try to sample the 2n inputs randomly, and as long as no two match, suggest
that the function is a bijection, with an ever higher probability.

The quantum algorithm for solving the problem is similar to the randomized algo-
rithm. Repeatedly, for each sample, we perform the following steps:

1. creates an initial, two-register state |0〉⊗n|0〉⊗n

2. apply Hadamard transform on the first register: 1√
2n ∑

2n−1
k=0 |k〉|0〉⊗n

3. apply the function via the oracle to obtain 1√
2n ∑

2n−1
k=0 |k〉| f (k)〉

4. apply the Hadamard transform on the first register again:

1√
2n

2n−1

∑
k=0

[
1√
2n

2n−1

∑
j=0

(−1) j�k| j〉
]
| f (k)〉=

2n−1

∑
j=0
| j〉
[

1
2n

2n−1

∑
k=0

(−1) j�k| f (k)〉
]

5. obtain y by measuring the first register. The probability of measuring | j〉 is∣∣∣ 1
2n ∑

2n−1
k=0 (−1) j�k| f (k)〉

∣∣∣2.

Then, we classically solve a system of equations given by the samples to obtain s.
(Each sample satisfies ys = 0.) If s = 0n, return YES.

4.7 Going beyond our first Oracle Separation

Shor’s factoring algorihm uses a non-trivial initial preprocessing, but then we per-
form the following steps:

1. creates an initial, Q-qubit state |0〉⊗Q

2. apply Hadamard transform on it: 1√
Q ∑

Q−1
k=0 |x〉

3. apply the function f (x) = ax mod N using U f |x,0n〉= |x, f (x)〉 to obtain

U f
1√
Q

Q−1

∑
x=0
|x,0n〉= 1√

Q

Q−1

∑
x=0
|x, f (x)〉

such that the value we are looking for is in the phase of



4. apply the quantum Fourier transform: 1
Q ∑

Q−1
x=0 ∑

Q−1
y=0 ωxy|y, f (x)〉

5. obtain y by measuring the first register. The probability of measuring |y,z〉 is

1
Q2

sin2(πmry
Q )

sin2(πry
Q )

.

Then, we apply classical post-processing.

If you felt that there is common pattern across these algorithms, you are right. The
quantum Fourier transform is, in some sense, just a more efficient way of measuring
the phase. There are, actually, very few “paradigms” in the design of quantum algo-
rithms, and some of the steps (equal superposition, some operation thereupon) are
necessary. One may consider, for example [29], amplitude amplification (algorithms
above and Grover) with or without quantum Fourier transform, Harrow-Hassidim-
Lloyd (HHL), and quantum signal processing (QSP).



Chapter 5

Harmonic Analysis 101

In this lecture, we introduce the quantum Fourier transform, which is O((logN)2),
i.e., exponentially faster than the classical fast Fourier transform in O(N logN). As is
perhaps familiar, the simple intuition for the classical Fourier transform is basically
as a change of basis, or perhaps a duality transformation. Typically we think of it as
taking us from the original function domain to its corresponding frequency domain,
where certain properties, such as which frequencies are present in a signal, are easier
to analyze. This is directly translated to the quantum Fourier transform, which is a
change of basis from the computational basis to the Fourier basis. For example, as
we will see below, in the simplest case of one qubit the quantum Fourier transform
is simply the Hadamard gate. Which we have already seen is a change of basis from
the computational basis to the Hadamard basis |±〉. Before we get into the quantum

75
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Fourier transform, we will begin with the classical case, and in particular try to
explain some harmonic analysis in general.

Time

Frequency

Harmonic analysis as we need it requires discrete samples and finite fields. The
corresponding, perhaps seemingly obscure parts of harmonic analysis have also led
to classical breakthroughs, such as multiplication of n-bit integers in time O(n logn)
[30] and multiplication of polynomials over finite fields [31] in the same time. The
idea is that we can think of the Fourier transform in a very general way as a function
on a group or over a finite field. The only difference between things like the full
continuous Fourier transform, the discrete-time Fourier transform and the discrete
Fourier transform are then simply the choice of group. For a very nice introduction
to Harmonic analysis on finite groups, see [32].

5.1 Discrete Fourier Transform

The discrete Fourier transform (DFT) maps an N-vector x of complex numbers to
an N-vector X of complex numbers:

Xk =
N−1

∑
j=0

x j · e
2π jki

N , (5.1)
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up to a normalization 1√
N

. (This is sometimes called the analysis formula.) Let us
assume N = 2n throughout, where n is a constant.

One way to think of the N-vector x is to see those as samples of a periodic function
with period T , i.e., f (t) = f (t +T ). In particular, one would sample f uniformly at
points j∆ t, where ∆T = T/N and j = 0,1, ...,N−1.

Alternatively, one could see discrete Fourier transform as a function on a finite cyclic
group Gq = {1,g,g2, . . . ,gq−1} ∼= Z/qZ. A simple representation of the elements of

this group is as qth roots of unity, gn = exp
(

2πin
q

)
, with n = 0, . . . ,q−1, where the

group multiplication is simply ordinary complex multiplication. By visualizing this
group action on the unit circle we can see that it is the rotational symmetry group of
the q-polygon.

For any group G, and especially for cyclic groups Zq, it may be tempting to identify
the group with its elements g ∈ G and consider f (g) only, or to identify the cyclic
groups Zq with the set {0, . . . ,q− 1} and modulo q addition. One could do much
better, however, if one considers the group’s symmetries.

Alternatively, one could see the analysis formula (5.1) as a matrix equation X = Fx.
Thus, a discrete Fourier transform can be expressed as a so-called Vandermonde
matrix (Sylvester, 1867),

F =
1√
N


ω0·0

N ω0·1
N · · · ω

0·(N−1)
N

ω1·0
N ω1·1

N · · · ω
1·(N−1)
N

...
...

. . .
...

ω
(N−1)·0
N ω

(N−1)·1
N · · · ω

(N−1)·(N−1)
N

 (5.2)

where ω
m·n
N = e−i2πmn/N and the mn is the usual product of the integers.

Notice that:

• because ω depends only on the product of frequency m, and position n, the DFT
F is symmetric. Notice that it is also unitary: F−1 = F∗ and |det(F)|= 1.

• X is the inner product of x with the m-th row of F. Conversely, f is a linear
combination of the columns of F, where the mth column is weighted by Xm.

• the vectors um =
[

e
i2πmn

N

∣∣∣ n = 0,1, . . . ,N−1
]T

form an orthogonal basis over
the set of N-dimensional complex vectors.

• F2 reverses the input, while F4 = I. The eigenvalues satisfy: λ 4 = 1 and thus are
the fourth roots of unity: +1,−1,+i,or− i.
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5.1.1 The Hadamard Transform

We can define the 1×1 Hadamard transform H0 = 1 as the identity, and then define
Hm for m > 0 by:

Hm =
1√
2

[
Hm−1 Hm−1
Hm−1 −Hm−1

]
.

Other than the normalization, the Hadamard matrices are made up of 1 and -1. No-
tice that Hadamard

H1 =
1√
2

[
1 1
1 −1

]
is a discrete Fourier transform; indeed, we have ω

0·0
1 = ω

0·1
1 = ω

1·0
1 = e0 =+1 and

ω
1·1
1 = e−iπ =−1. As a further example, the next Hadamard matrix is

H2 =
1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .
Note that this is not a DFT as defined by (5.2).

Notice that classically, we can compute the fast Hadamard transform algorithm in
O(n logn) while performing only sign-flips. Quantumly, the Hadamard transform
can be computed in time O(1), in many commonly used gate sets.

5.1.2 The z-Transform

If you know the z-transform, notice that the Xk can also be seen as evaluation of the
z-transform X(z) = ∑

N−1
j=0 x jz− j at points ω

− j
N , i.e., X j = X(z)z=ω

− j
N

.

5.1.3 Examples of Discrete Fourier Transform

Let us see:
F0 = H0 = 1

F1 = H1 =
1√
2

[
1 1
1 −1

]
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F2 =
1√
3

1 1 1
1 ω1·1

3 ω1·2
3

1 ω2·1
3 ω2·2

3


While the omega notation may obscure the nature of the DFT, see that the column
correspond to passes along the unit circle, clockwise, expressed in the corresponding
complex number (e.g., 1, −i, −1, i for F3) at varying frequency (e.g., 0, 1, 2, 3 for

F3): F3 =
1√
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

.

Im

Re

z = |z|eiθ

1−1

−i

i

θ

Exercise 5.1. Visualise F3, F4 on the unit circle.

Let us further consider some simple examples:

1√
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




1
1
1
1

=


2
0
0
0

 (5.3)

1√
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




1
−i
−1
i

=


0
0
0
2

 (5.4)

1√
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




0
1
0
1

=


1
0
−1
0

 (5.5)
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5.2 Fast Fourier Transform

5.2.1 The Many Fast Fourier Transforms

A straightforward implementation of DFT as a matrix-vector product requires
O(N2) operations. In the so-called fast Fourier transform (Cooley and Tukey, 1965),
one requires only O(N log2 N) = O(2nn) operations. There are a number of vari-
ants, all based on the divide-and-conquer approach. As we assume N = 2n, we will
present a variant known as the radix-2 decimation in time (DIT) algorithm.

This speedup is achieved by this variant of the divide-and-conquer approach, where
we consider subsets of the initial sequence, take the DFT of these subsequences, and
reconstruct the DFT of the original sequence from the results on the subsequences.
One option is based on the following insight:

Xk =
1√
N

N−1

∑
j=0

x j · e
2π jki

N (5.6)

=
1√
N

(
∑

even j
x j · e

2π jki
N + ∑

odd j
x j · e

2π( j−1)ki
N

)
(5.7)

=
1√
2

(
1√
N/2

∑
even j

x j · e
2π( j/2)ki

N/2

)
+

(
1√
N/2

∑
odd j

x j · e
2π( j−1)/2ki

N/2

)
(5.8)
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The divide-and-conquer approach can be illustrated on N = 16 with the following
cartoon.

x0
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If you know the z-transform, you should see that X(z)=∑
N−1
j=0 x jz− j =∑

r−1
l=0 ∑ j∈Il

x jz− j

for some partition I of {0,1, . . . ,N− 1} into r subsets, and that one can also nor-
malise the terms. This way, one can define a variety of recursions similar to the one
above, as long as the subset are chosen to be similar to the initial sequence in terms
of their periodicity. This is very nicely explained in [33].

5.2.2 Fast Fourier Transform as a Factorization

Alternatively, [34] sees the Fast Fourier Transform as a certain matrix factorization.
This is both important to understand FFT, but also to understand the QFT later. In
particular, the 2n×2n DFT matrix Fn can be factored as:

F = PnA(0)
n A(1)

n · · ·A(n−1)
n , (5.9)

where,

• Pn is some permutation matrix

• A(k)
n = In−k−1 ⊗Bk+1,

• Bk+1 =
1√
2

[
Ik Ik

k − k

]
with Ik the k× k identity matrix

• k := 2k is a 2k×2k diagonal matrix:
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2k :=


ω0

2k+1

ω1
2k+1

. . .

ω
2k−1
2k+1

 , (5.10)

where ω2k+1 is e
−2πi
2k+1 as before.

Notice that each matrix A(i)
n has two non-zero elements on every row. Consequently,

the matrix-vector product A(i)
n x can be computed in O(2n) operations, resulting in

O(2nn) operations, when one includes the permutation.

5.3 Quantum Fourier Transform

In general, F is an N×N unitary matrix, and thus we can implement it on a quantum
computer as an n-qubit unitary for N = 2n. As such, it maps an N-dimensional vector
of amplitudes to an N-dimensional vector of amplitudes. This is called the quantum
Fourier transform (QFT). [35, 36] presented the first polynomial, O(n2) quantum
algorithms for QFT over certain finite fields and arbitrary finite Abelian groups,
respectively. This is exponentially faster than the classical fast Fourier transform,
which takes O(N logN) steps.

Recall that the DFT is:

Xk =
1√
N

N−1

∑
j=0

x j · e
2π jki

N .

In contrast, the QFT on an orthonormal basis |0〉 , |1〉 , . . . , |N−1〉 is a linear opera-
tor:

| j〉 → 1√
N

N−1

∑
k=0

e
2π jki

N |k〉 .

An alternative representation of the QFT utilizes the product form:

| j1, j2, . . . , jn〉→
(
|0〉+ e2πi 0. jn |1〉

)(
|0〉+ e2πi 0. jn−1 jn |1〉

)
· · ·
(
|0〉+ e2πi 0. j1 j2··· jn |1〉

)
2n/2 ,

where | j1, j2, . . . , jn〉 is a binary representation of a basis state j and 0. j1 j2 · · · jn is a
notation for binary fraction j1/2+ j2/4 · · · jn/2n+1. This is actually easy enough to
derive:
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| j〉 → 1√
N

N−1

∑
k=0

x j · e
2π jki

N |k〉 (5.11)

1
2n/2

2n−1

∑
k=0

e
2π jki

2n |k〉 (5.12)

1
2n/2

1

∑
k1=0

1

∑
k2=0
· · ·

1

∑
kn=0

e2π j(∑n
l=1 kl2−l)i |k1k2 . . .kn〉 (5.13)

1
2n/2

1

∑
k1=0

1

∑
k2=0
· · ·

1

∑
kn=0

n⊗
l=1

e2π jkl2−l i |kl〉 (5.14)

1
2n/2

n⊗
l=1

[
1

∑
kl=0

e2π jkl2−l i |kl〉
]

(5.15)

1
2n/2

n⊗
l=1

[
|0〉+ e2π j2−l i |1〉

]
(5.16)

A simplistic illustration of the quantum circuit for QFT, omitting swaps at the end

and normalization:

· · ·

· · · · · ·

· · · · · · ...

. ...
...

...

· · · · · · · · ·

· · · · · · · · ·

|j〉

H R2 R3 Rn−1 Rn

H Rn−2 Rn−1

H R2

H

Its derivation is very nicely given in [34], using the framework of matrix decompo-
sitions above. Instead of a proper derivation, let us consider the workings of the
circuit step by step. The key to its understanding is the phase kickback, which we
have seen earlier.

Applying the Hadamard gate to the first qubit of the input state | j1 . . . jn〉 gives

1
21/2

(
|0〉+ e2πi 0. j1 |1〉

)
| j2 . . . jn〉 (5.17)

since e2πi 0. j1 equals +1 when j1 = 0 and equals −1 when j1 = 1. We define a
unitary gate Rk as

Rk =

(
1 0
0 e2πi/2k

)
(5.18)

The controlled-R2 gate applied on the first qubit, conditional on j2, now gives
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1
21/2

(
|0〉+ e2πi 0. j1 j2 |1〉

)
| j2 . . . jn〉 (5.19)

Applying further the controlled-R3, R4 ... Rn gates, conditional on j3, j4 etc., we get

1
21/2

(
|0〉+ e2πi 0. j1 j2... jn |1〉

)
| j2 . . . jn〉 (5.20)

Next we perform a similar procedure onto the second qubit. The Hadamard gate
produces the state

1
22/2

(
|0〉+ e2πi 0. j1 j2... jn |1〉

)(
|0〉+ e2πi 0. j2 |1〉

)
| j3 . . . jn〉 (5.21)

and the controlled-R2 through Rn−1 gates yield the state

1
22/2

(
|0〉+ e2πi 0. j1 j2... jn |1〉

)(
|0〉+ e2πi 0. j2... jn |1〉

)
| j3 . . . jn〉 (5.22)

We continue this procedure for each qubit, obtaining a final state

1
2n/2

(
|0〉+ e2πi 0. j1 j2... jn |1〉

)(
|0〉+ e2πi 0. j2... jn |1〉

)
. . .
(
|0〉+ e2πi 0. jn |1〉

)
(5.23)

Eventually, we use the SWAP operations to reverse the order of the qubits to obtain
the state in the desired product form

1
2n/2

(
|0〉+ e2πi 0. jn |1〉

)(
|0〉+ e2πi 0. jn−1 jn |1〉

)
. . .
(
|0〉+ e2πi 0. j1 j2... jn |1〉

)
(5.24)

5.3.1 Even Faster QFT

Above, we have clearly used at most O(n2) gates. [37], [38], and others improved
this to O(n logn) depth, if one allows for some error. This is based on the realization
that Rs for s� logn are very close to the identity and can be omitted.
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Chapter 5

Grover Search and Dynamic Programming

So far, we have seen examples of quantum algorithms with an exponential speed-up,
but only for problems that are not NP-Hard. For NP-Hard problems, we know only
algorithms with quadratic speed-up so far, and even that is disputed [39, 40, 41]. In
this chapter, we will explain these in a very general framework of [42].

5.1 Grover Algorithm

In the problem of [43], we have

• a dimension n

• a black-box function f (x) : {0,1}n→{0,1} parametrized by a secret n-bit string
j, which returns 1 if x = j and 0 otherwise.

The functional version of the problem asks what is the unknown w. It is clear that
classically, one may need to perform 2n oracle calls in the worst-case, and that ran-
domized algorithms would not help much. Notice that N = 2n is sometimes referred
to as the “library size” we are searching.

The black-box function is usually thought of as an oracle operator Uw such that for
states | j〉 in the computational basis

Uw | j〉= (−1) f ( j) | j〉= I−2 |w〉〈w|=
{
−| j〉 , if j = w

+ | j〉 , if j 6= w
(5.1)

This is sometimes known as the ±-oracle or phase oracle. One can generalize this
to the situation where there are multiple secrets.

