CHAPTER 5

Grover Search and Dynamic Programming

So far, we have seen examples of quantum algorithms with an exponential speed-up, but only for problems that are *not* NP-Hard. For NP-Hard problems, we know only algorithms with quadratic speed-up so far, and even that is disputed [Shenvi et al., 2003, Shapira et al., 2003, Stoudenmire and Waintal, 2023]. In this chapter, we will explain these in a very general framework of Ambainis et al. [2019].

1. Grover Algorithm

In the problem of Grover [1999], we have

- ullet a dimension n
- a black-box function $f(x): \{0,1\}^n \to \{0,1\}$ parametrized by a secret *n*-bit string *j*, which returns 1 if x=j and 0 otherwise.

The functional version of the problem asks what is the unknown w. It is clear that classically, one may need to perform 2^n oracle calls in the worst-case, and that randomized algorithms would not help much. Notice that $N=2^n$ is sometimes referred to as the "library size" we are searching.

The black-box function is usually thought of as an oracle operator U_w such that for states $|j\rangle$ in the computational basis

$$U_{w}|j\rangle = (-1)^{f(j)}|j\rangle = \mathbf{I} - 2|w\rangle\langle w| = \begin{cases} -|j\rangle, & \text{if } j = w\\ +|j\rangle, & \text{if } j \neq w \end{cases}$$

$$(5.1)$$

This is sometimes known as the \pm -oracle or phase oracle. One can generalize this to the situation where there are multiple secrets.

We will also use a generalization, which is known as the diffusion operator or inversion for an arbitrary state $|s\rangle$:

$$U_s = 2|s\rangle\langle s| - \mathbf{I} \tag{5.2}$$

Let us have a bit of a geometric detour: any state $|\phi\rangle$ can be uniquely expressed as $|\phi\rangle = \alpha |\psi\rangle + \beta |\psi^{\perp}\rangle$, where $|\psi^{\perp}\rangle$ is orthogonal to $|\psi\rangle$. Then:

$$U_s |\phi\rangle = -\alpha |\psi\rangle + \beta |\psi^{\perp}\rangle \tag{5.3}$$

that is, amplitudes of basis states orthogonal to $|\psi\rangle$ are left unchanged, while signs of amplitudes of the basis state $|\psi\rangle$ are flipped. Furthermore, for any state ϕ , U_{ψ} , preserves the subspace spanned by $|\phi\rangle$ and $|\psi\rangle$.

Grover's algorithm performs the following steps:

- (1) creates an initial, *n*-qubit state $|0\rangle^{\otimes n}$
- (2) apply Hadamard transform on it to obtain the uniform superposition $\frac{1}{\sqrt{n}}\sum_{k=0}^{n-1}|x\rangle$
- (3) apply the function oracle operator U_w and the diffusion operator U_s repeatedly, q times.
- (4) obtain \hat{w} by measuring the *n*-qubit register. With probability $\sin^2((q+\frac{1}{2})\theta)$ for some θ depending on $\frac{1}{\sqrt{N}}$, estimate \hat{w} will be the correct $f(\hat{w}) = 1$. Otherwise, we repeat.

1

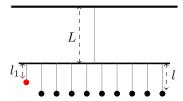
Ideally [Zalka, 1999], one considers $q \approx \frac{\pi}{4} 2^{n/2}$. If the Grover iteration $U_s U_w$ could be implemented in unit time (a big if!), this would correspond to $O(2^{n/2}) = O(\sqrt{2^n}) = O(\sqrt{N})$ algorithm and quadratic speed-up compared to the linear search in time $O(2^n) = O(N)$.

The Grover iteration has a number of appealing interpretations: Perhaps the most physical is due to Grover and Sengupta [2002]. Recall the discussion of the oscillators from the second lecture. The oscillator could describe a weight (or bob) suspended from a pivot on a (massless) cord such that the bob can swing freely. Now, consider N oscillators, one of which has a slightly shorter cord, and hence a different frequency. We seek to find the one with the shorter cord. We could check the frequency of the N oscillators one by one. Alternatively, we can consider a compound pendulum.

To this end, we consider a system where the N oscillators are suspended from a *support pendulum*. We use the following notation:

- The length, mass and displacement coordinate for the support pendulum are denoted L, M, X;
- the pendulum we aim to identify has length, mass and displacement $l_1, \frac{m_1}{N}, x_1;$
- the remaining N-1 oscillators have length, mass and displacements $l, \frac{m}{N}, x_j$ for $j=2,\ldots,N$.

