
Lecture Topic: Adiabatic Quantum Computing and Quantum
Replacements of Optimization Algorithms
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Main Result to show

Beautifully:

Theorem

The model of adiabatic computation is polynomially equivalent to the standard
model of quantum computation.
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Main Result to show

Interestingly:

Theorem

The model of adiabatic computation with explicit sparse Hamiltonians is
polynomially equivalent to the standard model of quantum computation.

Even more interestingly:

Theorem

Any quantum computation can be efficiently simulated by an adiabatic
computation with 2-local nearest neighbor Hamiltonians operating on six-state
particles set on a two dimensional grid.

We will discuss how one begins to even show these statemens above.
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Aspman/Korpas/Mareček (CTU) Quantum Computing May 2, 2024 3 / 104



Experimental Realization

It’s 2004 and people really would like to build a quantum computer:

“[The previous theorems] open up the possibility of physically realizing universal
quantum computation using adiabatically evolving quantum systems”.
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Motivation behind AQC

The study of adiabatic quantum computation (AQC) was initiated several years
ago by Farhi, Goldstone, Gutmann and Sipser:

Novel quantum algorithm for solving classical optimization problems such as
Satisfiability (SAT).

Their algorithm, that for what follows will abbreviated as AQC (abusing notation)
and will explicitly describe later on, is based on a celebrated theorem in quantum
mechanics known as the adiabatic theorem.
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The exact worst-case behavior of AQC is not known. On one the positive side,
several simulations on random instances of up to 20 quantum bits led to various
optimistic speculations.

On the negative side, there is some evidence that ACQ takes exponential time in
the worst-case for NP-complete problems.
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Nevertheless, AQC has since shown to be promising in other (less ambitious
directions):

It possesses several interesting algorithmic capabilities and exhibits inherent
robustness against certain types of quantum errors.
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Dam, Mosca, Vazirani

[...] On the question of whether [AQC] can be used to efficiently solve
NP-complete problems on a quantum computer [...] the usual query complexity

arguments cannot be used to rule out a polynomial time solution.

On the other hand, we argue that the adiabatic approach may be thought of as a
kind of “quantum local search”.
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Adiabatic Quantum Computation

Let us briefly introduce ACQ:A computation in this model is specified by two
Hamiltonians named Hinit and Hfinal .

The ground state of Hinit is required to be an easy to prepare state (it can be
done efficiently) and serves as the input of the computation.

The output of AQC is the ground state of the final Hamiltonian Hfinal . Hence, we
choose an Hfinal whose ground state represents the solution to our problem.
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Additionally, we require the Hamiltonians to be local1.

This, in particular, makes sure that the Hamiltonians have a short classical
description since the interactions between qubits are limited to a finite
neighborhood.

1We require them to only involve interactions between a constant number of particles (this
can be seen as the equivalent of allowing gates operating on a constant number of qubits in the
gate model)
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The running time of the adiabatic computation is determined by the minimal
spectral gap2 of all the path connected Hamiltonians along the curve:

s : [0, 1]→MH

Hinit 7→ Hfinal

2The difference between the ground state eigenenergy and the first excited state eigenenergy.
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The space of Hamiltonians

MH

MH1

MH2

MH3
Hinit Hfinal
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Concretely for any s ∈ [0, 1] we have and infinite family of path parametrized
Hamiltonians:

H(s) = (1− s)Hinit + sHfinal (0.1)

and of course we are interested in reachign s = 1 to obtain Hfinal.

If this is done slowly we say we perform adiabatic computation and it is polynomial
time if the corresponding minimal spectral gap is at least inverse polynomial.
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Motivation: Physics

Let us provide some motivation:

Recall that H corresponds to the energy of the quantum system.

To be physically realistic and implementable it must be local.

Ground state of H is the state of lowest energy.

We can set up a quantum system in the ground state of Hinit (which is
supposed to be easy to generate) and apply the Hamiltonian Hinit to the
system. We then slowly modify the Hamiltonian along the path from Hinit

towards Hfinal. .

