
Lecture Topic: Grover Search and Dynamic Programming
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Overview

So far, we have seen examples of quantum algorithms with an exponential
speed-up, but only for problems that are not NP-Hard. For NP-Hard problems, we
know only algorithms with quadratic speed-up so far, and even that is disputed.
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Grover Problem

In the problem of Grover, we have

a dimension n

a black-box function f (x) : {0, 1}n → {0, 1} parametrized by a secret n-bit
string j , which returns 1 if x = j and 0 otherwise.

The functional version of the problem asks what is the unknown w . It is clear that
classically, one may need to perform 2n oracle calls in the worst-case, and that
randomized algorithms would not help much. Notice that N = 2n is sometimes
referred to as the “library size” we are searching.
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The Oracle

The black-box function is usually thought of as an oracle operator Uw such that
for states |j〉 in the computational basis

Uw |j〉 = (−1)f (j) |j〉 = I− 2 |w〉 〈w | =

{
− |j〉 , if j = w

+ |j〉 , if j 6= w
(1.1)

This is sometimes known as the ±-oracle or phase oracle. One can generalize this
to the situation where there are multiple secrets.
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Diffusion Operator

We will also use a variant for an arbitrary known state |s〉, the so-called diffusion
operator or reflection (mirror operator) with respect to the hyper-planes
perpendicular to s:

Us = 2 |s〉 〈s| − I (1.2)

Notice that one can replace the diffusion operator Us by H⊗nZORH
⊗n, where

ZOR |s〉 =

{
+ |s〉 s = 0n

− |s〉 s 6= 0n
.

This view is common in many textbooks.
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Grover’s Algorithm

Grover’s algorithm performs the following steps:

1 creates an initial, n-qubit state |0〉⊗n

2 apply Hadamard transform on it to obtain the uniform superposition
1√
n

∑n−1
k=0 |x〉

3 apply the function oracle operator Uw and the diffusion operator Us ,
repeatedly, q times.

4 obtain ŵ by measuring the n-qubit register. With probability sin2((q + 1
2 )θ)

for some θ depending on 1√
N

, estimate ŵ will be the correct f (ŵ) = 1.

Otherwise, we repeat.

Ideally, one considers q ≈ π
4 2n/2. If the Grover iteration UsUw could be

implemented in unit time (a big if!), this would correspond to
O(2n/2) = O(

√
2n) = O(

√
N) algorithm and quadratic speed-up compared to the

linear search in time O(2n) = O(N).
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A Side Note

Let us have a bit of a geometric detour: any state |φ〉 can be uniquely expressed
as |φ〉 = α |ψ〉+ β |ψ⊥〉, where |ψ⊥〉 is orthogonal to |ψ〉. Then:

Us |φ〉 = −α |ψ〉+ β |ψ⊥〉 (1.3)

that is, amplitudes of basis states orthogonal to |ψ〉 are left unchanged, while
signs of amplitudes of the basis state |ψ〉 are flipped. Furthermore, for any state
φ, Uψ, preserves the subspace spanned by |φ〉 and |ψ〉.
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A Probability-Theory Point of View

The diffusion operator should be viewed as a quantum amplitude amplification
procedure, with the aim to increase the probability amplitude of the target state.
Following Gruska and Brassard, one could consider |φ〉 =

∑
i αi |i〉 and some

partition:

|φ〉 =
∑

i∈good
αi |i〉+

∑
i∈bad

αi |i〉 ,

with P(good) =
∑

i∈good |αi |2. Then,

|φ〉 =
√
P(good) |φgood〉+

√
1− P(good) |φbad〉 = sin(θ) |φgood〉+ cos(θ) |φbad〉

where considering sin2(θ) + cos2(θ) = 1, we arbitrarily introduce
sin2(θ) = P(good). The state |φ〉 is thus orthogonal to
|φ⊥〉 = cos(θ) |φgood〉 − sin(θ) |φbad〉. {|φgood〉 , |φbad〉} and {|φ〉 , |φ⊥〉} are thus
two orthonormal bases in a 2-dimensional subspace.
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A Probability-Theory Point of View

One obtains

Uw (sin(θ) |φgood〉+ cos(θ) |φbad〉) = − sin(θ) |φgood〉+ cos(θ) |φbad〉 (1.4)

Uφ⊥
(

sin(θ) |φ〉+ cos(θ) |φ⊥〉
)