We will also use a generalization, which is known as the diffusion operator or in-
version for an arbitrary state |s〉:

87
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Us = 2 |s〉〈s|− I (5.2)

Let us have a bit of a geometric detour: any state |φ〉 can be uniquely expressed as
|φ〉= α |ψ〉+β |ψ⊥〉, where |ψ⊥〉 is orthogonal to |ψ〉. Then:

Us |φ〉=−α |ψ〉+β |ψ⊥〉 (5.3)

that is, amplitudes of basis states orthogonal to |ψ〉 are left unchanged, while signs
of amplitudes of the basis state |ψ〉 are flipped. Furthermore, for any state φ , Uψ ,
preserves the subspace spanned by |φ〉 and |ψ〉.
Grover’s algorithm performs the following steps:

1. creates an initial, n-qubit state |0〉⊗n

2. apply Hadamard transform on it to obtain the uniform superposition 1√
n ∑

n−1
k=0 |x〉

3. apply the function oracle operator Uw and the diffusion operator Us repeatedly,
q times.

4. obtain ŵ by measuring the n-qubit register. With probability sin2((q+ 1
2 )θ) for

some θ depending on 1√
N

, estimate ŵ will be the correct f (ŵ) = 1. Otherwise,
we repeat.

Ideally [44], one considers q ≈ π

4 2n/2. If the Grover iteration UsUw could be im-
plemented in unit time (a big if!), this would correspond to O(2n/2) = O(

√
2n) =

O(
√

N) algorithm and quadratic speed-up compared to the linear search in time
O(2n) = O(N).

The Grover iteration has a number of appealing interpretations: Perhaps the most
physical is due to [45]. Recall the discussion of the oscillators from the second
lecture. The oscillator could describe a weight (or bob) suspended from a pivot on
a (massless) cord such that the bob can swing freely. Now, consider N oscillators,
one of which has a slightly shorter cord, and hence a different frequency. We seek to
find the one with the shorter cord. We could check the frequency of the N oscillators
one by one. Alternatively, we can consider a compound pendulum.

To this end, we consider a system where the N oscillators are suspended from a
support pendulum. We use the following notation:

• The length, mass and displacement coordinate for the support pendulum are de-
noted L,M,X ;

• the pendulum we aim to identify has length, mass and displacement l1,
m1
N ,x1;

• the remaining N−1 oscillators have length, mass and displacements l, m
N ,x j for

j = 2, . . . ,N.
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The setup thus looks something like the following:

L

ll1

1

The Lagrangian (kinetic energy minus potential energy)1 is then:

1
2
[MẊ2−KX2 +

1
N
(m1ẋ1

2− k1(x1−X)2)+
1
N

N

∑
j=2

(mẋ j
2− k(x j−X)2)]

K ≡ (M+
m
N
)

g
L
, k j ≡ m j

g
l j
,

(5.4)

where

• g is the acceleration due to gravity;

• K,k1 and k are the spring, or stiffness, constants, of the corresponding oscillators.
For a simple, uncoupled, harmonic oscillator with mass m, this is related to the

frequencies ω through ω =
√

k
m .

Through a simple change of variables, one obtains:2

Lred ≈
1
2
[MẊ2−KX2 +m1ξ̇

2− k1(ξ −
1√
N

X)2 +m ˙̄x2− k(x̄−X)2]. (5.5)

Note that this has 3 degrees of freedom, two that are strongly coupled X and x̄,
while the third, ξ , is weakly coupled due to the 1/

√
N factor. Solving first the X , x̄

system gives us two modes with frequencies ωa and ωb. The natural frequency of
the ξ degree of freedom that corresponds to the special pendulum is approximately

ω1 =
√

k1
m1

. If ω1 is close to either ωa or ωb, there will be resonant transfer of energy

between the two weakly coupled systems. In O(
√

N) cycles, one should be able to
identify the correct pendulum by having amplified its energy. If we instead had n
shorter cords, it would take O(

√
N/n) cycles.

Imagine that one starts by a single push to the support pendulum and can change
parameters of any pendulum and then observe their frequency with a finite precision
that is independent of N. By bisection, we can adjust the cords of 1/2 of the pendula,

1 remember that the Hamiltonian is the kinetic energy + potential energy
2 Essentially, the change of variables is to the center-of-mass frame for the j = 2, . . . ,N pendulums,
and ξ ∝ x1 is simply a normalization. Finally, we ignore some O(1/N) terms.
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1/4 of the pendula, etc., until we identify the one pendulum. This would have a
runtime of O(

√
N logN).

The diffusion operator should be viewed as a quantum amplitude amplification pro-
cedure, with the aim to increase the probability amplitude of the target state. Fol-
lowing [46, 47], one could consider |φ〉= A |0n〉= ∑i αi |i〉 and some partition:

|φ〉= ∑
i∈good

αi |i〉+ ∑
i∈bad

αi |i〉 ,

with P(good) = ∑i∈good |αi|2. Then,

|φ〉=
√
P(good) |φgood〉+

√
1−P(good) |φbad〉= sin(θ) |φgood〉+ cos(θ) |φbad〉

with sin2(θ) = P(good) and sin2(θ)+cos2(θ) = 1. The state |φ〉 is thus orthogonal
to |φ⊥〉 = cos(θ) |φgood〉− sin(θ) |φbad〉. {|φgood〉 , |φbad〉} and {|φ〉 , |φ⊥〉} are thus
two orthonormal bases in a 2-dimensional subspace. One obtains

Uw
(
sin(θ) |φgood〉+ cos(θ) |φbad〉

)
=−sin(θ) |φgood〉+ cos(θ) |φbad〉 (5.6)

U
φ⊥

(
sin(θ) |φ〉+ cos(θ) |φ⊥〉

)
= sin(θ) ||φ〉〉− cos(θ) |φ⊥〉 (5.7)

U
φ⊥Uw |φ〉= cos(2θ) |φ〉+ sin(2θ) |φ⊥〉 (5.8)

= sin(3θ) |φgood〉+ cos(3θ) |φbad〉 . (5.9)

We will see this view in the following lecture.

This amplitude amplification also has a geometric interpretation: one should see Uw

and Us as Householder reflections. Grover’s algorithm stays in a subspace spanned
by (|s〉 , |w〉). The two operators are reflections with respect to the hyper-planes per-
pendicular to w and s. It is an elementary fact of Euclidean geometry that when M1
and M2 are two lines in the plane intersecting at point O with intersection angle α ,
the operation of reflection with respect to M1, followed by reflection with respect to
M2, is rotation by angle 2α around O. Then, the product UsUw is a rotation in the
(|s〉 , |w〉) plane (for the first≈ π

√
N/4 iterations from |s〉 to |w〉) by θ = 2arcsin 1√

N
.

This view is beautifully elaborated by [46].

Without giving a complete derivation here, let us consider |x⊥0 〉 and |φ0〉 at an
angle β . Then U|φ⊥0 〉U|x0〉 is a rotation around the origin by angle 2β .Starting

with a state |φ0〉 = sin(β ) |x0〉+ cos(β ) |x⊥0 〉, after q Grover iterations, we obtain:
|φk〉 = sin((2q+ 1)β ) |x0〉+ cos((2q+ 1)β ) |x⊥0 〉. We thus wish to pick q such that
sin((2q+1)β ) is as close as possible to 1.

[41] suggests that Uw should be seen as:

Uw =
[
1 1
]( n

∏
i=1

Mi

)[
1
−2

]
(5.10)
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with

Mi =


Ii 0 0 ...

0 |w1
i 〉〈w1

i | 0 ...

0 0 |w2
i 〉〈w2

i | ...

... ... ... ...

... 0 0 |wS
i 〉〈wS

i |

 (5.11)

where Ii is the 2× 2 identity matrix acting on qubit i and |wα
i 〉〈wα

i | projects α on
the bitstring i.

The diffusion operator Us is similar, except for the replacement of Mi by

M′i =
[

Ii 0
0 |+〉〈+|

]
(5.12)

in (5.10).

As we have mentioned at the beginning, there is also a fair amount of controversy,
which centers around three issues:

• [39, 40]: one needs to be able to run the oracle with an error that scales with
N−1/4 = 1/2n−4. This is a very exacting standard which may be difficult to obtain
for non-trivial n.

• quantumly, one needs to be able to implement the oracle in unit amount of time,
but not to be able to implement the product of the Grover iteration UsUw in unit
amount of time, and not to be able to implement many things classically.

• [41]: the tensor-analytic view (5.10) suggests that one uses rank-2 matrix prod-
uct operation, which are classically simulable in polytime. Then, one efficiently
simulates the product of the Grover iterations as well.

5.2 Dynamic Programming

Let us now consider two NP-Hard functional (optimization) problems. In the TRAV-
ELLING SALESMAN PROBLEM (TSP), we seek the shortest simple cycle that visits
each vertex in a weighted graph G once (Hamiltonian circuit). In the MINIMUM

SET COVER, we seek the minimum cardinality subset S ′ ⊆S such that⋃
S∈S ′

S = U



for some given S ⊂U , with the cardinality of the ground set |U |= n and |S |=m.

A naive classical approach to either problem would construct a dynamic program-
ming tableau, where in each row r in the tableau, we would have the lengths of
Hamiltonian circuits in r-vertex subgraphs. Following [42], let f (S,u,v) denote the
length of the shortest path in the graph induced by a subset of vertices S that starts
in u ∈ S, ends in v ∈ S and visits all vertices in S exactly once. Then:

f (S,u,v) = min
t∈N(u)∩S

t 6=v

{w(u, t)+ f (S\{u}, t,v)} , f ({v},v,v) = 0. (5.13)

where N(u) is the neighbourhood of u in G. For k ∈ [2, |S|−1] fixed,

f (S,u,v) = min
X⊂S,|X |=k
u∈X ,v/∈X

min
t∈X
t 6=u

{ f (X ,u, t)+ f ((S\X)∪{t}, t,v)}. (5.14)

The algorithm of [42] picks some α ∈ (0,1/2] and classically precomputes f (S,u,v)
for all |S| ≤ (1−α)n/4 using dynamic programming (5.13). That is, it computes the
bottom rows of the tableau classically, in time exponential in n. Quatumly, it obtains

min
S⊂V
|S|=n/2

min
u,v∈S
u 6=v

{ f (S,u,v)+ f ((V \S)∪{u,v},v,u)}

over all subsets S⊂V such that |S|= n/2 by taking the following steps:

1. Run Grover on (5.14) with k =αn/4 to calculate f (S,u,v) for |S|= n/4 starting
with the rows of the tableau obtained classically.

2. Run Grover on (5.14) with k = n/4 to calculate f (S,u,v) for |S|= n/2.

Under very strong assumptions about storing the data in quantum RAM, [42] claim
a speed-up as suggested in Table 5.1. Notice that much of the controversy surround-
ing the original Grover applies to this setting as well, compounded by the QRAM
assumptions. Under more plausible assumptions, [48] study dynamic programming

Classical (best known) Quantum (of [42])
Vertex Ordering Problems O∗(2n) O∗(1.817n)

Travelling Salesman Problem O(n22n) O∗(1.728n)
Minimum Set Cover O(nm2n) O(poly(m,n)1.728n)

Table 5.1: Summary of the results of [42].

with convex value functions.

[most]tcolorbox listings hyperref float Theorem



Chapter 6

Quantum Walks and Quantum Replacements of
Monte Carlo Sampling

In what follows we denote the imaginary unit as i =
√
−1 and the n×n unit matrix

as 111n (we skip the subscript if implied). Any comments, corrections and suggestions
are most welcome. Send me an e-mail at korpageo@fel.cvut.cz.

6.1 Quantum Walks

Quantum (Random) Walks serve as a fundamental concept in the realm of quantum
computing, offering a distinct perspective on random processes compared to their
classical counterparts. Quantum walks, and algorithms that utilize them, have sev-
eral important features that we aim to address in this section. Most notably quantum
walks often show quadratic speedups [49] (similar to Grover’s algorithm), some-
times show exponential speedups [50] (for example, in the Hidden Flat Problem we
describe in Sec. 6.1.6) and, of equal importance, form a model of universal (quan-
tum) computation [51, 52] allowing them to be on the same foot with the quantum
Turing machine or the quantum circuit model of computation.

Here we will first introduce discrete quantum walks, then continuous quantum
walks, and finally motivate their universality. A good, comprehensive introduction
to quantum walks is [53] as well as the textbook [54].

6.1.1 Basics of Quantum Walks

The first quantum algorithms were built on the foundation of Fourier sampling (fa-
mously Shor’s algorithm [55]), but a new category of algorithms emerged with the

93

korpageo@fel.cvut.cz


94 6 Quantum Walks and Quantum Replacements of Monte Carlo Sampling

introduction of the quantum walk [56, 53]—a quantum version of the classical ran-
dom walk.

A quantum walk is a quantum process on a graph G = (V,E), where V = V (G) is
the set of vertices and E = E(G) the set of edges, with basis states |x〉, x ∈ V . For
simplicity, let V = Z in what follows. Denote the corresponding Hilbert space as
HG. At each time step, a quantum walk corresponds to a unitary map U ∈U(N)

such that
U : HG→HG

|x〉 7→ a|x−1〉+b|x〉+ c|x+1〉
(6.1)

which conveys the information for the potential that |x〉

1. moves left with some amplitude a ∈ C,

2. stays at the same place with amplitude b ∈ C,

3. moves right with amplitude c ∈ C.

In addition, our goal is for the process to exhibit consistent behavior across all ver-
tices. That is, a,b and c should be independent of x ∈V (similarly to how the prob-
abilities of moving left/right are independent of x in the classical random walk).
Unfortunately, this definition does not work.

Theorem 6.1. Transformation U defined by Eq. (1) is unitary if and only if one of
the following three conditions is true:

1. |a|= 1,b = c = 0,

2. |b|= 1,a = c = 0,

3. |c|= 1,a = b = 0.

The reason is that the only possible transformations are the trivial ones (ones that at
each step either always move left or always stay in place or always move right). The
same problem also appears when defining quantum walks on many other graphs.

This problem can be solved by introducing an additional “coin” state tensored to
|x〉. We consider the state space consisting of states |i,x〉 for i ∈ {0,1}, x ∈ Z, with
Hilbert spaces HC = C2, HW = (C2)⊗K , K ∈ Z>0, respectively. At each step, we
perform two unitary operations:

(1) A coin flip operation C : HC→HC which “puts” the walker in superposition,
so it walks all possible paths simultaneously.

(2) This is followed by a shift operation S : HW →HW the operator responsible
for the actual walk on G.
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These operators act as:

C|i,x〉=
{

a|0,x〉+b|1,x〉 if i = 0,

c|0,x〉+d|1,x〉 if i = 1.
(6.2)

S|i,x〉=
{
|0,x+1〉 if i = 0,

|1,x−1〉 if i = 1.
(6.3)

In fact, C can be any element of U(2). Very often the Hadamard operator is chosen
(giving the walker the name “Hadamard walker”), that is

H =
1√
2

(
1 1
1 −1

)
, (6.4)

while S can be explicitly described as follows:

S =

(
|0〉〈0|⊗

∞

∑
x=−∞

|x+1〉〈x|
)
+

(
|1〉〈1|⊗

∞

∑
x=−∞

|x−1〉〈x|
)
. (6.5)

Remark. We can equally exchange the order of the Hilbert spaces. In this convention
C ≡ (111|V |⊗C) and S≡ (S⊗1112).

A step of a quantum walk amounts to the unitary U = SC. This operator is termed a
“coin” operator because its action on |i,x〉, i∈ {0,1}, is to put it in the superposition
state

√
p0|0,x〉+√p1|1,x〉 and it will be measured with probability p0 in |0,x〉 and

with probability p1 in |1,x〉. If C = H, then p0 = p1 = 1/2, thus the coin analogy.

Following Eqs. (6.3) and (206), in Fig. 6.1 we can see the probability distribution
we obtain after performing a quantum walk with 100 steps. There seems to be an
inherit bias towards the right (center at x = 50).

Remark on Bias. The quantum walker’s initial state is the product of the coin state
and the position state. The former state controls the direction in which the walker
moves. Therefore, the choice of coin operator leads to vastly different constructive
and destructive interference patterns.

In the case of Fig. 6.1, the initial coin state and coin operator are chosen such that
the quantum amplitudes add up constructively in one direction and destructively in
the other, and the walker is more likely to move preferentially in the direction where
constructive interference occurs.

This behavior is in stark contrast to a classical random walk, where the walker has
equal probability of moving left or right at each step, and there is no preference or
bias for either direction. The bias in a quantum walk is a unique characteristic of the
underlying physics.
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Fig. 6.1: Probability distribution of quantum walk, starting at |−,0〉, after different
numbers of steps.

6.1.2 Quantum walk on a subset of Z

Let us see how this works with an example on a bounded subset of the integer line
with C = H. It is common to assume that the walker starts at position x = 0 with the
coin state being the |0〉 or |1〉 state.

-2 -1 0 1 2

|+, 0⟩

Fig. 6.2: Beginning a quantum walk, after the coin operator has been applied, at
|+,0〉, by applying C = H on |0,0〉, on the Z-line.