From the adiabatic theorem it follows that if this transformation is performed
slowly enough (determined by the minimal spectral gap), the final state of the
system will be in the ground state of Hfinal , as required.
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Motivation: Computational Power

To refer to the adiabatic model as a computational model that computes
classical functions, we consider the result of the adiabatic computation to be the
outcome of a measurement of one or more of the qubits, performed on the final
ground state.

So, AQC is performed on qubits similar to the ones of the gate-based computers.
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AQC Facts
Note: adiabatic computation can be efficiently simulated by gate-based quantum
computers .

Therefore, its computational power is not greater than that of gate-based
computers.

Some positive results are known: e.g. Grover search can be realized AQC!

Moreover, AQC can “tunnel” through wide energy barriers (possibly
outperforming simulated annealing).

Global min
Local min
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Unknowns Power

Whether adiabatic computation can achieve the full power of quantum
computation was not known.

Even whether adiabatic computation can simulate general classical computations
efficiently was unknown.
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Power over classical optimization

What was known is the potential of AQC on a restricted class of adiabatic
algorithms that can be referred to as adiabatic optimization algorithms.

There, Hfinal is chosen to be a diagonal matrix, corresponding to a combinatorial
optimization problem.

Being diagonal implies that the ground state of Hfinal is a classical state, (a state
in the computational basis).

We want to show something more powerful. We only will assume that the
Hamiltonians involved are local.
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n-qubit systems

An n-qubit is described by a state in Hilbert space of dimension 2n, the tensor
product of 2-dimensional Hilbert spaces H = C, that is:

|ψ〉 ∈ C⊗n. (0.2)

In terms of the individual qubits:

|ψ〉 = |i1〉 ⊗ . . . |in〉 = |i1 . . . in〉, (0.3)

where ij ∈ {0, 1}.
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Evolution

The state of n qubits evolves in discrete time steps by unitary operations.

Of course, the underlying physical description of this evolution is continuous, and
is governed by Schrödinger’s equation:

ı
d

dt
|ψ(t)〉 = H|ψ(t)〉 (0.4)

where H is the system’s Hamiltonian and |ψ(t)〉 is the state of the n qubits at
time t.

We have already seen that:

|ψ(t)〉 = exp(−ıHt)|ψ(0)〉. (0.5)
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Given that the state of the system at time t = 0 is equal to |ψ(0)〉, one can in
principle solve Schrödinger’s equation with this initial condition, to get |ψ(T )〉,
the state of the system at a later (terminal) time t = T .
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Recall: eigenvalues of Hamiltonians as (eigen)energies.

The ground energy of a Hamiltonian is its lowest eigenvalue and the
corresponding eigenvector(s) are called ground state(s).
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Aspman/Korpas/Mareček (CTU) Quantum Computing May 2, 2024 22 / 104



Spectral Gap

Spectral gap ∆(H) of a Hamiltonian H: difference between the lowest eigenvalue
of H and its second lowest eigenvalue.

Note that ∆(H) = 0 if the lowest eigenvalue is degenerate.
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Locality

One cannot efficiently apply any arbitrary Hamiltonian on a n-qubit system (just
describing it requires roughly 22n space).

Restrict to k-local Hamiltonians.

A Hamiltonian H is k-local if H =
∑

AHA where A runs over all subsets of k
qubits.

Commonly k = 2 in NISQ devices.
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Adiabatic Theorem

The cornerstone of the adiabatic model of computation is the celebrated
adiabatic theorem.

Consider a time-dependent Hamiltonian H(s), and a system initialized at time
t = 0 in the ground state of H(0) (assume that for all H(s) has a unique ground
state for all s).
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We let the system evolve according to the Hamiltonian H(s), where s := t/T ,
from t = 0 to the terminal time t = T .

As said before, the adiabatic theorem affirms that for large enough T the final
state of the system is very close to the ground state of H(1).

How large T should be for this to happen is determined by the spectral gap of the
Hamiltonians ∆(H(s)).
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It is crucial that the spectral gap does not change sign.