The setup thus looks something like the following:



The Lagrangian (kinetic energy minus potential energy)¹ is then:

$$\frac{1}{2}[M\dot{X}^{2} - KX^{2} + \frac{1}{N}(m_{1}\dot{x_{1}}^{2} - k_{1}(x_{1} - X)^{2}) + \frac{1}{N}\sum_{j=2}^{N}(m\dot{x_{j}}^{2} - k(x_{j} - X)^{2})]$$

$$K \equiv (M + \frac{m}{N})\frac{g}{L}, \quad k_{j} \equiv m_{j}\frac{g}{l_{j}},$$
(5.4)

where

- g is the acceleration due to gravity;
- K, k_1 and k are the spring, or stiffness, constants, of the corresponding oscillators. For a simple, uncoupled, harmonic oscillator with mass m, this is related to the frequencies ω through $\omega = \sqrt{\frac{k}{m}}$.

Through a simple change of variables, one obtains:²

$$L_{red} \approx \frac{1}{2} [M\dot{X}^2 - KX^2 + m_1 \dot{\xi}^2 - k_1 (\xi - \frac{1}{\sqrt{N}} X)^2 + m\dot{\bar{x}}^2 - k(\bar{x} - X)^2]. \tag{5.5}$$

Note that this has 3 degrees of freedom, two that are strongly coupled X and \bar{x} , while the third, ξ , is weakly coupled due to the $1/\sqrt{N}$ factor. Solving first the X, \bar{x} system gives us two modes with frequencies ω_a and ω_b . The natural frequency of the ξ degree of freedom that corresponds to the special pendulum is approximately $\omega_1 = \sqrt{\frac{k_1}{m_1}}$. If ω_1 is close to either ω_a or ω_b , there will be resonant transfer of energy between the two weakly coupled systems. In $O(\sqrt{N})$ cycles, one should be able to identify the correct pendulum by having amplified its energy. If we instead had n shorter cords, it would take $O(\sqrt{N/n})$ cycles.

Imagine that one starts by a single push to the support pendulum and can change parameters of any pendulum and then observe their frequency with a finite precision that is independent of N. By bisection,

¹remember that the Hamiltonian is the kinetic energy + potential energy

²Essentially, the change of variables is to the center-of-mass frame for the $j=2,\ldots,N$ pendulums, and $\xi \propto x_1$ is simply a normalization. Finally, we ignore some $\mathcal{O}(1/N)$ terms.

we can adjust the cords of 1/2 of the pendula, 1/4 of the pendula, etc., until we identify the one pendulum. This would have a runtime of $O(\sqrt{N} \log N)$.

The diffusion operator should be viewed as a quantum amplitude amplification procedure, with the aim to increase the probability amplitude of the target state. Following Gruska [1999], Brassard et al. [2002], one could consider $|\phi\rangle = A\,|0^n\rangle = \sum_i \alpha_i\,|i\rangle$ and some partition:

$$\left|\phi\right\rangle = \sum_{i \in \text{good}} \alpha_i \left|i\right\rangle + \sum_{i \in \text{bad}} \alpha_i \left|i\right\rangle,$$

with $\mathbb{P}(\text{good}) = \sum_{i \in \text{good}} |\alpha_i|^2$. Then,

$$|\phi\rangle = \sqrt{\mathbb{P}(\text{good})} |\phi_{\text{good}}\rangle + \sqrt{1 - \mathbb{P}(\text{good})} |\phi_{\text{bad}}\rangle = \sin(\theta) |\phi_{\text{good}}\rangle + \cos(\theta) |\phi_{\text{bad}}\rangle$$

with $\sin^2(\theta) = \mathbb{P}(\text{good})$ and $\sin^2(\theta) + \cos^2(\theta) = 1$. The state $|\phi\rangle$ is thus orthogonal to $|\phi^{\perp}\rangle = \cos(\theta) |\phi_{\text{good}}\rangle - \sin(\theta) |\phi_{\text{bad}}\rangle$. $\{|\phi_{\text{good}}\rangle, |\phi_{\text{bad}}\rangle\}$ and $\{|\phi\rangle, |\phi^{\perp}\rangle\}$ are thus two orthonormal bases in a 2-dimensional subspace. One obtains

$$U_w \left(\sin(\theta) \left| \phi_{\text{good}} \right\rangle + \cos(\theta) \left| \phi_{\text{bad}} \right\rangle \right) = -\sin(\theta) \left| \phi_{\text{good}} \right\rangle + \cos(\theta) \left| \phi_{\text{bad}} \right\rangle \tag{5.6}$$

$$U_{\phi^{\perp}}\left(\sin(\theta)|\phi\rangle + \cos(\theta)|\phi^{\perp}\rangle\right) = \sin(\theta)|\phi\rangle - \cos(\theta)|\phi^{\perp}\rangle$$
(5.7)

$$U_{\phi^{\perp}}U_w|\phi\rangle = \cos(2\theta)|\phi\rangle + \sin(2\theta)|\phi^{\perp}\rangle \tag{5.8}$$

$$= \sin(3\theta) |\phi_{\text{good}}\rangle + \cos(3\theta) |\phi_{\text{bad}}\rangle. \tag{5.9}$$

We will see this view in the following lecture.