For ease of notation, we denote the r-th application of the quantum walk operator
U by U (r)|ψr−1〉. Following the previous discussion, the quantum walk amounts to
the following set of operations:

Select coin operator C = H
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Initialize the state (position of the walker):
|000〉= |0〉C⊗|0〉W = |0,0〉 (or |1,0〉)

for r ∈ N repeat U r|000〉 as:
Apply the coin operator: C|000〉
Apply the shift operator: S(C|000〉)

Measure U r|000〉

Listing 6.1: Quantum Walk

Therefore, the initial state is |000〉 ≡ |ψ0〉 and we obtain

|ψ1〉=
|0,−1〉+ |0,1〉√

2
(6.6)

|ψ2〉=
|0,−2〉+ |1,0〉+ |0,0〉− |1,2〉

2
(6.7)

|ψ3〉=
|1,−3〉− |0,−1〉+2(|0〉+ |1〉)|1〉+ |0,3〉

2
√

2
(6.8)

This state is not symmetric around the origin and the probability distributions will
not be centered at the origin. This is clear from Fig. 6.1. As a matter of fact the
standard deviation of the walker, after r iterations of U is [57]:

σ(r)≈ 0.54r, (6.9)

see Fig. 6.3. This implies that the standard deviation in a coined quantum walk
increases linearly over r, in contrast to the classical case where it grows with the
square root in r.

In a classical random walk, the walker moves randomly through the graph, and its
position becomes more uncertain over time. The standard deviation of its position
typically increases linearly with the number of steps taken. This linear increase sig-
nifies a diffusive spread of the walker. On the other hand, a quantum walk displays
ballistic behavior, which means that it spreads faster than a classical random walk.
In a Hadamard quantum walk, the walker’s position uncertainty (as measured by the
standard deviation) increases roughly quadratically faster with the number of steps
taken, which is a more efficient spreading of the walker over the graph.
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6.1.3 Quantum Walk on a Complete Graph

Quantum walks can be studied on more generic graphs. In this section, we will study
quantum walks on a symmetric (complete) graph in order to attain more intuition.

Let us pick an easy-to-work-with graph, the complete graph K4 with 4 vertices and
6 edges and perform such search.

Classical Random Walks on K4

Let us commence with a classical random walk on K4 wherein we are looking to
“find” the marked vertex #2 (but we do not know it). In Fig. 6.5 we display the
success probability after 1 and 2 steps.

Overall, the trend for the success probability continues, and we observe the behavior
of the walker in Fig. 6.6.

Then, for large N, the success probability of 1/2 is reached after O(N) steps.

Quantum Grover Walks on K4

Moving on to quantum walks, we have to implement the coin and shift operators.
At each vertex, we have two pieces of information: the position and the direction,
just like in the case of the Z-walker. Diagrammatically at step 0 we are back at the
left of Fig. 6.5. In total we have 12 amplitudes to consider; see Fig. 6.7. Initially, we
have ai j =

1√
12

for all i, j.

Then, the coin flip operator C, which here is taken to be Grover’s diffusion op-
erator, amounts to marking the state we look for, assigning a negative sign to the
corresponding amplitudes. The marking is done by assuming access to an oracle
O (essentially the same oracle found in Grover’s operator) that is able to perform
this operation. Then, it changes the direction of adjacent red-blue pair vertices, see
Fig. 6.7. Then S reverses the amplitude values along their mean at each vertex. For
example, the mean of the vertex #1 after application of C is

µ12 =
a21 +a13 +a14

3
. (6.10)

Therefore, S amounts to a map S : ai j 7→ a′i j = µ12 − ai j, for the three pairs
{21,13,14}. Of course, this is applied to all amplitudes for all vertices. In the sec-
ond step, we already get the amplitude asymmetry resulting from the oracle flipping
the signs of the marked vertex followed by C and then S. As a result, one observes
that:

probability of success at step 1 =
11
108
≈ 0.1 (6.11)

probability of success at step 2 =
25
36
≈ 0.7 (6.12)
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Overall, for a large number of vertices N, the probability that the walker lands on the
marked vertex is 1/2 is given after π

√
N steps and therefore the run-time is O(

√
N).

This marks another example in which quantum walks portray a quadratic speedup
over classical random walks.

6.1.4 Szegedy Walks

Consider an undirected and unweighted graph G. Szegedy’s quantum walk occurs
on the edges of the bipartite double cover of the original graph. If the original graph
is G, then its bipartite double cover is the graph tensor product G×K2 which du-
plicates the vertices into two partite sets X and Y . A vertex in X is connected to a
vertex in Y if and only if they are connected in the original graph; see Fig. 6.9.

The Hilbert space of a Szegedy walk, therefore, is C2|E|. Let us denote a walker on
the edge connecting x ∈ X with y ∈ Y as |x,y〉. Then the computational basis is:

|x,y〉, x ∈ X ,y ∈ Y,x∼ y (6.13)

where x∼ y denotes that the vertices x and y are adjacent. Szegedy’s walk is defined
by repeated applications of the unitary

U = R2R1, (6.14)

where

R1 = 2 ∑
x∈X
|φx〉〈φx|−111 (6.15)

R2 = 2 ∑
y∈Y

∣∣ψy
〉〈

ψy
∣∣−111, (6.16)

are reflection operators and

|φx〉=
1√

deg(x)
∑
y∼x
|x,y〉 (6.17)

∣∣ψy
〉
=

1√
deg(y)

∑
x∼y
|x,y〉. (6.18)

Here, deg(x) is the degree of vertex x and y∼ x denotes the sums over the neighbors
of x. Observe that |φx〉 is the equal superposition of edges incident to x∈X , and

∣∣ψy
〉

is the equal superposition of edges incident to y ∈ Y . Here, there is an equivalent
of the “inversion about the mean” operation of Grover’s algorithm, which we also
saw previously in the context of walks over K4. The reflection R1 goes through
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each vertex in X and reflects the amplitude of its incident edges about their average
amplitude, and R2 similarly does this for the vertices in Y .

Classically, to search for a marked vertex on G with a classical random walk, one
randomly walks until a marked vertex is found, and then the walker stays at the
marked vertex.

Quantumly, Szegedy’s quantum walk searches by quantizing this random walk with
absorbing vertices and the resulting bipartite double cover. Search is performed by
repeatedly applying the unitary

Ũ = R̃2R̃1, (6.19)

where the tilde distinguishes in that we are searching for absorbing vertices. At
unmarked vertices they act as R̃ j = R j simply by inverting the amplitudes of the
edges around their average at each vertex. At the marked vertices, similarly to the
K4 case, they act by flipping the signs of the amplitudes of all incident edges. A
similar search can be performed using Grover’s diffusion operator.

6.1.5 Continuous-time Quantum Walks

Let us define the quantum analog of continuous-time random walks that will allow
us later to understand the universality of quantum walks.

Classical continuous-time random walks.

The continuous-time random walk on a graph G = (V,E) with adjacency matrix A
defined as:

Ai, j =

{
1, (i, j) ∈ E

0, (i, j) /∈ E
(6.20)

for every pair i, j ∈ V . In this definition we do not allow self-loops therefore the
diagonal of A is zero. There is another matrix associated with G that is of equal
importance, the Laplacian of G defined as:

Li, j =


−deg(i), i = j

1, (i, j) ∈ E

0, otherwise.

(6.21)

Here, deg(i) denotes the degree of vertex i. Let pi(t) denote the probability associ-
ated with the vertex i at time t. The continuous-time random walk on G is defined
as the solution of the differential equation
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d
dt

pi(t) = ∑
j∈V

L jk p j(t). (6.22)

This can be viewed as a discrete analog of the diffusion equation. Observe that

d
dt ∑

j∈V
p j(t) = ∑

j,k∈V
L jk pk(t) = 0 (6.23)

This shows that an initially normalized distribution remains normalized; the evolu-
tion of the continuous-time random walk for any time t is a stochastic process. The
solution of the differential equation can be given in closed form as:

p(t) = eLt p(0). (6.24)

Continuous-time quantum walks. Eq. (6.23) is very similar to the Schrödinger
equation

i
d
dt
|ψ〉= H|ψ〉, (6.25)

Instead of probabilities of Eq. (6.23) we can insert the amplitudes q j(t) = 〈 j | ψ(t)〉
where {| j〉 : j ∈ V} is an orthonormal basis for the Hilbert space. Then, we obtain
the equation:

i
d
dt

q j(t) = ∑
k∈V

L jkqk(t), (6.26)

where the Hamiltonian is given by the Laplacian L. Since the Laplacian is a Hermi-
tian operator, these dynamics preserve normalization in the sense that d

dt ∑ j∈V
∣∣q j(t)

∣∣2 =
0. The solution of reads:

U(t) = e−iHt = e−iLt , (6.27)

and the evolution of an initial state from t = 0 to some arbitrary time t is given by:

|ψ(t)〉=U(t)|ψ(0)〉. (6.28)

Quantum Walk on the Hypercube. This is another example where the differ-
ence between random and quantum walks becomes tremendous. Consider the
Boolean hypercube, that is, the graph with vertex set V = {0,1}n and edge set
E = {(x,y) ∈V ×V |∆(x,y) = 1}, where ∆(x,y) denotes the Hamming distance be-
tween strings x and y. When n = 1, the hypercube is simply an edge, with adjacency
matrix

σx :=
(

0 1
1 0

)
. (6.29)

https://en.wikipedia.org/wiki/Diffusion_equation
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For general n, the graph is the Cartesian product of this graph with itself n times,
and the adjacency matrix is

A =
n

∑
j=1

σ
( j)
x , (6.30)

where σ
(i)
x denotes the operator acting as σx on the ith bit, and as the identity on

every other bit. Consider the quantum walk with the Hamiltonian given by A. Since
the terms in the above expression for the adjacency matrix commute, the unitary
operator that describes the evolution of this walk is simply

e−iAt =
n

∏
i=1

e−iσ (i)
x t

=
n⊗

i=1

(
cos t −i sin t
−i sin t cos t

)
≡U(t).

(6.31)

Note that U(π/2) flips every bit of the state (up to an overall phase), resulting in a
mapping of any input state |x〉 to the state |x̄〉 corresponding to the opposite vertex
of the hypercube.

In contrast, consider the continuous-time (or discrete-time) random walk starting
from the vertex x. The probability of reaching the opposite vertex x̄ is exponentially
suppressed at any time, since the walk rapidly reaches the uniform distribution over
all 2n vertices of the hypercube.

6.1.6 Exponential speedups using Quantum Walks

In this section we will briefly introduce the Hidden Flat Problem (HFP) and how
quantum walks offer an exponential speedup. This is an algorithm that aims to find
hidden nonlinear structures over Galois fields1 Fp, for p prime.

You have already heard about Schor’s algorithm and its successes:

1. Factoring (see Lecture 9 for the implications thereof).

2. Discrete log.

1 Galois fields over primes are also called prime fields. For each prime number p, the prime field
Fp of order p is constructed as the integers modulo p, that is Z/pZ. See Chapter 5, Sec. 5.1.
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In the former, the hidden structure here amounts to period finding over Z that is, a
hidden linear structure in one dimension, while for the latter it amounts to finding a
hidden line in Zp×Zp.

In the HFP the goal is to determine a flat (e.g. a line) for spheres of radius r = 1,
given a uniform superposition over points in Fd

q . In this context, we are promised
that the centers of the spheres lie on an unknown flat H, and the goal is to determine
this flat using oracular access.

Problem Details

For that, we need to first introduce some weird notation. Let St
r(Fd

q) denote the
sphere of radius r with center t over Fd

q . Additionally, for a finite set S, we denote
by

|S〉 :=
1√
|S|∑s∈S

|s〉 (6.32)

the normalized uniform superposition over elements of S. Using two oracles2 f1, f−1
– let us assume they exist indeed; they are concretely defined in the context of the
Hidden Radius Problem [58]– it is possible to construct the state

ρr :=
1
qd ∑

t∈Fq

|Sr + t〉〈Sr + t| . (6.33)

The flat we are looking for is such a discrete set H ⊆ Fq allowing us to construct

ρ1 :=
1
|H| ∑

h∈H
|S1 +h〉〈S1 +h| (6.34)

The goal is to determine H by making measurements on this state. To accomplish
this, a quantum walk is implemented that moves the amplitude from |S1 +h〉 to |h〉.
If a sufficiently large fraction of the amplitude is moved, then the hidden flat can be
determined by (classically) solving a noisy linear algebra problem.

To move amplitude from unit spheres to their centers, we will use a continuous-time
quantum walk on the Winnie-Li graph.

This graph has vertex set Fd
q , and edges between points x,x′ ∈Fd

q with ∆ (x− x′) = 1.
Thus its adjacency matrix (that serves as a Hamiltonian) is

A := ∑
x∈Fd

q

∑
s∈S1

|x+ s〉〈x| (6.35)

The continuous-time quantum walk for time t is simply the unitary operator U(t) =
e−iAt . This unitary operator can be efficiently implemented on a quantum computer

2 C.f. Lecture 4, Sec. 5.2 “The Oracle”.
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provided that we can efficiently transform into the eigenbasis of A, and can effi-
ciently compute the eigenvalue corresponding to a given eigenvector.

The adjacency matrix (6.35) has eigenvectors

|k̃〉 :=
1√
qd ∑

x∈Fd
q

ω
k·x
p |x〉, (6.36)

for k ∈ Fd
q . Therefore, by using the Fourier transform of

U :=
1√
qd ∑

x,k∈Fd
q

ω
k·x
p |k〉〈x| (6.37)

we can transform to the eigenbasis of A where the corresponding eigenvalues
are given by the Fourier transform of a unit sphere λk (whose precise form is
computable). Almost all of these eigenvalues can be computed with complexity
O
(√

qd−1
)

.

Then, the main result is the following algorithm:

Require ρH

for t = 1/
√

qd−1 logq:
Perform a continuous-time quantum walk with U = e−iAt

Measure in the computational basis

Listing 6.2: Quantum Flat Problem using Quantum Walks

Each point in H occurs with probability |H|−1
(

1/ logq+O
(

1/ log3/2 q
))

, and any

point not on H occurs with probability O
(
q−d
)
.

With the above in mind, and assuming d = O(1) and odd, there is a quantum algo-
rithm to determine the hidden flat of centers in time poly(logq). This provides an
exponential speedup over classical algorithms.

While this algorithm is not the most trivial to follow, it is a remarkable example on
the exponential speedup that quantum walks provide for certain problems.

Further quantum algorithms for algebraic problems are given in[59], an excellent
survey.
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6.1.7 Universality of Quantum Walks

In earlier lectures you have seen that quantum computation with time-independent
Hamiltonians provides a universal model of computation. In this section, we will ar-
gue that quantum walks form a universal model of computation. Childs [51] showed
that even a restricted version of this model, the “universal computation graph,” forms
a universal model for quantum computation. This means that any problem that can
be solved by a common gate-based quantum computer can also be solved by such a
quantum walk (similarly to programable quantum gate arrays or to adiabatic quan-
tum computing, as we discuss in the Chapter 7).

This result shows the computational power of the quantum walk and that, at least
in principle, any quantum algorithm we have seen previously can be recast as a
quantum walk algorithm. Further improvements, in terms of complexity theoretic
issues, were made in [52] using multi-particle walks.

To understand universality, we consider a (continuous) walker on Z, like in Sec.
6.1.2, where the basis states are |x〉. The eigenstates of the adjacency matrix are the
(normalized) momentum states |k〉, that is, the states that satisfy

〈x|k〉= e−ikx, (6.38)

with 〈k|k′〉 ∼ δ (k− k′). The reason for this is deeply routed in physics (we will not
go into details here). The point is that, |k〉 are the momentum eigenstates which
are used to understand how scattering (particle interactions) works in quantum me-
chanics (and quantum field theory). In momentum space, with orthogonal states
|φk〉 ≡ |k〉, we know that

|k〉= ∑
x∈Z

e−ikx|x〉. (6.39)

These are also referred to as momentum states however, they are not normalizable
(instead, we can think of them as maps E(G)→ C. Using the adjacency matrix as
the Hamiltonian H, it follows that

H|k〉= 2cos(k)|k〉. (6.40)

Next, let us consider a finite graph G and create out of it an infinite graph with
adjacency matrix H by attaching semi-infinite lines to M of its vertices.

The states living on the j-th line are labeled as |x, j〉 where |0, j〉 corresponds to the
state in G and where x is allowed to walk along the j-th line. The adjacency matrix
of this graph is denoted by H and each of its eigenstates must be a superposition of
the form of Eq. (6.39) with momenta k taking any of the values:

• ±k with eigenvalues 2cos(k),
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• k =±iκ and eigenvalue 2cosh(κ),

• k =±iκ +π and eigenvalue −2cosh(κ).

Here κ ∈ R≥0. We can truncate |k〉 such that it has support over a finite number of
vertices. Denote the truncated state supported over L vertices as

|k〉L :=
1√
L

L

∑
x=1

e−ikx|x〉. (6.41)

In the physics literature, such states are called wave packets (this is just terminology
originating from physics; there is no physical wave of any form or size propagating
through any physical medium here) and the sign of the exponential denotes the
direction of the wave; see Fig. 6.14. The infinite line in Fig. 6.14 becomes a universal
computation graph by inserting a finite graph G at, say, vertex 0. As seen in Fig.
6.15. In principle, one can prepare a wave packet as the one with momentum k and
let it propagate.

This amounts to a dynamic scattering process. Let us denote this incoming (to G)
wave packet as

|w(k)〉L if the wave packet comes from the left, (6.42)

|w(k)〉R if the wave packet comes from the right. (6.43)

The dynamics correspond to the following equations:

〈xL|wL(k)〉= e−ikx +RL(k)eikx (6.44)

〈xR|wL(k)〉= TL(k)eikx (6.45)

H|w(k)〉= 2cos(k)|w(k)〉, (6.46)

where RL is a reflection coefficient and TL is the transfer coefficient. Similarly, we
can write down the equations for right-coming wave packets.