Time

En
er

gy

Energy spectrum variation for a Hamiltonian H
Ground Energy Level
1st Energy Level
2nd Energy Level
3rd Energy Level
4th Energy Level
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Physical intuition

Consider a spin particle (e.g. an electron) in a magnetic field B which rotates
from the x direction to the z direction in a total time T . The dynamics of the
particle are described by the Hamiltonian:

H(t) = − cos
( πt

2T

)
σx − sin

( πt
2T

)
σz . (0.6)
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Physical intuition
Assume: at t = 0 particle points in the x direction: |ψ(0)〉 = (|0〉+ |1〉)/

√
2, the

ground state of H(0). As the magnetic field is slowly rotated toward the z
direction the particle’s spin begins to precess about the new direction of the field,
moving it toward the z axis.

Bx

1.0 0.8
0.6

0.4
0.2

0.0

B y

0.04
0.02

0.00
0.02

0.04

B z

1.0
0.8
0.6
0.4
0.2
0.0

Variation of B over time

x

y

|0

|1

Note that this produces a small wiggling component out of the xz-plane.
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Adiabaticity

Adiabaticity: allow T to be larger and larger, so that the rotation of the field
direction happens slower and slower.

At large T : state will precess in a tighter and tighter orbit about the field
direction (aligning completely with the geodesic).

In the limit of arbitrarily slow rotation of the field, the state simply tracks the
field, remaining in the instantaneous ground state of H(t).
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Full statement

Generally: let H(s) be a Hermitian operator that varies smoothly as a function of
s := t/T .

For T large, H(t) varies very slowly as a function of t.

An initial quantum state |ψ(0)〉 evolves according to the Schrödinger equation
(0.4), or, equivalently:

ı
d

ds
|ψ(s)〉 = TH|ψ(s)〉. (0.7)
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Full statement

Now suppose that |ψ(0)〉 is an eigenstate of H(0), which we assume for simplicity
is the ground state, and is nondegenerate.

Furthermore, suppose that the ground state of H(s) is nondegenerate for all s.

Theorem (Adiabatic Theorem)

Given the above, in the limit T →∞, |ψ(T )〉 will be the ground state of H(1).
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Proof of the Adiabatic Theorem

...
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A more formal version

Theorem (Adiabatic Theorem (Proper))

Let Hinit and Hfinal be two Hamiltonians acting on a quantum system and
consider the time-dependent Hamiltonian H(s) := (1− s) Hinit + sHfinal. . Assume
that for all s,H(s) has a unique ground state. Then for any fixed δ > 0, if

T ≥ Ω

(
‖Hfinal − Hinit ‖1+δ

εδ mins∈[0,1] {∆2+δ(H(s))}

)
(1.1)

then the final state of an adiabatic evolution according to H for time T (with an
appropriate setting of global phase) is ε-close in `2-norm to the ground state of
Hfinal .

The matrix norm is the spectral norm ‖H‖ := maxw ‖Hw‖/‖w‖.
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The AQC model: proper

The adiabatic circuit is determined by Hinit and Hfinal and the output of the
computation is (close to) the ground state of Hfinal .

Definition

A k-local AQC (n, d ,Hinit ,Hfinal , ε) is specified by two k-local Hamiltonians,
Hinit and Hfinal acting on n d-dimensional particles, such that both Hamiltonians
have unique ground states.
The ground state of Hinit is a tensor product state. The output is a state that is
ε-close in `2-norm to the ground state of Hfinal. .
Let T be the smallest time such that the final state of an adiabatic evolution
according to H(s) := (1− s)Hinit + sHfinal for time T is ε-close in `2-norm to the
ground state of Hfinal . The running time of the adiabatic algorithm is defined to
be T ·maxs ‖H(s)‖.
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Gates to AQC

Main theorem can be proved by simulating a quantum circuit with L (two-qubit)
gates on n qubits by an adiabatic computation on n + L qubits.

Note that the opposite direction can also be shown.

We will show this by considering 5-qubit interactions.

However, it is possible to reduce it to three. (Note that the practical
implementation of 5-qubit interactions is still not easy.)
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Gates to AQC: Theorem

Theorem

Given a quantum circuit on n qubits with L two-qubit gates implementing a
unitary U and ε > 0 , there exists a 5-local adiabatic computation
(n + 2, 2,Hinit,Hfinal, ε) whose running time is poly(L, 1/ε) and whose output is
ε-close to U|0〉n = U|0〉⊗n. Additionally, Hinit and Hfinal can be computed by a
polynomial time Turing machine.
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The Hamiltonian

The Hamiltonian we need is defined in the book of Kitaev (ref in the notes).