= sin(θ) ||φ〉〉 − cos(θ) |φ⊥〉 (1.5)

Uφ⊥Uw |φ〉 = cos(2θ) |φ〉+ sin(2θ) |φ⊥〉 (1.6)

= sin(3θ) |φgood〉+ cos(3θ) |φbad〉 . (1.7)

We will see this view in the following lecture.
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A Geometric View

This amplitude amplification also has a geometric interpretation: one should see
Uw and Us as Householder reflections. Grover’s algorithm stays in a subspace
spanned by (|s〉 , |w〉). The two operators are reflections with respect to the
hyper-planes perpendicular to w and s. It is an elementary fact of Euclidean
geometry that when M1 and M2 are two lines in the plane intersecting at point O
with intersection angle α, the operation of reflection with respect to M1, followed
by reflection with respect to M2, is rotation by angle 2α around O. Then, the
product UsUw is a rotation in the (|s〉 , |w〉) plane (for the first ≈ π

√
N/4

iterations from |s〉 to |w〉) by θ = 2 arcsin 1√
N

. This view is beautifully elaborated

by Gruska.
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A Geometric View

Without giving a complete derivation here, let us consider |x⊥0 〉 and |φ0〉 at an
angle β.

Then U|φ⊥0 〉
U|x0〉 is a rotation around the origin by angle 2β.

Starting with a state |φ0〉 = sin(β) |x0〉+ cos(β) |x⊥0 〉,
after q Grover iterations, we obtain:
|φk〉 = sin((2q + 1)β) |x0〉+ cos((2q + 1)β) |x⊥0 〉.
We thus wish to pick q such that sin((2q + 1)β) is as close as possible to 1.
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Tensor-Analytical Point of View

Stoudenmire and Waintal suggests that Uw should be seen as:

Uw =
[
1 1

]( n∏
i=1

Mi

)[
1
−2

]
(1.8)

with

Mi =


Ii 0 0 ...
0 |w1

i 〉 〈w1
i | 0 ...

0 0 |w2
i 〉 〈w2

i | ...
... ... ... ...
... 0 0 |wS

i 〉 〈wS
i |

 (1.9)

where Ii is the 2× 2 identity matrix acting on qubit i and |wα
i 〉 〈wα

i | projects α on
the bitstring i .
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Tensor-Analytical Point of View

The diffusion operator Us is similar, except for the replacement of Mi by

M′i =

[
Ii 0
0 |+〉 〈+|

]
(1.10)
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The Compound-Pendulum View

The Grover iteration has a number of appealing interpretations: Perhaps the most
physical is due to Grover and Sengupta, which will surely please the Kybernetika
and Robotika students.

Recall the discussion of the oscillators from the second lecture. The oscillator
could describe a weight (or bob) suspended from a pivot on a (massless) cord
such that the bob can swing freely. Now, consider N oscillators, one of which has
a slightly shorter cord, and hence a different frequency. We seek to find the one
with the shorter cord. We could check the frequency of the N oscillators one by
one. Alternatively, we can consider a compound pendulum.
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The Compound-Pendulum View

To this end, we consider a system where the N oscillators are suspended from a
support pendulum. We use the following notation:

The length, mass and displacement coordinate for the support pendulum are
denoted L,M,X ;

the pendulum we aim to identify has length, mass and displacement l1,
m1
N , x1;

the remaining N − 1 oscillators have length, mass and displacements l , mN , xj
for j = 2, . . . ,N.

L

ll1

1
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The Compound-Pendulum View

The Lagrangian (kinetic energy minus potential energy) is then:

1

2
[MẊ 2−KX 2 +

1

N
(m1ẋ1

2 − k1(x1 − X )2) +
1

N

N∑
j=2

(mẋj
2 − k(xj − X )2)]

K ≡ (M +
m

N
)
g

L
, kj ≡ mj

g

lj
,

(1.11)

where

g is the acceleration due to gravity;

K , k1 and k are the spring, or stiffness, constants, of the corresponding
oscillators. For a simple, uncoupled, harmonic oscillator with mass m, this is

related to the frequencies ω through ω =
√

k
m .
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The Compound-Pendulum View

Through a simple change of variables, one obtains:

Lred ≈
1

2
[MẊ 2 − KX 2 + m1ξ̇

2 − k1(ξ − 1√
N
X )2 + m ˙̄x2 − k(x̄ − X )2]. (1.12)