For every scattering process, as the one above, there is a scattering matrix S. In this
case,

S =

(
RL TL
RR TR

)
, (6.47)

and it is an element of U(2). More generally, an arbitrary number of semi-infinite
lines can be considered as in Fig. 6.13 with an arbitrary graph G. If there are N
semi-infinite lines, then S ∈U(N).

We are now in a position to understand why quantum walks form a universal
model of quantum computation. It is possible to encode a qubit state by consider-
ing two universal computation diagrams in one dimension as in Fig. 6.17.
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As before, we can insert a graph G with 4 semi-infinite lines as in Fig. 6.18.

Then, a unitary is implemented by inserting a graph G such that its corresponding
S-matrix3 has the structure

S =

(
0 U†

U 0

)
, (6.48)

where U ∈U(2). Therefore, a unitary U is implemented by the scattering process of
quantum walkers, through a graph G that encodes it. Childs [51] showed that with
the above process, it is possible to implement the unitaries

Uπ/4 =

(
e−iπ/4 0

0 1

)
, Ub =−

i√
2

(
1 −i
−i 1

)
, (6.49)

which form a universal gate set for one-qubit operations; up to a certain precision ε ,
any single-qubit gate can be implemented by a string of these two unitaries.

This construction was further generalized to n-qubit gates proving that quantum
walks form a universal model of computation.

By considering a finite graph G and attaching N/2 = n pairs of semi-infinite paths,
we are able to encode n qubits. Eventually, it is possible to encode any n-qubit
unitary to a graph G to obtain a quantum walk equivalent of any arbitrary circuit.

Later, [52] showed that continuous-time multi-particle quantum walks on such
graphs are also universal. They too, are generated by a time-independent Hamilton-
ian with a term corresponding to a single-particle quantum walk for each particle,
along with an interaction term. Interestingly, the authors suggest that multi-particle
quantum walks can be used, in principle, to build a scalable quantum computer with
no need for time-dependent control (e.g. for pulse scheduling).

3 The S-matrix relates the initial and final (asymptotic) states of a quantum system involved in scat-
tering processes. Essentially, it encodes the probability amplitudes for different scattering channels
or processes, which can be used to calculate various observables such as cross-sections and decay
rates in particle physics.
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6.2 Quantum Amplitude Estimation and Monte Carlo Sampling

Quantum Amplitude Amplification (QAE) was discovered by Gilles Brassard, Peter
Hoyer, Michele Mosca and Alain Tapp in [47] and generalizes Grover’s algorithm,
as we will describe below. In what follows, we proceed to explain QAE directly
through the lens of an algorithm candidate to replace Monte Carlo sampling tech-
niques following closely Montanaro’s work [60].

The reason lies in the speedup provided by Quantum Phase Estimation.

Classical Monte Carlo Sampling. For simplicity, let us consider a one-dimensional
random variable X and a function f : R → [0,1]. Assume that the mean µ =

E[ f (X)] < ∞ and the standard deviation σ2 = V[ f (X)] < ∞ are well defined. The
Central Limit Theorem ensures that, given an i.i.d. collection of random variables
(X1, . . . ,XN), following the same distribution as X , for N→∞, the quantity

√
N µ̂−µ

σ

converges to a mean-zero Gaussian with unit variance N (0,1). Here, µ̂ refers to
the empirical mean. This implies that for any ε > 0 we estimate that

lim
N→∞

P(|µ̂−µ| ≤ ε) = lim
N→∞

P
(
|N (0,1)| ≤ ε

√
N

σ

)
. (6.50)

In turn, this implies that for any z > 0 and δ ∈ (0,1), in order to obtain an estimate
of the form P(|µ̂−µ| ≤ ε), N = O(1/ε2) samples are required.

QAE Replacement of Monte Carlo Sampling.

Consider a unitary operator A that acts on an n-qubit register as follows:

A |0〉⊗n = ∑
x∈{0,1}k

ax|ψx〉|x〉, (6.51)

for k < n, where |ψx〉 is a quantum state consisting of n− k qubits and |x〉 is a state
consisting of k qubits. We are interested in A because it will allow us to prepare a
specific quantum state that encodes a distribution of interest, with encoded data in
the states |x〉, for which we want to estimate certain properties, such as the mean or
other moments.

Furthermore, the states {|ψ〉x}x∈{0,1}k are assumed to be orthogonal. Next, assume
that there is a unitary W acting as follows:

W |x〉|0〉= |x〉
(√

1− f (x)|0〉+
√

f (x)|1〉
)
. (6.52)

This unitary is introduced to create a quantum state that encodes the function f (x),
which represents the property or condition of interest. The quantum state that it
creates captures the information about the properties pf f (x) in the amplitudes of
the ancilla qubits |0〉 and |1〉.
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Something quite interesting happens when one combines the two operators in the
following way:

G := (111n−k⊗W )(A ⊗111k). (6.53)

Applying G to a |0〉⊗(n+1) qubit register yields the following state:

|ψ〉= G |0〉⊗(n+1) (6.54)

= ∑
x∈{0,1}k

ax|ψx〉|x〉
(√

1− f (x)|0〉+
√

f (x)|1〉
)
, (6.55)

It is customary to refer to these two states as the “bad state”:

|ψbad〉 := ∑
x∈{0,1}k

ax
√

1− f (x)|ψx〉|x〉, (6.56)

and the “good state”:

|ψgood〉 := ∑
x∈{0,1}k

ax
√

f (x)|ψx〉|x〉. (6.57)

By considering the projection operator

P := 111n⊗|1〉〈1|, (6.58)

we can measure the probability that the last state is the |1〉 state,

〈ψ|P†P|ψ〉= |ψgood|2. (6.59)

From the definition of a good state, we can further see that

|ψgood|2 = ∑
x∈{0,1}k

|ax|2 f (x), (6.60)

which corresponds, precisely, to the mean µ = E( f (X)) (note that the random vari-
able X is discretized, as is common with Monte Carlo sampling, to fit the discrete
probability of X being in x).

The whole process of estimating µ for a distribution f , therefore, amounts to run-
ning the circuit that represents G , measuring the output on the computational basis
(this step requires QFT†) and determining the probability of observing the state |1〉.
Quadratic Speedup of Monte Carlo Sampling

The speedup arises from [47, Theorem 12]. Concretely, assume access to a unitary

U |0〉=
√

1−µ|ψbad〉+
√

µ|ψgood〉. (6.61)



Then, for any N ∈ Z≥0, the QAE algorithm outputs the estimate µ̂ such that

|µ̂−µ| ≤ 2π

√
µ(1−µ)

N
+

π2

N2 , (6.62)

with probability at least 8/π2 by quering the algorithm exactly N times.

By using the so-called “Powering Lemma” which states (approximately) that for
any δ ∈ (0,1), it is sufficent to iterate with U approximately O(log(1/δ )) times to
obtain

P(|µ̂−µ| ≤ ε)≥ 1−δ . (6.63)

Putting everything together, we realize that it is required to iterate G approximately
O(N log(1/δ )) times to obtain the guarantee of Eq. (6.63), where

ε = 2π

√
µ(1−µ)

N
. (6.64)

That is, for fixed δ the computational cost to obtain (6.63) is O(1/ε) which is
quadratically better than the N = O(1/ε2) samples required by classical Monte
Carlo.

Require a probability distribution, a moment f,
samples x.

Require a unitary A that acts on n qubits, such that
0≥ µ ≥ 1, t ∈ Z, δ ∈ R>0.

Require a unitary W that acts on k+1 qubits

for t iterations repeat the QAE unitary:

G t |0〉⊗(n+1) = [(111n−k⊗W )(A ⊗111k)]
t |0〉⊗(n+1)

Perform QFT†

Measure in the computational basis the probability the
last qubit is |1〉

Listing 6.3: QAE for Monte Carlo sampling

graphicx,epsfig hyperref algorithm algpseudocode hyperref float color Theorem
Definition Claim
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Fig. 6.3: The standard deviation of a classical versus quantum walk as a function of
the steps.



112 6 Quantum Walks and Quantum Replacements of Monte Carlo Sampling

1 2 3 4

5 6 7

8

1

2

3

4

5

6

7

8

Fig. 6.4: An asymmetric non-complete graph G = (8,10) and its symmetric com-
pletion G = K8.

Fig. 6.5: Left: At step 1 the probability that the walker “lands” on vertex #2 is 1/4.
Right: At step 2 the probability that the walker “lands” on vertex #2 is 1/2. The loop
in vertex #2 denotes that this vertex is a trap: it allows us to know the walker landed
on the marked vertex and the walker is not allowed to attain any other state.
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Fig. 6.6: The success probability of a classical random walk on symmetric G = K4.
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Fig. 6.7: Left: the state of the quantum walk is a superposition of the amplitudes
ai j ∈C, for all i, j ∈V (K4). Once the oracle is applied the marked state’s amplitudes
obtain a negative sign (marked with blue and in analogy with Grover’s operator).
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Fig. 6.8: Left: Coin operator is applied and reverses the relevant amplitudes. The
shift operator reverses these amplitudes along their means.
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Fig. 6.9: Left: A graph G. Right: The bipartite double cover of G. The double cover
contains double the number of edges.
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Fig. 6.10: The marked state corresponds to vertex #2 which is an absorbing vertex:
〈2Y |2X 〉= 〈2X |2Y 〉= 0.

Fig. 6.11: Equidistant circles of various radii over F2
q that lie on an unknown flat H

on which the radii sit at. Note that the density of points in each sphere is approxi-
mately the same since they live on a Galois field.
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Fig. 6.12: A Winnie-Lie graph over F2
p centered at x = 0. The edges are not shown.

j0 j1

j2

j3

Fig. 6.13: The original graph G (thick) corresponds to the one with colored vertices
{ j0, j1, j2, j3} and corresponding edges. By attaching semi-infinite lines (vertices
with edges) to M = 4 vertices of G we construct a new infinite graph. The state of
vertex j` is |0, `〉with each subsequent edge on the same line having a corresponding
state |x, `〉. We call the expanded graph a universal computation graph.

-4 -3 -2 -1 0 1 2 3 4

k −→

Fig. 6.14: A wave packet supported over 2 vertices moving coming from the (far)
left.
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−4 −3 −2 −1 1 2 3 4
G

k →

Fig. 6.15: Inserting a finite graph G into the integer line, yields a one-dimensional
universal computation graph.

−4 −3 −2 −1 1 2 3 4
G

← RL TL →

Fig. 6.16: Part of the wave packet will be reflected and part will be transfered
through G. The coefficients RL,R,TL,R are called reflection and transfer coefficients.

: |1⟩
-4 -3 -2 -1 0 1 2 3 4

: |0⟩
k = π/4

k = π/4

Fig. 6.17: A single qubit can be represented by two infinite lines. Crucially the
momentum must be equal to π/4. The qubit is in the |0〉 state if the wavepacket
propagates in the top line and in the |1〉 state if at the bottom.

−4 −3 −2 −1 1 2 3 4G
|0⟩out
|1⟩out

|0⟩in
|1⟩in

Fig. 6.18: A two-qubit unitary U can be encoded through G to be implemented as a
quantum walk.
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|0⟩in |0⟩out

|1⟩in |1⟩out
|0⟩in |0⟩out

|1⟩in |1⟩out

Fig. 6.19: The graphs encoding Uπ/4 and Ub [51].

G

Fig. 6.20: The graph G obtained by attaching N semi-infinite paths to a graph G.

G

|00 . . . 00⟩out
|01 . . . 0⟩out

|11 . . . 1⟩out

|00 . . . 0⟩in
|01 . . . 0⟩in

|11 . . . 1⟩in

Fig. 6.21: If G is chosen to encode a desired unitary U ∈U(n) the circuit can be
implemented by a quantum walk.





Chapter 7

Adiabatic Quantum Computing and Quantum
Replacements of Optimization Algorithms

Updates

Use this https://arxiv.org/pdf/1611.04471.pdf for more info on adiabatic quantum
computing and detailed computations.

7.1 Adiabatic Quantum Computation is Universal

In this lecture we would like to explain the following beautiful result by [61]:

Theorem 7.1. The model of adiabatic computation is polynomially equivalent to the
standard model of quantum computation.

More specifically, Theorem 7.1 can be also described as:

Theorem 7.2. The model of adiabatic computation with explicit sparse Hamiltoni-
ans is polynomially equivalent to the standard model of quantum computation.

Even more interestingly, in [61] it is explicitly shown that:

Theorem 7.3. Any quantum computation can be efficiently simulated by an adia-
batic computation with 2-local nearest neighbor Hamiltonians operating on six-
state particles set on a two dimensional grid.

We will discuss how one begins to even show these theorems above.

119
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7.1.1 Motivation

Let us provide some motivation. The study of adiabatic quantum computation
(AQC) was initiated several years ago by Farhi, Goldstone, Gutmann and Sipser
[62], who suggested a novel quantum algorithm for solving classical optimization
problems such as Satisfiability (SAT).

Their algorithm, that for what follows will abbreviated as AQC (abusing notation)
and will explicitly describe later on, is based on a celebrated theorem in quantum
mechanics known as the adiabatic theorem.

The exact worst-case behavior of AQC is not known. On one the positive side, sev-
eral simulations on random instances of up to 20 quantum bits led to various opti-
mistic speculations. Fill in modern details.

On the negative side, there is some evidence that AQC takes exponential time in the
worst-case for NP-complete problems.

Nevertheless, adiabatic computation was since shown to be promising in other less
ambitious directions: it possesses several interesting algorithmic capabilities, as we
will soon review, and in addition, it exhibits inherent robustness against certain types
of quantum errors.

7.1.2 Adiabatic Quantum Computation

Let us re-introduce AQC for another time (sorry for being repetitive): A computation
in this model is specified by two Hamiltonians named Hinit and Hfinal .

The ground state1 of Hinit is required to be an easy to prepare state (it can be done
efficiently) and serves as the input of the computation.

The output of AQC is the ground state of the final Hamiltonian Hfinal . Hence, we
choose an Hfinal whose ground state represents the solution to our problem.

Additionally, we require the Hamiltonians to be local2.

This, in particular, makes sure that the Hamiltonians have a short classical descrip-
tion (simply by listing the matrix entries of each local term).

1 Recall that this refers to the eigenvector with smallest eigenvalue of a Hamiltonian.
2 We require them to only involve interactions between a constant number of particles (this can
be seen as the equivalent of allowing gates operating on a constant number of qubits in the gate
model)

https://www.goodreads.com/quotes/887600-repetition-is-the-mother-of-learning-the-father-of-action
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The running time of the adiabatic computation is determined by the minimal spectral
gap3 of all the path connected Hamiltonians along the curve:

s : [0,1]→MH

Hinit 7→ Hfinal

Below we see a schematic description of the space of Hamiltonians. Note that within
each disconnected component we only consider Hamiltonians related by homotopy
equivalent paths.

MH

MH1

MH2

MH3
Hinit Hfinal

Concretely for any s∈ [0,1] we have and infinite family of path parametrized Hamil-
tonians:

H(s) = (1− s)Hinit + sHfinal (7.1)

and of course we are interested in reachign s = 1 to obtain Hfinal.

If this is done “slowly enough” we say we perform adiabatic computation and it
is polynomial time if the corresponding minimal spectral gap is at least inverse
polynomial.

Let us provide further motivation from a physics point of view:

• Recall that H corresponds to the energy of the quantum system.

3 The difference between the ground state eigenenergy and the first excited state eigenenergy.
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• To be physically realistic and implementable it must be local.

• Ground state of H is the state of lowest energy.

• We can set up a quantum system in the ground state of Hinit (which is supposed
to be easy to generate) and apply the Hamiltonian Hinit to the system. We then
slowly modify the Hamiltonian along the path from Hinit towards Hfinal. .

From the adiabatic theorem it follows that if this transformation is performed
slowly enough (determined by the minimal spectral gap), the final state of the sys-
tem will be in the ground state of Hfinal , as required.

What about Computational Power [63]? What is the computational power of this
model? In order to refer to the adiabatic model as a computational model that com-
putes classical functions (rather than quantum states), we consider the result of the
adiabatic computation to be the outcome of a measurement of one or more of the
qubits, performed on the final ground state. AQC is performed on qubits similar to
the ones of the gate-based computers.

It is known from the very early 2000’s that adiabatic computation can be efficiently
simulated by standard quantum computers [64, 65]. It follows that, its computational
power it cannot be greater than that of standard (gate-based) quantum computers.

Several positive results are known, regarding the paower of AQC. For example
Grover search can be realized as adiabatic quantum computation [64, 66]

Moreover, AQC can “tunnel” through wide energy barriers and thus outperform
simulated annealing [67].

Global min
Local min

However, whether adiabatic computation can achieve the full power of quantum
computation was not known. Even whether adiabatic computation can simulate gen-
eral classical computations efficiently was unknown prior to [61].

The interest for optimization problems: What was known is the potential of AQC
on a restricted class of adiabatic algorithms that can be referred to as adiabatic opti-
mization algorithms.

In these algorithms, Hfinal is chosen to be a diagonal matrix, corresponding to a
combinatorial optimization problem. Being diagonal implies that the ground state
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of Hfinal (the output of the computation) is a classical state, (a state in the compu-
tational basis). Nevertheless, we want to show something more powerful. We only
will assume that the Hamiltonians involved are local.