We begin by defining a state

|γ`〉 := |α(`)〉 ⊗ |1`0L−`〉c . (1.2)

Here |α(`)〉 denotes the state of the circuit after the application of the `-th gate
(and the superscript c denotes the “clock qubits” required for the proof of the
theorem).

The notation |1`0L−`〉 means that there are ` qubits in the state |1〉 followed by
(L− `) qubits in the state |0〉.
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We now define the Hamiltonian Hinit with ground state |γ0〉 = |0n〉 ⊗
∣∣0L〉c ,

and the local Hamiltonian Hfinal with ground state |η〉 = 1√
L+1

∑L
`=0 |γ`〉.
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The Hilbert Space

Cn CL⊗
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The Hilbert Space

Cn CL⊗

Typo: n→ 2n.
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It turns out that the way to do it is:

Hinit := Hclock init + Hinput + Hclock

Hfinal :=
1

2

L∑
`=1

H` + Hinput + Hclock

(1.3)

The terms in the two Hamiltonians are defined such that the only state whose
energy is 0 is the desired ground state.
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Adiabatic Evolution

The adiabatic evolution then follows the time-dependent Hamiltonian

H(s) = (1− s)Hinit + sHfinal (1.4)
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The Hamiltonians Explained: Hclock

First, Hclock checks that the clock’s state is of the form |1`0L−`〉c for some
0 ≤ ` ≤ L (thus “clock”).

To do this we give a penalty to any state (of the clock register) that contain a
sequence 01, that is:

Hclock :=
L−1∑
`=1

|01〉〈01|c`,`+1. (1.5)
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The Hamiltonians Explained: Hinit

Hinput checks that if the clock is at |0〉⊗L (we ommited the c-clock index here,
clearly referring to Hclock) then the computation qubits must be in the state
|0〉⊗n. This is given by:

Hinit :=
n∑

i=1

|1〉〈1| ⊗ |0〉〈0|. (1.6)
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The Hamiltonians Explained: Hclock init and J`

The goal of Hclock init is to check that the clock’s state is |0〉⊗L:

Hclock init := |1〉〈1|. (1.7)

Finally, we have the term

1

2

L∑
`=1

H` (1.8)

which is the term representing the gate-based Hamiltonian and it is only apparent
in the end of the AQC.
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Summary

Hclock init and Hclock: These terms are related to the clock qubits. Hclock init sets
the initial state of the clock qubits and ensures that the computation starts with
all clock qubits in the state |1〉c . Hclock penalizes out-of-order transitions and
enforces a step-by-step progression through the circuit.

Hinput: This term sets the initial state of the quantum circuit. It essentially
encodes the input data of the problem you want to solve.

1
2

∑L
`=1 H`: This term is present only in the final Hamiltonian, Hfinal. It represents

the quantum gates in the circuit. The factor 1
2 ensures that the spectrum of the

Hamiltonian is non-negative, which is a requirement for the adiabatic theorem to
hold.
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Spectral gap inverse in L

We have now seen what are the Hamiltonians needed to transform a gate-based
problem to an AQC.

We need to understand the spectral gap now.

Recall the state given by Eq. (1.2):

|γ`〉 := |α(`)〉 ⊗ |1`0L−`〉c .
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Spectral gap inverse in L: s > 1/3
Let S0 a subspace of Cn ⊗ CL spanned by

{|γ0〉, . . . , |γ1〉} (1.9)

which are equivariant states (w.r.t. the action of Hamiltonians on S). In other
words, we have some form of symmetry.

Theorem

The spectral gap of the restriction of H(s) to S0 satisfies:

∆(HS0(s)) = Ω(L−2), (1.10)

for all s ∈ [0, 1].

Interestingly, the proof uses a continuous-time quantum walk.

Aharonov et. al.: “[...] From this it follows that the running time of the adiabatic
computation is polynomial”.
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We omit the proof

The proof is technical but not very hard.

The important thing is to understand the need for the Hamiltonians Hinit and
Hfinal in Eq. (1.3).