Note that this has 3 degrees of freedom, two that are strongly coupled X
and x̄ , while the third, ξ, is weakly coupled due to the 1/

√
N factor. Solving first

the X , x̄ system gives us two modes with frequencies ωa and ωb. The natural
frequency of the ξ degree of freedom that corresponds to the special pendulum is

approximately ω1 =
√

k1
m1

. If ω1 is close to either ωa or ωb, there will be resonant

transfer of energy between the two weakly coupled systems. In O(
√
N) cycles,

one should be able to identify the correct pendulum by having amplified its
energy. If we instead had n shorter cords, it would take O(

√
N/n) cycles.
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The Compound-Pendulum View

Imagine that one starts by a single push to the support pendulum and can change
parameters of any pendulum and then observe their frequency with a finite
precision that is independent of N.

By bisection, we can adjust the cords of 1/2 of the pendula, 1/4 of the pendula,
etc., until we identify the one pendulum. This would have a runtime of
O(
√
N logN).
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Aspman/Korpas/Mareček (CTU) Quantum Computing April 26, 2024 18 / 23



The Controversy

As we have mentioned at the beginning, there is also a fair amount of controversy,
which centers around three issues:

one needs to be able to run the oracle with an error that scales with
N−1/4 = 1/2n−4. This is a very exacting standard which may be difficult to
obtain for non-trivial n.

quantumly, one needs to be able to implement the oracle in unit amount of
time, but not to be able to implement the product of the Grover iteration
UsUw in unit amount of time, and not to be able to implement many things
classically.

the tensor-analytic view suggests that if one knew w , one would use rank-2
matrix product operation, which is classically simulable in polytime. Then,
one efficiently simulates the product of the Grover iterations as well.
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The NP-Hard Problems

Let us now consider two NP-Hard functional (optimization) problems. In the
Travelling Salesman Problem (TSP), we seek the shortest simple cycle
that visits each vertex in a weighted graph G once (Hamiltonian circuit). In the
Minimum Set Cover, we seek the minimum cardinality subset S ′ ⊆ S such that⋃

S∈S′
S = U

for some given S ⊂ U , with the cardinality of the ground set |U| = n and |S| = m.
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Dynamic Programming for the TSP

A naive classical approach to either problem would construct a dynamic
programming tableau, where in each row r in the tableau, we would have the
lengths of Hamiltonian circuits in r -vertex subgraphs. Following ?, let f (S , u, v)
denote the length of the shortest path in the graph induced by a subset of vertices
S that starts in u ∈ S , ends in v ∈ S and visits all vertices in S exactly once.
Then:

f (S , u, v) = min
t∈N(u)∩S

t 6=v

{w(u, t) + f (S \ {u}, t, v)} , f ({v}, v , v) = 0. (2.1)

where N(u) is the neighbourhood of u in G . For k ∈ [2, |S | − 1] fixed,

f (S , u, v) = min
X⊂S,|X |=k
u∈X ,v /∈X

min
t∈X
t 6=u

{f (X , u, t) + f ((S \ X ) ∪ {t}, t, v)}. (2.2)
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Dynamic Programming for the TSP

The algorithm of Ambainis et al. picks some α ∈ (0, 1/2] and classically
precomputes f (S , u, v) for all |S | ≤ (1− α)n/4 using dynamic programming .
That is, it computes the bottom rows of the tableau classically, in time
exponential in n. Quatumly, it obtains

min
S⊂V
|S|=n/2

min
u,v∈S
u 6=v

{f (S , u, v) + f ((V \ S) ∪ {u, v}, v , u)}

over all subsets S ⊂ V such that |S | = n/2 by taking the following steps:

1 Run Grover with k = αn/4 to calculate f (S , u, v) for |S | = n/4 starting
with the rows of the tableau obtained classically.

2 Run Grover with k = n/4 to calculate f (S , u, v) for |S | = n/2.
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Dynamic Programming for the TSP

Under very strong assumptions about storing the data in quantum RAM (QRAM),
Ambainis et al. claim a speed-up. Notice that much of the controversy
surrounding the original Grover applies to this setting as well, compounded by the
QRAM assumptions.

Classical (best known) Ambainis et al.

Vertex Ordering Problems O∗(2n) O∗(1.817n)
Travelling Salesman Problem O(n22n) O∗(1.728n)

Minimum Set Cover O(nm2n) O(poly(m, n)1.728n)
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