For that let us discuss n-qubit systems: An n-qubit is described by a state in Hilbert
space of dimension 2n, the tensor product of 2-dimensional Hilbert spaces H = C,
that is:

|ψ〉 ∈ C⊗n. (7.2)

In terms of the individual qubits:

|ψ〉= |i1〉⊗ . . . |in〉= |i1 . . . in〉, (7.3)

where i j ∈ {0,1}.
Evolution. In the standard model of quantum computation, the state of n qubits
evolves in discrete time steps by unitary operations. Of course, the underlying phys-
ical description of this evolution is continuous, and is governed by Schrödinger’s
equation:

i
d
dt
|ψ(t)〉= H|ψ(t)〉 (7.4)

where H is the system’s Hamiltonian and |ψ(t)〉 is the state of the n qubits at time t.

We have already seen that the solution of Schrödinger equation is given as:

|ψ(t)〉= exp(−iHt)|ψ(0)〉. (7.5)

Given that the state of the system at time t = 0 is equal to |ψ(0)〉, one can in principle
solve Schrödinger’s equation with this initial condition, to get |ψ(T )〉, the state of
the system at a later (terminal) time t = T .

Spectral Gap. We define ∆(H), the spectral gap of a Hamiltonian H, to be the
difference between the lowest eigenvalue of H and its second lowest eigenvalue.
Note that ∆(H) = 0 if the lowest eigenvalue is degenerate.

What is Locality? One cannot efficiently apply any arbitrary Hamiltonian on a n-
qubit system (just describing it requires roughly 22n space). For this we restrict to
k-local Hamiltonians. We say that a Hamiltonian H is k-local if H can be written as
∑A HA where A runs over all subsets of k particles. Notice that for any constant k, a
k-local Hamiltonian on n-qubits can be described by 22knk = poly(n) numbers. We
say that H is local if H is k-local for some constant k. (Commonly k = 2 in NISQ
devices.)
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7.1.3 Adiabatic Theorem

The cornerstone of the adiabatic model of computation is the celebrated adiabatic
theorem [68]. Consider a time-dependent Hamiltonian H(s), and a system initialized
at time t = 0 in the ground state of H(0) (here and in the following we assume that
for all H(s) has a unique ground state for all s).

We let the system evolve according to the Hamiltonian H(s), for s := t/T , from time
t = 0 to the terminal time t = T . As said before, The adiabatic theorem affirms that
for large enough T the final state of the system is very close to the ground state of
H(1).

How large T should be for this to happen is determined by the spectral gap of the
Hamiltonians ∆(H(s)) [61].

In the figure below we see the change of the few lowest eigenenergies for a certain
evolution. It is crucial that the spectral gap does not change sign: the lowest blue
eigenenergy nowhere crosses with the orange one.

Time

En
er

gy

Energy spectrum variation for a Hamiltonian H
Ground Energy Level
1st Energy Level
2nd Energy Level
3rd Energy Level
4th Energy Level

Physical intuition: Consider a spin particle (e.g. an electron) in a magnetic field B
which rotates from the x direction to the z direction in a total time T . The dynamics
of the particle are described by the Hamiltonian:

H(t) =−cos
(

πt
2T

)
σx− sin

(
πt
2T

)
σz. (7.6)

Suppose that initially, the particle points in the x direction: |ψ(0)〉= (|0〉+ |1〉)/
√

2,
the ground state of H(0). As the magnetic field is slowly rotated toward the z direc-



7.1 Adiabatic Quantum Computation is Universal 125

tion, see Fig. below, the particle’s spin begins to precess about the new direction of
the field, moving it toward the z axis.
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Note that this produces a small wiggling component out of the xz-plane. Adiabatic-
ity is seen by allowing T to be made larger and larger, so that the rotation of the field
direction happens more and more slowly (as compared to the speed of precession).
Then, the state will precess in a tighter and tighter orbit about the field direction
(aligning completely with the geodesic). In the limit of arbitrarily slow rotation of
the field, the state simply tracks the field, remaining in the instantaneous ground
state of H(t).

Full statement (at last): More generally, let H(s) be a Hermitian operator that varies
smoothly as a function of s := t/T . Then for T arbitrarily large, H(t) varies arbitrar-
ily slowly as a function of t. An initial quantum state |ψ(0)〉 evolves according to
the Schrödinger equation (7.4), or, equivalently:
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i
d
ds
|ψ(s)〉= T H|ψ(s)〉. (7.7)

Now suppose that |ψ(0)〉 is an eigenstate of H(0), which we assume for simplicity
is the ground state, and is nondegenerate. Furthermore, suppose that the ground state
of H(s) is nondegenerate for all s.

Theorem 7.4 (Adiabatic Theorem). Given the above, in the limit T → ∞, |ψ(T )〉
will be the ground state of H(1).

Remark: The proof of the adiabatic theorem is a very interesting exercise.

7.2 Sketch Proofs for the Universality of AQC

Let us repeat ousrselves (again) but a bit more formally:

Theorem 7.5 (Adiabatic Theorem (Proper)). Let Hinit and Hfinal be two Hamil-
tonians acting on a quantum system and consider the time-dependent Hamiltonian
H(s) := (1− s) Hinit +sHfinal. . Assume that for all s,H(s) has a unique ground state.
Then for any fixed δ > 0, if

T ≥Ω

( ∥∥Hfinal −Hinit
∥∥1+δ

εδ mins∈[0,1]
{

∆ 2+δ (H(s))
}) (7.8)

then the final state of an adiabatic evolution according to H for time T (with an
appropriate setting of global phase) is ε-close in `2-norm to the ground state of
Hfinal .

The matrix norm is the spectral norm ‖H‖ := maxw ‖Hw‖/‖w‖.
The AQC model (again): Let us now describe the model of adiabatic computation.
The adiabatic circuit is determined by Hinit and Hfinal and the output of the compu-
tation is (close to) the ground state of Hfinal .

Definition 7.1. A k-local AQC (n,d,Hinit ,Hfinal ,ε) is specified by two k-local
Hamiltonians, Hinit and Hfinal acting on n d-dimensional particles, such that both
Hamiltonians have unique ground states. The ground state of Hinit is a tensor prod-
uct state. The output is a state that is ε-close in `2-norm to the ground state of
Hfinal. Let T be the smallest time such that the final state of an adiabatic evolution
according to H(s) := (1− s)Hinit + sHfinal for time T is ε-close in `2-norm to the
ground state of Hfinal . The running time of the adiabatic algorithm is defined to be
T ·maxs ‖H(s)‖.
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7.2.1 Proof Sketch of the Equivalence 7.1

Gates to AQC

Theorem 7.1 can be proved by simulating a quantum circuit with L (two-qubit) gates
on n qubits by an adiabatic computation on n+L qubits.

Note that the opposite direction can also be shown [62].

We will show this by considering 5-qubit interactions. However, it is possible to
reduce it to three. (Note that the practical implementation of 5-qubit interactions is
still not easy.)

A Theorem:

Theorem 7.6. Given a quantum circuit on n qubits with L two-qubit gates im-
plementing a unitary U and ε > 0 , there exists a 5-local adiabatic computation
(n+ 2,2,Hinit,Hfinal,ε) whose running time is poly(L,1/ε) and whose output is ε-
close to U |0〉n = U |0〉⊗n. Additionally, Hinit and Hfinal can be computed by a poly-
nomial time Turing machine.

The Hamiltonian: The Hamiltonian we need is defined in [69]. We begin by defin-
ing a state

|γ`〉 := |α(`)〉⊗ |1`0L−`〉c. (7.9)

Here |α(`)〉 denotes the state of the circuit after the application of the `-th gate (and
the superscript c denotes the clock qubits required for the proof of the theorem). The
notation |1`0L−`〉 means that there are ` qubits in the state |1〉 followed by (L− `)

qubits in the state |0〉.
We now define the Hamiltonian Hinit with ground state |γ0〉= |0n〉⊗

∣∣0L
〉c,

and the local Hamiltonian Hfinal with ground state |η〉= 1√
L+1 ∑

L
`=0 |γ`〉.

We know what our initial and final eigenvectors need be. It turns out that the way to
do it is:

Hinit := Hclock init +Hinput +Hclock

Hfinal :=
1
2

L

∑
`=1

H`+Hinput +Hclock
(7.10)

Note that the terms in the two Hamiltonians are defined such that the only state
whose energy is 0 is the desired ground state.
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This is done by assigning an energy penalty to any state that does not satisfy the
required properties of the ground state. The different terms, which correspond to
different properties of the ground states, are described in the following paragraphs.

Adiabatic Evolution: The adiabatic evolution then follows the time-dependent
Hamiltonian

H(s) = (1− s)Hinit + sHfinal (7.11)

Notice that as s goes from 0 to 1,Hclock init is slowly replaced by 1
2 ∑

L
`=1 H` while

Hinput and Hclock are held constant.

The Hamiltonians Explained: Hclock First, Hclock checks that the clock’s state is
of the form |1`0L−`〉c for some 0≤ `≤ L (thus “clock”).

To do this we give a penalty to any state (of the clock register) that contain a se-
quence 01, that is:

Hclock :=
L−1

∑
`=1
|01〉〈01|c`,`+1. (7.12)

Below, we present a schematic of the Hilbert space of our system. Note that there is
a typo in the figure, it should read C2n and C2L.

Cn CL⊗

The subscript indicates which clock qubits the projection operates on. The term
|01〉〈01|c`,`+1 has an energy penalty (eigenvalue 1) when the clock qubits at positions
` and `+1 are in the state |01〉, and no energy penalty (eigenvalue 0) otherwise. By
summing these terms over all pairs of adjacent clock qubits (from ` = 1 to L− 1),
the clock Hamiltonian enforces a penalty whenever there is an out-of-order pair of
clock qubits.

This means that the lowest energy states of the clock Hamiltonian correspond to
the correct progression of the computation, where the clock qubits represent a valid
encoding of the computation stages. In this way, Hclock helps control the adiabatic
evolution of the quantum system and ensures that it follows the desired gate se-
quence.
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The Hamiltonians Explained: Hinit Hinput checks that if the clock is at |0〉⊗L (we
ommited the c-clock index here, clearly referring to Hclock) then the computation
qubits must be in the state |0〉⊗n. This is given by:

Hinit :=
n

∑
i=1
|1〉〈1|⊗ |0〉〈0|. (7.13)

Let us discuss Hclock init. The goal of Hclock init is to check that the clock’s state is
|0〉⊗L:

Hclock init := |1〉〈1|. (7.14)

Finally, we have the term

1
2

L

∑
`=1

H` (7.15)

which is the term representing the gate-based Hamiltonian and it is only apparent in
the end of the AQC (in principle it is unknown).

Summary: Hclock init and Hclock: These terms are related to the clock qubits. Hclock init
sets the initial state of the clock qubits and ensures that the computation starts with
all clock qubits in the state |1〉c. Hclock penalizes out-of-order transitions and en-
forces a step-by-step progression through the circuit.

Hinput: This term sets the initial state of the quantum circuit. It essentially encodes
the input data of the problem you want to solve.
1
2 ∑

L
`=1 H`: This term is present only in the final Hamiltonian, Hfinal. It represents the

quantum gates in the circuit. The factor 1
2 ensures that the spectrum of the Ham-

iltonian is non-negative, which is a requirement for the adiabatic theorem to hold.

The final Hamiltonian: We now proceed to the first term in Hfinal . The Hamilton-
ian H` checks that the propagation from step `− 1 to ` is correct. It checks that it
corresponds to the application of the gate U`.

For 1 < ` < L, it is defined as:

H` :=111⊗|100〉〈100|c`−1,`,`+1−U`⊗|110〉〈100|c`−1,`,`+1

−U†
` |100〉〈110|c`−1,`,`+1 +111⊗|110〉〈110|c`−1,`,`+1.

(7.16)

Intuitively, the three-qubit terms above move the state of the clock one step forward,
one step backward, or leave it unchanged (this reminds us a quantum walk). The
accompanying matrices U`,U

†
` describe the associated time evolution. We have two
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boundary cases ` = 1,L (initial and terminal time) for which we omit one clock
qubit from these terms and define

H1 :=111⊗|00〉〈00|1,2−U1⊗|10〉〈00|1,2−U†
1 ⊗|00〉〈10|1,2 +111⊗|10〉〈10|1,2

(7.17)

HL :== 111⊗|10〉〈10|L−1,L−UL⊗|11〉〈10|L−1,L−U†
L ⊗|10〉〈11|L−1,L +111⊗|11〉〈11|.

(7.18)

Spectral gap inverse in L

We have now seen what are the Hamiltonians needed to transform a gate-based
problem to an AQC.

We need to understand the spectral gap now.

Recall the state given by Eq. (7.9):

|γ`〉 := |α(`)〉⊗ |1`0L−`〉c.

Spectral gap inverse in L: s > 1/3

Let S0 a subspace of Cn⊗CL spanned by

{|γ0〉, . . . , |γ1〉} (7.19)

which are equivariant states (w.r.t. the action of Hamiltonians on S). In other words,
we have some form of symmetry.

Theorem 7.7. The spectral gap of the restriction of H(s) to S0 satisfies:

∆(HS0(s)) = Ω(L−2), (7.20)

for all s ∈ [0,1].

Interestingly, the proof uses a continuous-time quantum walk. The proof is technical
(not very hard) but we omit it here. The important thing is to understand the need
for the Hamiltonians Hinit and Hfinal in Eq. (7.10).
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With the proof on the (inverse in L) polynomial runtime, we claim the following.

The Equivalence Statement: Given a quantum circuit on n qubits with L gates, the
quantum adiabatic algorithm with Hinit and Hfinal as defined in the previous slides,
with T = O(ε−δ L4+2δ ), for fixed δ > 0, outputs a final state |η〉 that is within `2
distance ε of the history state of the circuit. The running time of the AQC algorithm
is O(T L).

Recall, that already from 2000 it was known that gate-based algorithms can be en-
coded as AQC. With the proof of Theorem 7.1, the universality of AQC is also
proven. A detailed introduction with many complexity theoretical aspects is [70].
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7.3 Practicalities of Adiabatic Quantum Computing

We have discussed that the solution of computational problem can be encoded into
the ground state of a time-dependent quantum Hamiltonian H(s) which evolves fol-
lowing the paradigm of AQC.

Quantum annealing (QA) is a framework that incorporates algorithms [71, 72,
73] and hardware designed to solve computational problems by quantum evolution
towards the ground states of final Hamiltonians that encode classical (optimization)
problems.

Note that Quantum Annealers are real:

This is the D-Wave 2000Q system. This is a system that performs quantum an-
nealing using superconducting qubits. The qubits live in the very end of a dilution
refridgerator cooled at approximately -273.5 degrees Celcius.

7.3.1 Stoquasticity

QA therefore, moves between the idealized assumptions of universal AQC and the
unavoidable experimental compromises.
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Perhaps the most significant of these compromises has been the design of stoquastic
quantum annealers.

Definition 7.2 (Stoquastic Hamiltonian). A Hamiltonian H is called stoquastic,
with respect to a basis B, if and only if H has real nonpositive off-diagonal matrix
elements in the basis B.

For example, a Hamiltonian is stoquastic if and only

〈i|H| j〉 ≤ 0, ∀i, j ∈ {0,1}n, i 6= j. (7.21)

This means the ground state of H can be expressed as a classical probability distri-
bution.

AQC with Stoquastic Hamiltonians:

Definition 7.3. Stoquastic adiabatic quantum computation (StoqAQC) is the special
case of AQC restricted to k-local (k fixed) stoquastic Hamiltonians.

Essentially, Quantum Annealing (QA) refers to StoqAQC when considered in (real-
istic) open quantum systems. For what follows, these two terms are identical.

No Universality: The computational power of stoquastic Hamiltonians has been
carefully studied, and is suspected to be limited in the ground-state AQC setting
[70].

In other words, it is quite unlikely that ground-state StoqAQC is universal [74].

7.3.2 Quantum Annealing is very similar to AQC

QA follows the same idea of AQC. We still have the same tools:

• An initial, easy-to-prepare state and a Hamiltonian Hinit,

• A problem of interest whose solution is encoded into the ground state of a Ham-
iltonian Hfinal,

• Adiabatic evolution using Eq. (7.1):

H(s) = (1− s)Hinit + sHfinal (7.22)

Exponential Speedups with QA It turns out that QA can be used to obtain expo-
nential speedups!
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Somma, Nagaj, and Kieferovaá [75] showed that, similarly to the case of quantum
walks, utilizing QA on the glued-trees problem one obtains an exponential speedup.

Glued-Trees Problem

In this problem we are given an oracle OA that concists of the adjacency matrix A
of two binary trees that are randomly glued. There are O(2n) vertices named with
randomly chosen 2n-strings.

The oracle OA outputs the names of the adjacent vertices on any given input vertex
name.

There are two special vertices:

• ENTRANCE

• EXIT

which are the roots of the binary trees. They can be identified because they are the
only vertices of degree two in the graph.

Glued-Trees Problem: Given an oracle OA for the graph and the name x of the
ENTRANCE, find the name y of the EXIT.

An efficient method based on quantum walks can solve this problem with constant
probability, while no classical algorithm that uses less than a subexponential (in n)
number of oracles exists.
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7.3.3 Optimization

An optimization problem is a problem to minimize or maximize a real single-
valued function of multivariables called the cost function.