With the proof on the (inverse in L) polynomial runtime, we claim the following.

Aspman/Korpas/Mareček (CTU) Quantum Computing May 2, 2024 50 / 104



We omit the proof

The proof is technical but not very hard.

The important thing is to understand the need for the Hamiltonians Hinit and
Hfinal in Eq. (1.3).

With the proof on the (inverse in L) polynomial runtime, we claim the following.
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The Equivalence Statement

Given a quantum circuit on n qubits with L gates, the quantum adiabatic
algorithm with Hinit and Hfinal as defined in the previous slides, with
T = O(ε−δL4+2δ), for fixed δ > 0, outputs a final state |η〉 that is within `2

distance ε of the history state of the circuit. The running time of the AQC
algorithm is O(TL).

Already from 2000 it was known that gate-based algorithms can be encoded as
AQC.

With the proof of the main theorem the universality of AQC is also proven.
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Break

Questions?
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Quantum Annealing
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Quantum Annealing

We have discussed that the solution of computational problem can be encoded
into the ground state of a time-dependent quantum Hamiltonian H(s) which
evolves following the paradigm of AQC.

Quantum annealing (QA) is a framework to solve computational problems by
quantum evolution towards the ground states of final Hamiltonians that encode
classical (optimization) problems.
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Quantum Annealers are Real

This is the D-Wave 2000Q system. It performs quantum annealing using
superconducting qubits that live in the very end of a dilution refridgerator cooled
at approximately -273.5 degrees Celcius.
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Stoquasticity

QA therefore, moves between the idealized assumptions of universal AQC and the
unavoidable experimental compromises that happen in a lab.

Compromise in QA: only design of stoquastic quantum annealers.

Definition (Stoquastic Hamiltonian)

A Hamiltonian H is called stoquastic, with respect to a basis B, if and only if H
has real nonpositive off-diagonal matrix elements in the basis B.

For example, a Hamiltonian is stoquastic if and only

〈i |H|j〉 ≤ 0, ∀i , j ∈ {0, 1}n, i 6= j . (2.1)

This means the ground state of H can be expressed as a classical probability
distribution.
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〈i |H|j〉 ≤ 0, ∀i , j ∈ {0, 1}n, i 6= j . (2.1)

This means the ground state of H can be expressed as a classical probability
distribution.
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AQC with Stoquastic Hamiltonians

Definition

Stoquastic adiabatic quantum computation (StoqAQC) is the special case of AQC
restricted to k-local stoquastic Hamiltonians.

Essentially, Quantum Annealing (QA) refers to StoqAQC when considered in
(realistic) open quantum systems.
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No Universality

The computational power of stoquastic Hamiltonians has been carefully studied,
and is suspected to be limited..

It is quite unlikely that ground-state StoqAQC is universal.
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Quantum Annealing

QA follows the same idea of AQC. We still have the same tools:

An initial, easy-to-prepare state and a Hamiltonian Hinit,

A problem of interest whose solution is encoded into the ground state of a
Hamiltonian Hfinal,

Adiabatic evolution using Eq. (0.1):

H(s) = (1− s)Hinit + sHfinal (2.2)
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Exponential Speedups with QA

It turns out that QA can be used to obtain exponential speedups!

Somma, Nagaj, and Kieferovaá showed that similarly to the case of quantum
walks, utilizing QA on the glued-trees problem one obtains an exponential
speedup.
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Glued-Trees Problem

In this problem we are given an oracle OA that concists of the adjacency matrix A
of two binary trees that are randomly glued. There are O(2n) vertices named with
randomly chosen 2n-strings.

The oracle OA outputs the names of the adjacent vertices on any given input
vertex name.
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Aspman/Korpas/Mareček (CTU) Quantum Computing May 2, 2024 61 / 104



Glued-Trees Problem
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Glued-Trees Problem

There are two special vertices:

ENTRANCE

EXIT

which are the roots of the binary trees. They can be identified because they are
the only vertices of degree two in the graph.

Glued-Trees Problem: Given an oracle OA for the graph and the name x of the
ENTRANCE, find the name y of the EXIT.