This amplitude amplification also has a geometric interpretation: one should see U_w and U_s as Householder reflections. Grover's algorithm stays in a subspace spanned by $(|s\rangle, |w\rangle)$. The two operators are reflections with respect to the hyper-planes perpendicular to w and s. It is an elementary fact of Euclidean geometry that when M_1 and M_2 are two lines in the plane intersecting at point O with intersection angle α , the operation of reflection with respect to M_1 , followed by reflection with respect to M_2 , is rotation by angle 2α around O. Then, the product U_sU_w is a rotation in the $(|s\rangle, |w\rangle)$ plane (for the first $\approx \pi \sqrt{N}/4$ iterations from $|s\rangle$ to $|w\rangle$) by $\theta = 2 \arcsin \frac{1}{\sqrt{N}}$. This view is beautifully elaborated by Gruska [1999].

Without giving a complete derivation here, let us consider $|x_0^{\perp}\rangle$ and $|\phi_0\rangle$ at an angle β . Then $U_{|\phi_0^{\perp}\rangle}U_{|x_0\rangle}$ is a rotation around the origin by angle 2β . Starting with a state $|\phi_0\rangle = \sin(\beta)|x_0\rangle + \cos(\beta)|x_0^{\perp}\rangle$, after q Grover iterations, we obtain: $|\phi_k\rangle = \sin((2q+1)\beta)|x_0\rangle + \cos((2q+1)\beta)|x_0^{\perp}\rangle$. We thus wish to pick q such that $\sin((2q+1)\beta)$ is as close as possible to 1.

Stoudenmire and Waintal [2023] suggests that U_w should be seen as:

$$\mathbf{U}_w = \begin{bmatrix} 1 & 1 \end{bmatrix} \left(\prod_{i=1}^n \mathbf{M}_i \right) \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
 (5.10)

with

$$\mathbf{M}_{i} = \begin{bmatrix} \mathbf{I}_{i} & 0 & 0 & \dots \\ 0 & |w_{i}^{1}\rangle\langle w_{i}^{1}| & 0 & \dots \\ 0 & 0 & |w_{i}^{2}\rangle\langle w_{i}^{2}| & \dots \\ \dots & \dots & \dots & \dots \\ \dots & 0 & 0 & |w_{i}^{S}\rangle\langle w_{i}^{S}| \end{bmatrix}$$

$$(5.11)$$

where \mathbf{I}_i is the 2 × 2 identity matrix acting on qubit i and $|w_i^{\alpha}\rangle\langle w_i^{\alpha}|$ projects α on the bitstring i.

The diffusion operator U_s is similar, except for the replacement of M_i by

$$\mathbf{M}_{i}' = \begin{bmatrix} \mathbf{I}_{i} & 0\\ 0 & |+\rangle \langle +| \end{bmatrix} \tag{5.12}$$

in (5.10).

As we have mentioned at the beginning, there is also a fair amount of controversy, which centers around three issues:

- Shenvi et al. [2003], Shapira et al. [2003]: one needs to be able to run the oracle with an error that scales with $N^{-1/4} = 1/2^{n-4}$. This is a very exacting standard which may be difficult to obtain for non-trivial n.
- quantumly, one needs to be able to implement the oracle in unit amount of time, but not to be able to implement the product of the Grover iteration U_sU_w in unit amount of time, and not to be able to implement many things classically.
- Stoudenmire and Waintal [2023]: the tensor-analytic view (5.10) suggests that one uses rank-2 matrix product operation, which are classically simulable in polytime. Then, one efficiently simulates the product of the Grover iterations as well.

2. Dynamic Programming

Let us now consider two NP-Hard functional (optimization) problems. In the Travelling Salesman Problem (TSP), we seek the shortest simple cycle that visits each vertex in a weighted graph G once (Hamiltonian circuit). In the Minimum Set Cover, we seek the minimum cardinality subset $S' \subseteq S$ such that

$$\bigcup_{S\in\mathcal{S}'}S=\mathcal{U}$$

for some given $S \subset U$, with the cardinality of the ground set |U| = n and |S| = m.