If the problem is to maximize the cost function f , it suffices to minimize − f .

Additional constraints can be imposed on the objective function:

min
x,y

f (x,y) (7.23)

s.t. g(x)≥ 0 (7.24)

x ∈ Rm, y ∈ Zn (7.25)

(Just a reminder) Optimization problems are classified roughly into two types, easy
and hard ones. Loosely speaking, easy problems are those for which we have algo-
rithms to solve in steps(=time) polynomial in the system size (polynomial complex-
ity). In contrast, for hard problems, all known algorithms take exponentially many
steps to reach the exact solution (exponential complexity). A potential solution is
offered by Quantum Annealing.

Suppose we can solve such problems with QA. Does it converge?

Consider the k-th eigenstate state of the Hamiltonian:

H(s)|k〉= λk(s)|k〉 (7.26)

with |0(0)〉 being the ground state of Hinit and generically |0(s)〉 the ground state of
H(s).

If |0(s)〉 is non-degenerate and if initial ground state is |0(0)〉 then the final state
vector, at large T , take the form:

|ψ(s)〉= ∑
κ

cκ(s)e−iT φκ (s)|κ(s)〉 (7.27)

with
φκ(s) =

∫ s

0
λκ(s′)ds′.

Maybe some homework on the topic? It turns out:

c0(s)≈ 1+O(T−2), (7.28)

cκ 6=0(s)≈
i
T

[
Aκ(0)− eiT [φκ (s)−φ0(s)]Aκ(s)

]
+O(T−2) (7.29)

The adiabaticity condition becomes:
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1
∆κ(t)2

∣∣∣∣〈κ(t)
∣∣∣∣dH(t)

dt

∣∣∣∣0(t)〉∣∣∣∣= δ � 1. (7.30)

Convergence via Ising model: Suppose that the optimization (7.23) problem we
wish to solve can be represented as the ground-state search of an Ising model of
general form

HIsing ≡−
N

∑
i=1

Jiσ
z
i −

N

∑
i, j=1

Ji jσ
z
i σ

z
j +O(σ3). (7.31)

Here, σα
i (α = x,y,z) are the Pauli matrices.

j + 1jj − 1

Jj−1,j Jj,j+1

Recall, the eigenvalue of σ
z
i is +1 or−1, which corresponds the classical Ising spin.

Most combinatorial optimization problems can be written in this form by, for ex-
ample, mapping binary variables {0,1} to spin variables {±1}. Another important
assumption is that the Hamiltonian (7.31) is proportional to the number of spins N
for large N.

Transverse Field To realize QA, a (kinetic) energy term is introduced typically by
the so-called time-dependent transverse field:

HTF(t)≡−Γ (t)
N

∑
i=1

σ
x
i (7.32)

which results in a variety of possible quantum mechanical effects to the chain:spin
flips, quantum fluctuations or quantum tunneling, between the two states σ

z
i = 1 and

σ
z
i =−1.

Essentially this allows a quantum search of the phase space of the system.

Initially the strength of the transverse field Γ (t) is chosen to be very large, and the
total Hamiltonian

H(t) = HIsing +HTF(t) (7.33)

is dominated by the second kinetic term. (If you know about Simulated Annealing
(SA), this is the quantum analogue of the high-temperature limit.)

The evolution of the TF Ising Model: The coefficient Γ (t) is then gradually and
monotonically decreased toward 0, leaving eventually only the potential term HIsing .
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Accordingly the state vector |ψ(t)〉, which follows the real-time Schrödinger equa-
tion, is expected to evolve from the trivial initial ground state of the transverse-field
(7.33) to the non-trivial ground state of (7.31), which is the solution of the optimiza-
tion problem.

An important issue is how slowly we should decrease Γ (t) to keep the state vector
arbitrarily close to the instantaneous ground state of the total Hamiltonian.

The following Theorem provides a solution to this problem as a sufficient condition.

Theorem 7.8. The adiabaticity (7.30) for the transverse-field Ising model (7.31)
yields the time dependence of Γ (t) as

Γ (t) = a(δ t + c)−1/(2N−1) (7.34)

for t > t0 (for given t0 > 0) as a sufficient condition of convergence of QA. Here a,c
are small constants O(1) and δ is a small parameter that controls adiabaticity.

Point is: The power decay above satisfies the adiabaticity condition (7.30) which
guarantees convergence to the ground state of HIsing as t→ ∞.

QA in Practice: Optimization

In practical situations QA is used as heuristic optimization method.

Due to hardware constructions, at the moment only Quadratic Binary Optimization
(QUBO) problems can be implemented.

A QUBO problem reads

min
x∈{0,1}N

Q(x) (7.35)

where the objective function Q is defined as:

Q(x) :=
N

∑
i, j=1

Qi jxix j +
N

∑
i=1

cixi. (7.36)

The problem to be optimized is then fully specified by Qi j and ci.

A broad class of paradigmatic optimization problems from Vertex Cover to the Trav-
eling Salesperson problem have been mapped to QUBO form.
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What happens if k ≥ 3? (That is, if we have problem with interactions of degree 3
or higher.) If the problem of interest has a cost function of high-order interactions,
than the quadratic, one has to encode this information in ancilla qubits.

For example, assume a problem encoding involves the 3-local expression

xyz, x,y,z ∈ R.

This has to be mapped to the expression

xw,

where w := yz and impose the additional constraint

3w+ yz−2yw−2zw.

The solution is (zero penalization) w = yz.

Example: The Knapsack Problem:

We are given a set of weights w ∈ Zn
≥0 and their corresponding values v ∈ Zn

≥0, and
the objective is to maximize the total value of the items that can be packed into a
knapsack subject to a given weight limit W .

max
n

∑
i=1

vixi,

s.t.
n

∑
i=1

wixi ≤W,

(7.37)

where W is the maximum weight limit (threshold) of the knapsack and xi is the
binary variable representing whether the i-th item is to be placed in the knapsack.

MILP to QUBO: In converting MILPs to QUBOs we introduce a slack variable S
for each linear inequality and transform it into an equivalent linear equality. We add
to the objective a penalty term:

λ0

(
n

∑
i=1

wixi−W +S

)2

(7.38)

where the purpose of the auxiliary slack variable S is to reduce this term to 0 once
the constraint has been satisfied, 0≤ S≤maxx ∑

n
i wixi−W .

Note that in practice, S is decomposed into binary representation using variables
sk ∈ {0,1} as follows:

S =
Ns

∑
k=1

2k−1sk. (7.39)
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The parameter Ns corresponds to the number of binary variables required to repre-
sent the maximum value that can be assigned to the slack variable, and in the case
of Knapsack, Ns = dlog2(W )e, where dxe is the ceiling function. This is often called
“log-encoding”.

The QUBO formulation: the Knapsack problem can be formulated then as:

max
n

∑
i

vixi−λ0

(
n

∑
i

wixi−W +
N

∑
k=1

2k−1sk

)2

, (7.40)

Maping to the Ising model:

min −
(

n

∑
i=1

n

∑
j=1

Ji jsis j +
n

∑
i=1

hisi + c

)
(7.41)

where

Ji j = λ02k−1wiδi j, (7.42)

hi =
vi

2
−λ0wiW, (7.43)

c =
n

∑
i=1

vi

2
+λ0

(
n

∑
i=1

w2
i

4
+

N

∑
k=1

22k−2

)
. (7.44)

Does QA Fail?

Can QA Succeed?
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7.4 Variational Quantum Algorithms

Two fundamental references on VQAs are the original paper on the Variational
Quantum Eigensolver [76] and the subsequent paper on the Quantum Approximate
Optimization Algorithm [77]. A beautiful survey is given by [78].

Parametrized Quantum Circuits (PQCs): Variational Quantum Algorithms (VQAs)
provide a general framework that can be used to solve a variety of problems.

For that we first need the idea of a parametrized quantum circuit.

Definition 7.4. A parametrized quantum circuit (PQC) is a continuous function U :
RL→U(N) mapping any real parameter vector ϑ ∈ RL to a unitary U(ϑ).

In practice such a quantum circuit is a sequence of universal quantum gates’ com-
positions and/or tensor products.

Consider, for a moment, the following optimization problem (and keep it in mind):

min
x∈{0,1}n

f (x). (7.45)

A VQA is, essentially, a (quantum) continuous relaxation of this problem.

Below we see a PQC example:

Here U(θ) is given as:
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U(θ) = RY (θ1)⊗RY (θ2)⊗RY (θ3)

=

(
cos θ1

2 −sin θ1
2

sin θ1
2 cos θ1

2

)
⊗
(

cos θ2
2 −sin θ2

2
sin θ2

2 cos θ2
2

)
⊗
(

cos θ3
2 −sin θ3

2
sin θ3

2 cos θ3
2

)

=



c1c2c3 −c1c2s3 −c1s2c3 c1s2s3 −s1c2c3 s1c2s3 s1s2c3 −s1s2s3
c1c2s3 c1c2c3 −c1s2s3 −c1s2c3 −s1c2s3 −s1c2c3 s1s2s3 s1s2c3
c1s2c3 −c1s2s3 c1c2c3 −c1c2s3 −s1s2c3 s1s2s3 −s1c2c3 s1c2s3
c1s2s3 c1s2c3 c1c2s3 c1c2c3 −s1s2s3 −s1s2c3 −s1c2s3 −s1c2c3
s1c2c3 −s1c2s3 −s1s2c3 s1s2s3 c1c2c3 −c1c2s3 −c1s2c3 c1s2s3
s1c2s3 s1c2c3 −s1s2s3 −s1s2c3 c1c2s3 c1c2c3 −c1s2s3 −c1s2c3
s1s2c3 −s1s2s3 s1c2c3 −s1c2s3 c1s2c3 −c1s2s3 c1c2c3 −c1c2s3
s1s2s3 s1s2c3 s1c2s3 s1c2c3 c1s2s3 c1s2c3 c1c2s3 c1c2c3



for θ = (θ1,θ2,θ3) ∈ R3, where ci = cos θi
2 and si = sin θi

2 for i = 1,2,3.

Generically: The quantum part of a VQA has the following form:

. . . |Ψ(ϑ)⟩|Ψ0⟩ U1(ϑ) U2(ϑ) UL(ϑ)

Layer 1 Layer 2 Layer L
. . .

More precisely, we can explicitly include the observable we want to measure:

. . . |Ψ(ϑ)⟩|Ψ0⟩ U1(ϑ) U2(ϑ) UL(ϑ) B

Layer 1 Layer 2 Layer L Observable
. . .

VQAs: The Quantum Part Given a PQC with ϑ ∈RL we can define a cost function

B(ϑ) = f
(
{|Ψ〉0},{Bk},U(ϑ)

)
. (7.46)

Essentially, this is a cost function that involves (some) obsevable quantity - Hermi-
tian operators {Ok} given input states {|Ψ〉0} and the PQC U(ϑ). Here k ∈ I, where
I is some indexed set.
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Let ρin := |Ψ〉0〈Ψ |0 (assume norm 1). A common choice is (using Born’s rule) to
define the “observable” function

B(ϑ) = ∑
k∈I

Tr
(

BkU(ϑ)ρinU†(ϑ)
)
, (7.47)

or more generically

B(ϑ) = ∑
k∈I

fk

(
Tr
(

BkU(ϑ)ρinU†(ϑ)
))

, (7.48)

for some functions fk.

VQAs: Measurements: The observable function is one that we end up measuring
(several times) in order to construct an empirical estimate of its expectation value
〈B〉

ϑ
of the observable:

〈B〉
ϑ

:= 〈Ψ(ϑ)|B|Ψ(ϑ)〉 , (7.49)

where |Ψ(ϑ)〉 :=U(ϑ)|Ψ0〉. The empirical estimate

E[Bϑ ]. (7.50)

This is constructed by measuring the same circuit repeatedly. Out of this we con-
struct a cost function we would like to minimize:

ϑ
∗ := argmin

ϑ
‖E[Bϑ ]−〈B〉ϑ ‖

p
` (7.51)

|Ψ(ϑ)⟩|Ψ0⟩ U(ϑ)

argminϑ ∥E[Bϑ]− ⟨B⟩ϑ ∥
p
ℓ

E[Bϑ]updated ϑ∗

Quantum

w.r.t. B

Classical
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VQA: The Classical Part: During the optimization, one uses a finite statistic esti-
mator of the cost or its gradients.

Essentially we are “training” the VQA by learning the parameters ϑ .

It is known that for many optimization tasks using information in the cost function
gradient can help in speeding up and guaranteeing the convergence of the optimizer.
One of the main advantages of many VQAs is that often one can analytically evalu-
ate the cost function gradient.

Parameter Shift Rule: Consider a cost function as in Eq. (7.48):

B(ϑ) = Tr
(

BU(ϑ)ρinU†(ϑ)
)
, (7.52)

( fk = Id, k = 1). Furthermore, let the unitaries read:

U(ϑ j) = eiϑ jσ
a
j . (7.53)

Then:

∂B(ϑ)

∂ϑ j
∼ 1

sinα
(Tr(BU†(ϑ+)ρU(ϑ+))−Tr(BU†(ϑ−)ρU(ϑ−)) (7.54)

where ϑ± =ϑ±αe. Here e j is a vector having 1 as its j-th element and 0 otherwise.
Thus, one can evaluate the gradient by shifting the l-th parameter by some amount
α .

Note that the accuracy of the evaluation depends on the coefficient 1/(2sinα) since
each of the ±α terms are evaluated by sampling B. This accuracy is maximized
at α = π/4. So, the parameter-shift rule looks like some form of finite difference.
However, it evaluates the analytic gradient of the parameter by virtue of the coeffi-
cient 1/(2sinα). Note that several variations of the parameter shift rule exist [79,
Fig. 1].

It’s hard to train VQAs
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Undecidability conjecture

I conjecture that actually the situation is worse. VQAs are undecidable.
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UNDECIDABLE

DECIDABLE

P-SPACE

NP BQPP

Training VQAs: The success of a VQA depends on the efficiency and reliability of
the optimization method used.

As we saw the training can be NP-Hard. Training a VQA one can encounter new
challenges:

• huge number of local minima

• barren plateaus

• stochastic environment due to the finite budget for measurements

• hardware noise affecting E[Bϑ ]

• restricted qubit connectivity

• statepreparation-and-measurement (SPAM) errors

• ...

This has led to the development of many quantum hardware-aware optimizers, with
the optimal choice still being an active topic of debate. A common choice is the
family of SGD (e.g. SPSA).
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7.5 QAOA

Quantum Approximation Optimization Algorithm (QAOA) can be implemented in
NISQ devices.

QAOA is an approximation algorithm: it does not deliver the “best” result, but only
the “good enough” result, which is characterized by a lower bound of the approxi-
mation ratio.

Interestingly QAOA can be applied to the MaxCut problem via a traverse Ising filed
model.

Trotterization: Recall that in the case of AQC we have:

H(s) = (1− s)Hinit + sHfinal. (7.55)

Time evolution under this time-dependent Hamiltonian involves is hard:

U(T )∼ exp
(
−i
∫ t

0
H(w)dw

)
. (7.56)

We can mitigate this with the Trotterization technique: discretize U(T ) ≡U(T,0)
into intervals ∆ t (in total T = L∆ t) small enough that the Hamiltonian is approxi-
mately constant over each interval. Then:

U(T,0) =U(T,T −∆ t)U(T −∆ t,T −2∆ t) . . .U(∆ t,0) (7.57)

=
L−1

∏
j=0

U((L− j)∆T,(L− j−1)∆ t) (7.58)

=L→∞

L−1

∏
j=0

e−iH[(L− j)∆ t]∆ t (7.59)

Using the identity

ei(A+B)x = ei(A)xei(B)x +O(x2) (7.60)

we deduce that

U(T,0)≈
p

∏
j=1

e{−i(1−s( j∆ t))Hinit∆ t}e{−is( j∆ t)Hfinal∆ t}. (7.61)

Thus we can approximate AQC by repeatedly letting the system evolve under Hfinal
for s( j∆ t) and then under Hinit for (1− s( j∆ t)). In this way we can construct
arbitrary unitaries.
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QAOA: Combinatorial Optimization: Recall that a combinatorial optimization
problem amounts to finding the n-bit string z that (approximately) satisfies the max-
imal amount of m constraints Cα , each of which takes the form

Cα(z) =
{

1 if z satisfies the constraint
0 otherwise.

(7.62)

We wish to find a string z that approximately maximizes the objective function

C(z) =
m

∑
α=1

Cα(z) (7.63)

Quantum Analogue: For the quantum analogue of the previous problem we de-
fine a diagonal operator: HC acting on the 2n-dimensional Hilbert space where each
bitstring z is a basis vector |z〉.
HC acts on |z〉 as follows:

HC|z〉=C(z)|z〉 (7.64)

and since C(z) is scalar valued, we can see that each |z〉 is an eigenstate of HC.

Let us view Ĉ as a Hamiltonian and the highest energy eigenstate |z〉 is the solution
to the combinatorial optimization problem, as it gives the highest value of C(z).

Max-Cut: In the case of Max-Cut we have:

C(z) =
1
2 ∑
(i, j)∈E(G)

ziz j (7.65)

QAOA at last: QAOA leverages approximate adiabatic quantum computation via
Trotterization. We use two Hamiltonians: The first one is the problem Hamiltonian
HC which just by looking at Eq. (7.65) you should suspect its the Ising Hamiltonian.