An efficient method based on quantum walks can solve this problem with constant
probability, while no classical algorithm that uses less than a subexponential (in n)
number of oracles exists.
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Break

Questions?
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Optimization

An optimization problem is a problem to minimize or maximize a real
single-valued function of multivariables called the cost function.

If the problem is to maximize the cost function f , it suffices to minimize −f .

Additional constraints can be imposed on the objective function:

min
x ,y

f (x , y) (2.3)

s.t. g(x) ≥ 0 (2.4)

x ∈ Rm, y ∈ Zn (2.5)

We would like to see if QA can help towards solving hard optimization problems.
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Potential solution: QA

Consider the k-th eigenstate state of the Hamiltonian:

H(s)|k〉 = λk(s)|k〉 (2.6)

with |0(0)〉 being the ground state of Hinit and generically |0(s)〉 the ground state
of H(s).

If |0(s)〉 is non-degenerate and if initial ground state is |0(0)〉 then the final state
vector, at large T , take the form:

|ψ(s)〉 =
∑
κ

cκ(s)e−ıTφκ(s)|κ(s)〉 (2.7)

with φκ(s) =
∫ s

0 λκ(s ′)ds ′.
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It turns out:

c0(s) ≈ 1 +O(T−2), (2.8)

cκ6=0(s) ≈ i

T

[
Aκ(0)− eıT [φκ(s)−φ0(s)]Aκ(s)

]
+O(T−2) (2.9)

The adiabaticity condition becomes:

1

∆κ(t)2

∣∣∣∣〈κ(t)

∣∣∣∣dH(t)

dt

∣∣∣∣ 0(t)

〉∣∣∣∣ = δ � 1. (2.10)
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Convergence via Ising model

Suppose that the optimization (2.3) problem we wish to solve can be represented
as the ground-state search of an Ising model of general form

HIsing ≡ −
N∑
i=1

Jiσ
z
i −

N∑
i ,j=1

Jijσ
z
i σ

z
j +O(σ3). (2.11)

Here, σαi (α = x , y , z) are the Pauli matrices.

j + 1jj − 1

Jj−1,j Jj,j+1
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Convergence via Ising model

Eigenvalues of σzi is +1 or −1, which corresponds the classical Ising spin chain.

Most combinatorial optimization problems can be written in this form by mapping
binary variables {0, 1} to spin variables {±1}.

An important assumption is that the Hamiltonian (2.11) is proportional to the
number of spins N for large N.
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Transverse Field
To realize QA, a (kinetic) energy term is introduced typically by the so-called
time-dependent transverse field:

HTF(t) ≡ −Γ(t)
N∑
i=1

σxi (2.12)

which results in a variety of possible quantum mechanical effects to the chain:
spin flips, quantum fluctuations or quantum tunneling, between the two states
σzi = 1 and σzi = −1.

Essentially this allows a quantum search of the phase space of the system.

Initially the strength of the transverse field Γ(t) is chosen to be very large, and the
total Hamiltonian

H(t) = HIsing + HTF(t) (2.13)

is dominated by the second kinetic term.
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The evolution of the TF Ising Model

The coefficient Γ(t) is then gradually and monotonically decreased toward 0,
leaving eventually only the potential term HIsing .

Accordingly the state vector |ψ(t)〉, which follows the real-time Schrödinger
equation, is expected to evolve from the trivial initial ground state of the
transverse-field (2.13) to the non-trivial ground state of (2.11), which is the
solution of the optimization problem.

An important issue is how slowly we should decrease Γ(t) to keep the state vector
arbitrarily close to the instantaneous ground state of the total Hamiltonian.
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The evolution of the TF Ising Model

The following Theorem provides a solution to this problem as a sufficient
condition.

Theorem

The adiabaticity (2.10) for the transverse-field Ising model (2.11) yields the time
dependence of Γ(t) as

Γ(t) = a(δt + c)−1/(2N−1) (2.14)

for t > t0 (for given t0 > 0) as a sufficient condition of convergence of QA. Here
a, c are small constants O(1) and δ is a small parameter that controls adiabaticity.

Point is: The power decay above satisfies the adiabaticity condition (2.10)
which guarantees convergence to the ground state of HIsing as t →∞.
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QA in Practice: Optimization

In practical situations QA is used as heuristic optimization method.