A naive classical approach to either problem would construct a dynamic programming tableau, where in each row r in the tableau, we would have the lengths of Hamiltonian circuits in r-vertex subgraphs. Following Ambainis et al. [2019], let f(S, u, v) denote the length of the shortest path in the graph induced by a subset of vertices S that starts in $u \in S$, ends in $v \in S$ and visits all vertices in S exactly once. Then:

$$f(S, u, v) = \min_{\substack{t \in N(u) \cap S \\ t \neq v}} \left\{ w(u, t) + f(S \setminus \{u\}, t, v) \right\}, \qquad f(\{v\}, v, v) = 0.$$
 (5.13)

where N(u) is the neighbourhood of u in G. For $k \in [2, |S| - 1]$ fixed,

$$f(S, u, v) = \min_{\substack{X \subset S, |X| = k \\ u \in X, v \notin X}} \min_{\substack{t \in X \\ t \neq u}} \{ f(X, u, t) + f((S \setminus X) \cup \{t\}, t, v) \}.$$
 (5.14)

The algorithm of Ambainis et al. [2019] picks some $\alpha \in (0, 1/2]$ and classically precomputes f(S, u, v) for all $|S| \leq (1 - \alpha)n/4$ using dynamic programming (5.13). That is, it computes the bottom rows of the tableau classically, in time exponential in n. Quatumly, it obtains

$$\min_{\substack{S \subset V \\ |S| = n/2}} \min_{\substack{u,v \in S \\ u \neq v}} \{ f(S,u,v) + f((V \setminus S) \cup \{u,v\},v,u) \}$$

over all subsets $S \subset V$ such that |S| = n/2 by taking the following steps:

- (1) Run Grover on (5.14) with $k = \alpha n/4$ to calculate f(S, u, v) for |S| = n/4 starting with the rows of the tableau obtained classically.
- (2) Run Grover on (5.14) with k = n/4 to calculate f(S, u, v) for |S| = n/2.

Under very strong assumptions about storing the data in quantum RAM, Ambainis et al. [2019] claim a speed-up as suggested in Table 5.1. Notice that much of the controversy surrounding the original Grover applies to this setting as well, compounded by the QRAM assumptions. Under more plausible

	Classical (best known)	Quantum (of Ambainis et al. [2019])
Vertex Ordering Problems	$O^*(2^n)$	$O^*(1.817^n)$
Travelling Salesman Problem	$O(n^22^n)$	$O^*(1.728^n)$
Minimum Set Cover	$O(nm2^n)$	$O(\text{poly}(m, n)1.728^n)$

Table 5.1. Summary of the results of Ambainis et al. [2019].

assumptions, Sutter et al. [2020] study dynamic programming with convex value functions.

Bibliography

- Andris Ambainis, Kaspars Balodis, Jānis Iraids, Martins Kokainis, Krišjānis Prūsis, and Jevgēnijs Vihrovs. Quantum speedups for exponential-time dynamic programming algorithms. In *Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 1783–1793. SIAM, 2019.
- Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplification and estimation. *Contemporary Mathematics*, 305:53–74, 2002.
- Lov K Grover. Quantum search on structured problems. In Quantum Computing and Quantum Communications: First NASA International Conference, QCQC'98 Palm Springs, California, USA February 17–20, 1998 Selected Papers, pages 126–139. Springer, 1999.
- Lov K Grover and Anirvan M Sengupta. Classical analog of quantum search. *Physical Review A*, 65(3): 032319, 2002.
- Jozef Gruska. Quantum computing, volume 2005. McGraw-Hill, London, 1999.
- Daniel Shapira, Shay Mozes, and Ofer Biham. Effect of unitary noise on grover's quantum search algorithm. *Physical Review A*, 67(4):042301, 2003.
- Neil Shenvi, Kenneth R Brown, and K Birgitta Whaley. Effects of a random noisy oracle on search algorithm complexity. *Physical Review A*, 68(5):052313, 2003.
- EM Stoudenmire and Xavier Waintal. Grover's algorithm offers no quantum advantage. arXiv preprint arXiv:2303.11317, 2023.
- David Sutter, Giacomo Nannicini, Tobias Sutter, and Stefan Woerner. Quantum speedups for convex dynamic programming. arXiv preprint arXiv:2011.11654, 2020.
- Christof Zalka. Grover's quantum searching algorithm is optimal. Physical Review A, 60(4):2746, 1999.