The other one is called mixer Hamiltonian which is
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HB =
n

∑
j=1

σ
x
j (7.66)

The corresponding unitaries we need are:

UC = e−iγHC (7.67)

UB = e−iβHB (7.68)

QAOA: Optimization: The goal is to maximize the expression

ML(γ,β ) := 〈γ,β |ML|γ,β 〉 (7.69)

γ ∈ [0,2π]L, β ∈ [0,π]L.

and

|γ,β 〉=UC(γL)UB(βL) . . .UC(γ1)UB(β1)|+〉n. (7.70)

Compare with Eq. (7.57). Its basically the same.

. . . |γ, β⟩|+⟩n UC(γL) UB(βL) U1(γ) U1(β) ML

Layer L Layer 1 Observable
. . .

QAOA: Intuition: We begin in an eigenstate of HB and then repeatedly let the
system evolve under HC and HB, alternating between the two.

The approximation increase as L→ ∞.

We are trying to find

(γ∗,β ∗) = argmax
γ,β
‖E[ML]−〈ML〉‖p

` (7.71)

In the end we measure |γ,β 〉 in the computational basis to get some bitstring z, and
evaluate C(z).

We repeat the above steps O(m logm) (m number of constraints) such that we bound
C(z) with high probability.

Key result: QAOA with L = 1 achieves an approximation ratio of rc =C(z)/Cmax =

0.6924 when performing Max-Cut on 3-regular graphs.
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Chapter 9

Applications in Financial Services

In this chapter, we want to make a few remarks on the practical aspects of use
of what we have seen, esp. in Chapters 7 and 8, in the financial services industry.
Therein, one needs to deal with many more vendors (i.e., salesmen) than universities
(i.e., researchers).

9.1 Practical aspects of quantum annealers

Outside of many reputable vendors of gate-based quantum computers, there are also
numerous vendors of so-called quantum annealers. While there are several quantum
annealers across the world in academic environments, the most well-known vendor
is D-Wave Systems. Other vendors that develop superconducting quantum anneal-
ers are Qilimanjaro and Avaqus. Recall, QA is a type of analog quantum compu-
tation based on the concept of adiabatic quantum computation (AQC). As such, it
is possible to devise systems that perform AQC with stoquastic Hamiltonians but
are not necessarily based on superconducting qubits. Such examples include Pasqal
and QuEra that use arrays of Rydberg atoms which are highly excited atoms with
a large distance between the electron and the nucleus. Finally, several companies
manufacture specialized classical hardware (e.g., based on FPGAs) that simulates
quantum annealing, for example Fujitsu.

What is common among the above is that the most obvious use cases and candidate
problems to be attacked by these machines are hard optimization problems. There-
fore, similar to companies offering classical solvers, such as Gurobi, understanding
of optimization is crucial for a career in this area.

Note that the applications go beyond optimization, e.g. to machine learning, and we
discuss below an example: QBoost.
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https://www.dwavesys.com/
https://www.qilimanjaro.tech/
https://www.avaqus.eu/home
https://www.pasqal.com/
https://www.quera.com/
https://www.fujitsu.com/global/services/business-services/digital-annealer/
https://www.gurobi.com/
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9.1.1 Focus: D-Wave

D-Wave being the first company to file for a patent. D-Wave gained a lot of notice
once multi-qubit quantum tunneling effects were observed experimental and showed
the computational potential it may have.

Currently, the most advanced D-Wave machine is the 5,760-qubit Advantage ma-
chine with which the study [80] was performed.

How is performance measured? It is commong to use a metric known as Time-To-
Solution (TTS) when performing benchmarking studies. There, data collected from
multiple runs of the QA are used to compute the probability of finding a ground state
solution for the given configuration of (adjustable) parameters. This probability is:

pTTS :=
# of ground state solutions

# of total QA runs
. (9.1)

The TTS proper is defined as the expected time to obtain the ground state solution
at least once with success probability α and it is computed as:

TTS = trun
1− logα

1− log pTTS
. (9.2)

Here trun is the annealing time for a single run of the QA and α = 0.99 by default.
Scheduling is a NP-Hard problem and you should expect that TTS scales exponen-
tially with the size of the input N.

In the context of adiabatic quantum optimisation algorithms (Ising model mapping)
as well as the quantum adiabatic theorem, for a problem of size N , quantum opti-
misers (are hoped to) solve NP-Hard combinatorial optimisation problems in time
proportional to exp(βNγ) as N→ ∞, for positive coefficients β (scaling exponent)
and γ .

It should expected that, since scheduling problems are NP-Hard, TTS should scale
exponentially with the problem size N in the asymptotic limit for γ = 1. The value
of the β parameter that turns out to fit the experimental results TTS = T0 expβN,
for some constant T0 > 0, ranges between 1.01 and 1.17 depending on the D-Wave
machine.

9.2 More on QUBO

In this section we aim to discuss a few more QUBO formulations of interesting hard
problems.

https://patents.google.com/patent/WO2005093649A1/en
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9.2.1 Graph Partitioning

Consider an undirected graph G = (V,E). The task is to partition the set of vertices
V into two subsets of equal size N/2, such that the number of edges connecting the
two subsets is minimized.
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8

1

2 5

63

4 7
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We can directly assign spin variables represented by the graph vertices where x=+1
values mean the blue class and x = −1 values mean the orange class. The problem
is solved by considering the following cost function:

L(x) = LA(x)+LB(x), (9.3)

where

LA(x) = α

N

∑
i=1

xi, (9.4)

a term that provides a penalty term if the number of elements in the blue set is not
equal to the number of elements in the orange set, and

LB(x) = β ∑
(u,v)∈E(G)

1− xuxv

2
, (9.5)

a term that provides a penalty each time an edge connects vertices from different
subsets. If β > 0, then we wish to minimize the number of edges between the two
subsets while if β < 0 we want to maximize this number. If β < 0 is chosen, then it
must be small enough so that it is never favorable to violate the other constraint LA.

9.2.2 Binary Integer Linear Programming

Consider the binary vector x = (x1 . . .xN) ∈ {0,1}N . Binary integer linear program-
ming (BILP) amounts to the following problem:
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max
x∈{0,1}N

cx

s.t. Ax = b

A ∈ RM×N

b ∈ RM

(9.6)

A variety of problems can be formed as BILPs (for example in the context of bank-
ing revenue maximization subject to regulating constraints). The cost function L(x)
corresponding to the QUBO formulation is

L(x) = LA(x)+LB(x), (9.7)

where

LA(x) = α

m

∑
j=1

(
b j−

N

∑
i=1

Ai jxi

)2

, (9.8)

where α is a constant. Note that LA(x) = 0 enforces the constraint Ax = b. When
this is not met, we get an overall penalty to the objective function. Furthermore,

LB(x) =−β

N

∑
i=1

cixi, (9.9)

for β < α another constant. Essentially, the constants α and β are tuning param-
eter that determines the relative importance of maximizing the objective function
compared to satisfying the constraints. The condition β < α ensures that the con-
straints take precedence over the objective function, which is usually the case in
constrained optimization problems. The reason for the minus sign is there since in
QUBOs (naturally) we have a minimization problem.

9.2.3 Portfolio optimization

One of the fundamental problems in quantitative finance is portfolio optimization
which is part of modern portfolio theory (MPT). A typical portfolio optimization is
formulated as follows. Let N be the number of assets (things you can buy or sell
in a market), µi the expected return of asset i ∈ [N], σi j the covariance between the
returns of asset i and asset j and R the target portfolio return. The decision variables
are the weights wi ∈ R associated to asset i for all i ∈ [N] with.

The standard approach here is the Markowitz mean-variance approach. This amounts
to the following quadratic program:
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min
w∈RN

N

∑
i, j=1

wiw jσi j

s.t.
N

∑
i=1

wi = 1,

N

∑
i=1

wiµi = R.

(9.10)

Intuition. Essentially, this problem amounts to the construction of an optimal port-
folio from the set of all possible assets with known characteristics such as their
returns, volatilities, and pairwise correlations. Realistically, we would expect to be
able to select M ≤ N assets from the set of available N assets that should be the best
possible choice according to the criteria set by the constraints.

Quadratic programs of this form are efficiently solvable using a number of quadratic
programming solvers efficiently. However, consider the case where where weights
w are discrete; this situation starts resembling like a NP-Complete problem.

In such a situation Prob. (9.10) can be mapped to a QUBO suitable for QA. This is
done as follows. We define the QUBO objective as:

L(s) =
N

∑
i=1

aisi +
N

∑
i=1

N

∑
j=i+1

bi jsis j. (9.11)

In this context

si =

{
1 means asset i is selected,

0 means asset i is not selected.
(9.12)

Then, given the N asset set s = {s1, . . . ,sN} find the binary configuration that min-
imizes the L(s) subject to the cardinality constraint that can be added via a penalty
term Lpen(s). Specifically, the requirement that ∑

N
i=1 si = M is encoded via:

Lpen(s) = P

(
M−

N

∑
i=1

si

)2

. (9.13)

Furthermore, in Eq. (9.12), the coefficients ai, reflect the asset attractiveness as a
standalone (think user defined hyperparameter). Assets with large expected risk-
adjusted returns are commonly rewarded with negative values for ai while assets
with small expected risk-adjusted returns should be penalised with positive values
of ai. Finally, the coefficients bi j reflect the pairwise diversification penalties (if pos-
itive) and rewards (if negative) and are derived from the asset pairwise correlations.
For all purposes of this course, assume ai and bi j as given.

The total QUBO to be solved is:
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min
s∈{0,1}N

Ltotal(s) := L(s)+Lpen(s). (9.14)

The minimization of this QUBO optimizes for the risk-adjusted returns by using the
so-called Sharpe ration which is computed as (r− r0)/σ where r is the expected
annualised asset return, r0 is the applicable risk-free interest rate and σ is the asset
volatility.

The higher the Sharpe ratio the better returns relative to the risk taken. Volatility
is usually estimated as the historical annualized standard deviation if the net as-
set value returns. Finally, expected returns can be either estimated as the historical
returns or derived independently using e.g. Monte Carlo simulations.

9.3 Quantum Boost

Let us discuss how QBoost is used in the context of Machine Learning (ML). First,
let us set up some notation:

Object Definition
xt ∈ RN vector of N features

yt ∈ {0,1} binary classification label
{xt ,yt}t∈[M] training set
ci(xt) =± 1

N value of weak classifier i on event t
q := (q1, . . . ,qN) vector of binary weights associated with each weak classifier

Table 9.1: Notation

The classification error for sample t is given by the square error(
N

∑
i=1

ci(xt)qi− yt

)2

. (9.15)

The total cost function to minimize is the sum of squared errors across the training
data:

L(s) =
M

∑
t=1

(
N

∑
i=1

ci(xt)si− yt

)2

(9.16)

Expanding this out yields a term y2
t that does not depend on s and does not influence

the minimization of L (can be absorbed as a constant energy shift). Overfitting can be
done by adding a penalty λ > 0. The objective to minimize in the QBoost agorithm
is:
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L̃(s) =
M

∑
t=1

(
N

∑
i=1

ci(xt)qi

N

∑
j=1

c j(xt)s j−2yt

N

∑
i=1

ci(xt)si

)
+λ

N

∑
i=1

si (9.17)

=
N

∑
i=1

N

∑
j=1

Ci jqiq j +
N

∑
i=1

(λ −2Ci)si, (9.18)

where

Ci j :=
M

∑
t=1

ci(xt)c j(xt), Ci :=
M

∑
i=1

ci(xt)yt .

Remark: the penalty term added here is analogous to LASSO regression method
with L1 penalty. This is sort of ubiquitous in the ML literature. Note that ridge
regression with L2 penalty could be chosen instead.

Next, we need to map the problem to an Ising model. To do so we consider σ to be
spin variables by defining

σ = 2s−1. (9.19)

The Ising Hamiltonian is then written as:

H =
1
4

N

∑
i, j=1

Ci jσiσ j +
1
2

N

∑
i, j=1

Ciσi +
N

∑
i=1

(λ ′−Ci)σi, (9.20)

where λ ′ := 1
2 λ is a rescaled penalty coefficient. QA aims to solve the problem

to minimize H and compute the ground state spin configuration bit-string |s〉, with
s ∈ {−1,1}N . Then, for each new sample x, the classifier is given as

R(x) =
N

∑
i=1

sici(x) ∈ [−1,1]. (9.21)

Application: QBoost

QA for ML applications has been gaining a lot of popularity (and serves as a busi-
ness model for a number of quantum computing startups). It is claimed to have
demonstrated performance advantage in compaerison with algorithms such as bi-
nary decision tree-based Extreme Gradient Boosting (XGBoost) and DNN classi-
fiers on small datasets.

A very interesting application is that of forecasting credit card client defaults. For
that one can utilize a publicly available dataset available from the UCI Machine
Learning Repository [307,308]. This dataset consists of 30,000 samples with binary
classifications:

• a client does not default - class 0

• a client does default - class 1
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There are N = 23 features (F1, . . . ,F23) that are available to extract predictive power
from:

• F1: amount of given credit (continuous)

• F2: gender (binary)

• F3: education (discrete)

• F4: marital status (discrete)

• F5: age (discrete)

• F6: repayment status of previous month (discrete)

• F7: repayment status of two months ago (discrete)

• F8-F11: similar (discrete)

• F12: bill amount past month (continuous)

• F13: bill amount two months ago (continuous)

• F14-F17: similar (continuous)

• F18: amount of previous month payment (continuous)

• F19: amount of payment two months ago (continuous)

• F20-F23: similar (continuous)

Having these features, the next step is to construct the weak classifiers. For that each
feature can be used separately as an input into a logistic regression classifier with
the goal to make a binary prediction: −1/N for class 0 and +1/N for class 1. That,
of course, would require splitting the data to a training and validation test (e.g., 0.7
training and 0.3 validation). A rule for determining the output can be set to be a
majority vote: the prediction of the (strong) classifier is given by the sum of the of
the weak classifiers with values in {−1,+1} (as required by QBoost).

It can be argued that QBoost provides an improvement on this approach by finding
an optimal configuration of the weak classifiers.

Such a simple implementation can lead to results such as the ones in Fig. 9.2 (you
are more than welcome to try this on your own) where QBoost shows what some
people call “performance” advantage. While several, much more sophisticated clas-
sical classifiers exist, there is no fundamental reason that the same argument cannot
be applied for quantum classifiers as well.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html


9.4 Warm-starting QAOA 163

Accuracy Precision Recall
GradBoost 0.83 0.69 0.35

MLP 0.83 0.69 0.35
QBoost 0.83 0.71 0.33

Table 9.2: Caption

9.4 Warm-starting QAOA

Recall, that we have discussed the Quantum Approximate Optimization Algorithm
(QAOA) [77] last time. We discussed that QAOA This algorithm encodes a combi-
natorial optimization problem in a Hamiltonian HC whose ground state is the opti-
mum solution. The QAOA first creates an initial state which is the ground state of a
mixer Hamiltonian HM where a common choice is

HM =−
N

∑
i=1

σ
x
i , (9.22)

with ground state being |+〉⊗n. Then, recall, for depth-L QAOA, we apply L times
the unitary UQAOA =UC(γ)UB(β ) defined as:

UC(γ) := e−iγHC (9.23)

UB(β ) := e−iβHM . (9.24)

The result is:

UQAOA|+〉⊗n = |γ,β 〉. (9.25)

A classical optimizer (e.g. SPSA) then seeks the optimal values of β and γ to create
a trial state which minimizes the energy of the problem Hamiltonian HC.

While a very promising algorithm, initially it lacked any theoretical guarantees on
its performance ratio and for certain problem instances of interest (e.g. Max-Cut) it
cannot, for constant L, outperform the classical Goemans-Williamson randomized
rounding approximation (which for MAXCUT finds cuts whose expected value is an
α fraction of the global optimum, for 0.87856 < α < 0.87857, with the expectation
over the randomization in the rounding procedure).

While several improvements of the QAOA have been developed in the literature, we
will focus here on warm-starting QAOA [81].

Relaxations. QUBOs have already been discussed a lot. A common formulation is:

min
x∈{0,1}n

xT Qx+µ
T x. (9.26)
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where x is a vector of n binary decision variables, Q∈Rn×n a symmetric matrix, and
µ ∈Rn a vector. Since for binary variables x2

i = xi,µ can be added to the diagonal of
Σ , and in the following, we only add µ when it simplifies the notation in the given
context. Note that, as discussed, practically any mixed-integer linear program can
be encoded in a QUBO it is automatically NP-Hard.

If Q is positive semidefinite, there exists a trivial continuous relaxation of the QUBO
above:

min
x∈[0,1]n

xT Qx (9.27)

is a convex quadratic program and the optimal solution c∗ of the continuous relax-
ation is easily obtainable with classical optimizers. However, if Q is not positive
semidefinite (and in many applications of interest there is no reason to be) one can
obtain another continuous relaxation, the semidefinite program (SDP):

maxY∈Sn tr(QY )
diag(Y ) = 111

Y � 0,
(9.28)

where Sn×n denotes the set of n× n symmetric matrices, 111 is an n-vector of ones,
and Y � 0 denotes that Y must be positive semidefinite. Given the optimal solution
Y ∗ to the SDP above, there exist several approaches to generating solutions1 of the
corresponding (QUBO), often with approximation guarantees. Furthermore, quan-
tum computers offer the prospect of some speed-ups in solving SDPs (not discussed
in these lectures).