Due to hardware constructions, at the moment only Quadratic Binary
Optimization (QUBO) problems can be implemented.

A QUBO problem reads

min
x∈{0,1}N

Q(x) (2.15)

where the objective function Q is defined as:

Q(x) :=
N∑

i ,j=1

Qijxixj +
N∑
i=1

cixi . (2.16)
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The problem to be optimized is then fully specified by Qij and ci .

A broad class of paradigmatic optimization problems from Vertex Cover to the
Traveling Salesperson problem have been mapped to QUBO form.
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k ≥ 3

If the problem of interest has a cost function of high-order interactions, than the
quadratic, one has to encode this information in ancilla qubits.

For example, assume a problem encoding involves the 3-local expression

xyz , x , y , z ∈ R.

This has to be mapped to the expression

xw ,

where w := yz and impose the additional constraint

3w + yz − 2yw − 2zw .

Only solution (zero penalization) is w = yz .
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Example: Knapsack Problem

We are given a set of weights w ∈ Zn
≥0 and their corresponding values v ∈ Zn

≥0,
and the objective is to maximize the total value of the items that can be packed
into a knapsack subject to a given weight limit W .

max
n∑

i=1

vixi ,

s.t.

n∑
i=1

wixi ≤W ,

(2.17)

where W is the maximum weight limit (threshold) of the knapsack and xi is the
binary variable representing whether the i-th item is to be placed in the knapsack.
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MILP to QUBO

In converting MILPs to QUBOs we introduce a slack variable S for each linear
inequality and transform it into an equivalent linear equality. We add to the
objective a penalty term:

λ0

(
n∑

i=1

wixi −W + S

)2

(2.18)

where the purpose of the auxiliary slack variable S is to reduce this term to 0 once
the constraint has been satisfied, 0 ≤ S ≤ maxx

∑n
i wixi −W .
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the constraint has been satisfied, 0 ≤ S ≤ maxx

∑n
i wixi −W .
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The QUBO formulation

the Knapsack problem can be formulated then as:

max
n∑
i

vixi − λ0

(
n∑
i

wixi −W +
N∑

k=1

2k−1sk

)2

, (2.19)
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Maping to the Ising model

min −

 n∑
i=1

n∑
j=1

Jijsi sj +
n∑

i=1

hi si + c

 (2.20)

where

Jij = λ02k−1wiδij , (2.21)

hi =
vi
2
− λ0wiW , (2.22)

c =
n∑

i=1

vi
2

+ λ0

(
n∑

i=1

w2
i

4
+

N∑
k=1

22k−2

)
. (2.23)
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QA Fails?
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QA Succeeds?
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Break

Questions?
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VQAs: PQCs
Variational Quantum Algorithms (VQAs) provide a general framework that can be
used to solve a variety of problems.

For that we first need the idea of a parametrized quantum circuit.

Definition

A parametrized quantum circuit (PQC) is a continuous function U : RL → U(N)
mapping any real parameter vector ϑ ∈ RL to a unitary U(ϑ).

In practice such a quantum circuit is a sequence of universal quantum gates’
compositions and/or tensor products.

Consider, for a moment, the following optimization problem (and keep it in mind):

min
x∈{0,1}n

f (x). (2.24)

A VQA is, essentially, a (quantum) continuous relaxation of this problem.
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Aspman/Korpas/Mareček (CTU) Quantum Computing May 2, 2024 83 / 104



VQAs: PQCs
Variational Quantum Algorithms (VQAs) provide a general framework that can be
used to solve a variety of problems.

For that we first need the idea of a parametrized quantum circuit.

Definition

A parametrized quantum circuit (PQC) is a continuous function U : RL → U(N)
mapping any real parameter vector ϑ ∈ RL to a unitary U(ϑ).

In practice such a quantum circuit is a sequence of universal quantum gates’
compositions and/or tensor products.