Warm-starting QAOA. The solutions of either continuous-valued relaxation dis-
cussed above can be used to initialize VQAs: this is known as warmstarting them
[82]. Let us focus on how to warm-start the QAOA [77].

In QAOA, each decision variable xi of the discrete optimization problem corre-
sponds to a qubit by the substitution xi = (1− si)/2. Each si is replaced by a spin
operator σi to transform the cost function to a cost Hamiltonian HC. Then, after the
procedure described initially, that is utilizing the unitary UQAOA, one performs the fi-
nal measurement which can be considered as a randomized rounding. Warm-starting
amounts to replacing the initial equal superposition state |+〉⊗n with a state

|φ ∗〉=
n−1⊗
i=0

R̂y (θi) |0〉n (9.29)

1 As a matter of facr, a classical laptop can solve instances of (SDP) relaxations of QUBO, where
Q has 1013.
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which corresponds to the solution c∗ of the relaxed Problem (9.27). Here, R̂Y (θi)

is a θi-parametrized rotation around the y-axis of the qubit (see Fig. 9.1) and θi :=
2arcsin(

√
c∗i ) for c∗i given as the solution of QUBO (9.27).

Fig. 9.1: The initial state is given by the red segment. The yellow path shows the
evolution of the quantum state starting at |0〉 to Ry(−θi)Rz(−β )Ry(2θi) for β = π/2.

Additionally, the mixer Hamiltonian also is replaced. A choice for the warm-starting
mixer Hamiltonian is

Hws
M =

n

∑
i=1

Hws
M,i (9.30)

where

Hws
M,i =

(
2c∗i −1 −2

√
c∗i (1− c∗i )

−2
√

c∗i (1− c∗i ) 1−2c∗i

)
(9.31)

which has Ry(θi)|0〉 as ground state. One can show that the ground state of Hws
M is

|φ ∗〉 with energy −n. Therefore, WS-QAOA applies at layer k a mixing gate which
is given by the time-evolved mixing Hamiltonian UM(β ) = e−iβHws

M .
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For technical reasons [81] one has to actually modify the definition of θi as

θi = 2arcsin
(√

c∗i
)

if c∗i ∈ [ε,1− ε]

θi = 2arcsin(
√

ε) if c∗i ≤ ε

θi = 2arcsin(
√

1− ε) if c∗i ≥ 1− ε.

where ε ∈ [0,0.5] and the mixer Hamiltonian HM is adjusted accordingly. The pa-
rameter ε provides a continuous mapping between WS-QAOA and standard QAOA
since at ε = 0.5 the initial state is the equal superposition state and the mixer Ham-
iltonian is the X operator. If all c∗i ∈ (0,1) or ε > 0, WS-QAOA converges to the
optimal solution of (QUBO) as the depth L approaches infinity as does standard
QAOA.

This directly follows from (surprise) the adiabatic theorem and the fact that we start
in the ground state of the mixer which overlaps with all computational basis states
including the optimal solution.

For large enough L, WS-QAOA therefore the adiabatic evolution transforming the
ground state of the mixer into the ground state of HC as expected. The speed of the
adiabatic evolution is limited by the spectral gap of the intermediate Hamiltonians
as we discussed in the previous lecture.

The speed of the evolution can be related to the depth L, where a slow evolution
(larger terminal time T ) implies a larger L. The idea of WS-QAOA is to speed-up
this evolution by optimizing the parameters instead of following a fixed annealing
schedule.

Several other variations of WS-QAOA have been studied, for example “rounded
warm-started” QAOA. Such a technique is very appealing for application on NISQ
devices for combinatorial optimization problems.

Below we quote a nice experimental demonstration from [81].

There, the authors investigate the role of the warm-start mixer operator Ĥ(ws)
M by

replacing it with the standard mixer −∑
n−1
i=0 X̂i while using the initial state given

by the continuous solution c∗. Under these conditions the energy of the optimized
state does not converge to the minimum energy, see blue triangles in Fig. 9.2(b).
The probability of sampling the optimal discrete solution is between warm-start and
standard QAOA but depends heavily on the initial point given to COBYLA, see Fig.
9.2(a). These results further justify the use of the modified mixer in WS-QAOA.

They even proceed to further illustrate the advantage of a warm-starting QAOA at
low depth by solving 250 random portfolio instances with warm-started and stan-
dard QAOA, both at depth L = 1. There the standard QAOA produces variational
states that poorly approximate the ground state, see the histogram of E∗cold in Fig.
9.3(a). However, WS-QAOA produces optimized variational states that are much
closer to the minimum energy of each problem Hamiltonian. Furthermore, we find



Fig. 9.2: (a) Probability to sample the optimal state |d∗〉 from the optimized trial
state |ψ∗〉 and (b) energy of |ψ∗〉 for warm-start and standard QAOA at different
depths for n = 6 assets and q = 2. The optimal discrete and continuous solutions are
d∗ = (0,0,1,1,1,0) and c∗ ' (0.17,0,0.97,0.73,1.0,0.14), respectively. QAOA is
run ten times with different initial random guesses for (β ,γ) chosen uniformly from
±2π . The thick lines show the median of the ten runs while the shaded areas indicate
the 25% and 75% quantiles. The gray dashed line shows E0.

that WS-QAOA tends to produce better solutions when the overlap d∗T c∗/B be-
tween the optimal solutions to the discrete and relaxed problems is closer to 1.

9.5 Asset Management and Monte Carlo Simulations

Derivative pricing using a quantum computer

What are derivatives and why one would be interested in using a quantum computer?

Short answer: derivatives are financial instruments that make some people rich and
quantum computers can do things (in principle) quadratically faster. Use this note-
book.

https://github.com/fabiosanches13/qmc_derivative_pricing/blob/main/quantum_derivative_pricing.ipynb
https://github.com/fabiosanches13/qmc_derivative_pricing/blob/main/quantum_derivative_pricing.ipynb
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Fig. 9.3: Improvement of depth-one WS-QAOA over standard QAOA for 250 ran-
dom portfolio instances with q = 2 (q controls the risk-return trade-off).



Chapter 10

Applications in Security

The question of many people’s minds is whether and when “quantum computers
would kill RSA”? We will review some recent work in security applications:

• generating random strings

• quantum key distribution

• Shor factoring

• Grover-based factoring

• variational factoring.

While the first two happily live in “vendor-land”, the latter three are more involved.

10.1 Generating random strings

US authorities now recommend using random strings only from quantum effects,
rather than pseudorandom generators. In some cases [83, 84], quantum random
number generators (RNG) come with strong guarantees, but often, it seems an
overkill to utilize a quantum computer to generate random numbers. There are now
purpose-built devices [85] that can generate random strings at 17 Gbps, exceeding
what can be done with near-term quantum computers. The purpose-built devices
can be bought, e.g., from ID Quantique. This is hence one example of quantum
technologies being essential to security.

169
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10.2 Quantum key distribution

An important quantum technology in security is quantum key distribution, which
makes it possible to certify that the communication has not been intercepted. There
are two approaches:

• Prepare-and-measure: measuring an unknown quantum state changes it.

• Entanglement-based: measuring one of two entangled quantum systems affects
the other.

Either way, one can calculate the amount of information that has been intercepted
by measurement. ID Quantiq showcased quantum key distribution at 307 km, and
sells related devices. Toshiba demonstrated QKD at 100 km of fiber in 2004 and the
first with a continuous key rate exceeding 10 Mbit/second in 2017. (CTU has pur-
chased such devices from both ID Quantiq and Toshiba.) This is hence an example
of quantum technologies being readily available to improve security.

10.3 Factoring integers

Much of modern cryptoprimitives are built on factoring of large integers. A textbook
version of public-key cryptography, here cited from [86] in verbatim, is as follows:

1. Select two large prime numbers, p and q.

2. Compute the product n = pq.

3. Select at random a small odd integer, e, that is relatively prime to φ(n) = (p−
1)(q−1).

4. Compute d, the multiplicative inverse of e, modulo φ(n).

5. The RSA public key is the pair P = (e,n). The RSA secret key is the pair S =

(d,n).

The encryption of message M on logn bits involves Me mod n to obtain E(M),
while decryption requires E(M)d mod n.

What is the complexity of factoring n to p and q?

• poly(log(n)) is the runtime of factoring algorithms on a BSS machine. Testing
whether an integer is a prime is in P, but does not provide the factors, when the
number is not prime.
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• O(n1/4) is the runtime of the best deterministic factoring algorithms for factoring
an integer n with logn bits in length.

• O(exp(c(logn)1/3(log logn)2/3)) is the runtime of the best randomized algo-
rithms, for some constant c and integer n. The runtime is thus subexponential,
but not polynomial time: O(exp(

√
(logn)(logn)) = O(n). It is thus unlikely that

factoring is NP-Complete. The elliptic curve method (ECM, [87]) is the fastest
known algorithm for small numbers, e.g. within 100 digits. The the number field
sieve (NFS, [88]) is the best classical algorithm for large numbers, and has been
used to factor a 240-digit (795-bit) number in 900 core-years.

• O((logn)2(log logn)(log loglogn)) is the runtime of a quantum algorithm intro-
duced by Peter Shor [35], along with a polynomial-time (in logn) classical post-
processing algorithm.

10.3.1 Shor factoring

Peter Shor introduced an algorithm for factoring integers [35], which based on two
facts of number theory, makes it possible to reduce factoring to order finding, i.e.,
determining r in f (x+ r) = f (x) for f (x) = ax. When one receives a composite
number n, it uses O(log3 n) order-finding operations to produce a non-trivial factor
of n with a constant probability.

This is based on the following facts:

Theorem 5.2 in [86]: Suppose that n is an L-bit composite number, and x is a non-
trivial solution to the equation x2 = 1 mod n in the range 1≤ x≤ n, i.e., neither x =
1 mod N nor x = n.−1 =−1 mod n. Then at least gcd(x−1,n) and gcd(x+1,n)
is a non-trivial factor of n can be computed using O(L3) operations.

Theorem 5.3 in [86]: Suppose that n = pα1
1 pα2

2 · · · pαm
m is the prime factorization of

an odd composite positive integer. Let x be an integer chosen uniformly at random,
subject to the requirements that 1 ≤ x ≤ n− 1 and x is co-prime to n. Let r be the
order of x mod n. Then the probability r is even and xr/2 6=−1 mod n is greater or
equal to 1− 1

2m .

With these facts, we can formulate the Shor factoring algorithm:

1. If n is even, return 2.

2. If n = ab for a≥ 1 and b≥ 2, return a.

3. Choose x in [1, n-1]. If gcd(x,n)> 1, return gcd(x,n).
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4. Use order-finding to find the order r of x modulo n. If r is even and xr/2 6= −1
mod n and either of gcd(xr/2− 1,n) and gcd(xr/2 + 1,n) is non-trivial, return
the non-trivial factor.

5. Repeat from 3 otherwise.

Shor’s order-finding works as follows:

1. creates an initial, Q-qubit state |0〉⊗Q

2. apply Hadamard transform on it: 1√
Q ∑

Q−1
k=0 |k〉

3. apply the function f (x) = ax mod N using U f |x,0n〉= |x, f (x)〉 to obtain

U f
1√
Q

Q−1

∑
x=0
|x,0n〉= 1√

Q

Q−1

∑
x=0
|x, f (x)〉

such that the value we are looking for is in the phase

4. apply the quantum Fourier transform: 1
Q ∑

Q−1
x=0 ∑

Q−1
y=0 ωxy|y, f (x)〉

5. obtain y by measuring the first register. The probability of measuring |y,z〉 is

1
Q2

sin2(πmry
Q )

sin2(πry
Q )

.

Let us consider the example of n = 15

1. Let us consider n = 15 and a random number x coprime (having no non-trivial
common factors) with n, e.g., x = 7.

2. Compute the order r of x modulo n, as follows: apply Hadamard transform to
the first register of |0〉|0〉. Compute f (k) = xk mod n in the second register

1√
2t
[|0〉|1〉+ |1〉|7〉+ |2〉|4〉+ |3〉|13〉+ |4〉|1〉+ |5〉|7〉+ |6〉|4〉+ ·].

When inverse Fourier transform is applied to the first register (seen as 2t = 2048
frequencies) and the second register is measured, one obtains one of 1, 7, 4, or
13. Eventually, we obtain r = 4 as the order of x = 7.

3. Classically, we see r is even, and xr/2 mod n = 72 mod 15 = 4 6=−1 mod 15.
Again classically, we run gcd(x2−1,15) = 3 and gcd(x2 +1,15) = 5 to obtain
two factors.



10.3 Factoring integers 173

10
24

20
48

30
72

40
96

51
20

61
44

71
68

81
92

10
24

0

12
28

8

14
33

6

16
38

4

20
48

0

24
57

6

28
67

2

32
76

8

40
96

0

49
15

2

57
34

4

65
53

6

modulus length n (bits)

1

5

10

50

100

500

1000

5000

10000

50000

100000

ex
pe

ct
ed

 ti
m

e 
(h

ou
rs

) a
nd

 p
hy

sic
al

 q
ub

it 
co

un
t (

m
eg

aq
ub

its
)

RSA via Ekerå-Håstad, hours
RSA via Ekerå-Håstad, megaqubits
RSA via Ekerå-Håstad - 0.01% gate error instead of 0.1%, hours
RSA via Ekerå-Håstad - 0.01% gate error instead of 0.1%, megaqubits
Short DLP or Schnorr DLP via EH, hours
Short DLP or Schnorr DLP via EH, megaqubits
Schnorr DLP via Shor, hours
Schnorr DLP via Shor, megaqubits
General DLP via EH, hours
General DLP via EH, megaqubits
General DLP via Shor, hours
General DLP via Shor, megaqubits

Fig. 10.1: Scaling of Shor’s Factoring: Log-log plot of estimated space (in the mil-
lions of qubits) and expected-time costs (days required) with the number of bits of
RSA keys, cited from [89] in verbatim.

Shor’s factoring has been demonstrated for the number of 15 more than two decades
ago, and the scalability beyond is still very much a subject of lively discussion.
A Google team [89] estimates that one could perform factoring of 2048-bit RSA
integers in 8 hours using 20 million noisy qubits. (See Figure 10.1.) The assumptions
of a planar grid of qubits with nearest-neighbor connectivity, physical gate error rate
of 10−3, a surface code cycle time of 1 microsecond, and the use of surface codes
are all quite realistic. Surface codes are textbook material [86, Chapter 10], although
not covered by this course. A French team [90] suggested that one could perform
factoring of 2048-bit RSA integers in 177 days with 13436 qubits, without being
very explicit about the requirement of 430 million memory qubits. Likewise, the use
of 3D gauge color codes is out of reach in current qubit technologies. Otherwise,
the assumptions of physical gate error rate of 10−3, a processor cycle time of 1
microsecond are quite realistic.

It is very important to stress that these estimates rely crucially on the assumptions
on the overhead of commonly used quantum error correcting codes. For (perhaps
difficult to decode, but otherwise viable) codes with lower overhead, these estimates
of the numbers of qubits required would be radically lower. The best lower bounds
for the space overhead [91] of 2D codes are of the order of Ω(

√
log(1/δ )) for δ

error rate, and the bounds can be even lower for 3D codes.
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10.3.2 Grover-based factoring

[92] introduced another quantum algorithm for factoring, which they call GEECM
(Grover plus Edwards Elliptic Curve Method). To gain some intuition, consider the
trial division, where we would generate a small primes and perform Grover search
for those that divide the n. It reduces the number of operations of Edwards Elliptic
Curve Method from L

√
2+o(1) to L1+o(1) for L = exp(

√
log
√

n log log
√

n).

10.3.3 Variational factoring

In principle, you can use drastically fewer qubits in some cases, but with lesser hopes
of speed-up. Notably, the explicit, “schoolbook” binary multiplication of p and q
yields equations that have to be satisfied by bits pi and qi and carry bits zi, j. One can
formulate a “least-squares version” of the problem, which would minimise the sum
of residuals squared, across the equations (bits). Clearly, this would be a QUBO, as
in the previous lecture, and approached with, e.g., QAOA without any guarantees
of finding the solution. On the flipside, one can get lucky. For instance, [93] report
factoring 1099551473989, 3127, and 6557 with 3, 4, and 5 qubits, respectively,
using a QAOA.

In a very similar spirit, a Chinese team [94] got to the frontpages of many newspa-
pers announcing that 2048-bit semi-prime number can be factored on a NISQ level
computer with 372 physical qubits and a gate depth in the thousands. The same
paper has shown that a 48-bit number can be factored using the Schnorr factoring
and QAOA. Unfortunately, they did not analyze how many runs of the circuit this
would require in general. Our analyses [79] show would scale much worse than the
runtime of the Shor factoring.

10.3.4 A Rejoinder

In the US, Congress passed Quantum Computing Cybersecurity Preparedness Act1

in December 2022, which bars federal authorities from using cryptoprimitives based
on factoring. It is unlikely that this is based on the discovery of a new factoring
algorithm, but rather based on the risk of there being one. In many information
security standards, you need to be sure that if you encrypt today, no one will be
able to decrypt without knowing the key for the next 20+ years. In “Store Now,

1 https://www.congress.gov/bill/117th-congress/house-bill/7535/text
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Decrypt Later” attacks, nation states already gain access to large troves of encrypted
information, in the hope that they would be able to decrypt it in the near future.
Notice that for digital signatures (e.g., certificates on the web), the risk is much less:
you can wait until a new factoring algorithm appears.
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