Consider, for a moment, the following optimization problem (and keep it in mind):

min
x∈{0,1}n

f (x). (2.24)

A VQA is, essentially, a (quantum) continuous relaxation of this problem.
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PQC example
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PQC example

U(θ) = RY (θ1)⊗ RY (θ2)⊗ RY (θ3)

=

(
cos θ1

2 − sin θ1
2

sin θ1
2 cos θ1

2

)
⊗
(

cos θ2
2 − sin θ2

2

sin θ2
2 cos θ2

2

)
⊗
(

cos θ3
2 − sin θ3

2

sin θ3
2 cos θ3

2

)

=



c1c2c3 −c1c2s3 −c1s2c3 c1s2s3 −s1c2c3 s1c2s3 s1s2c3 −s1s2s3

c1c2s3 c1c2c3 −c1s2s3 −c1s2c3 −s1c2s3 −s1c2c3 s1s2s3 s1s2c3

c1s2c3 −c1s2s3 c1c2c3 −c1c2s3 −s1s2c3 s1s2s3 −s1c2c3 s1c2s3

c1s2s3 c1s2c3 c1c2s3 c1c2c3 −s1s2s3 −s1s2c3 −s1c2s3 −s1c2c3

s1c2c3 −s1c2s3 −s1s2c3 s1s2s3 c1c2c3 −c1c2s3 −c1s2c3 c1s2s3

s1c2s3 s1c2c3 −s1s2s3 −s1s2c3 c1c2s3 c1c2c3 −c1s2s3 −c1s2c3

s1s2c3 −s1s2s3 s1c2c3 −s1c2s3 c1s2c3 −c1s2s3 c1c2c3 −c1c2s3

s1s2s3 s1s2c3 s1c2s3 s1c2c3 c1s2s3 c1s2c3 c1c2s3 c1c2c3



for θ = (θ1, θ2, θ3) ∈ R3, where ci = cos θi2 and si = sin θi
2 for i = 1, 2, 3.
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Generically
The quantum part of a VQA has the following form:

. . . |Ψ(ϑ)⟩|Ψ0⟩ U1(ϑ) U2(ϑ) UL(ϑ)

Layer 1 Layer 2 Layer L
. . .

More precisely, we can explicitly include the observable we want to measure:

. . . |Ψ(ϑ)⟩|Ψ0⟩ U1(ϑ) U2(ϑ) UL(ϑ) B

Layer 1 Layer 2 Layer L Observable
. . .
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VQAs: The Quantum Part
Given a PQC with ϑ ∈ RL we can define a cost function

B(ϑ) = f
(
{|Ψ〉0}, {Bk},U(ϑ)

)
. (2.25)

It involves (some) obsevable quantity: operators {Ok} given input states {|Ψ〉0}
and the PQC U(ϑ).

Let ρin := |Ψ〉0〈Ψ|0 (assume norm 1). A common choice is (using Born’s rule) to
define the “observable” function

B(ϑ) =
∑
k∈I

Tr
(
BkU(ϑ)ρinU

†(ϑ)
)
, (2.26)

or more generically

B(ϑ) =
∑
k∈I

fk

(
Tr
(
BkU(ϑ)ρinU

†(ϑ)
))

, (2.27)

for some functions fk .
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VQAs: Measurements

Construct an empirical estimate of 〈B〉ϑ of the observable:

〈B〉ϑ := 〈Ψ(ϑ)|B|Ψ(ϑ)〉 , (2.28)

where |Ψ(ϑ)〉 := U(ϑ)|Ψ0〉.

The empirical estimate we measure is:E[Bϑ]. This is constructed by measuring the
same circuit repeatedly. Out of this we construct a cost function we would like to
minimize:

ϑ∗ := arg min
ϑ
‖E[Bϑ]− 〈B〉ϑ ‖

p
` (2.29)
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Aspman/Korpas/Mareček (CTU) Quantum Computing May 2, 2024 88 / 104



VQAs: Measurements

Construct an empirical estimate of 〈B〉ϑ of the observable:

〈B〉ϑ := 〈Ψ(ϑ)|B|Ψ(ϑ)〉 , (2.28)

where |Ψ(ϑ)〉 := U(ϑ)|Ψ0〉.

The empirical estimate we measure is:E[Bϑ]. This is constructed by measuring the
same circuit repeatedly. Out of this we construct a cost function we would like to
minimize:

ϑ∗ := arg min
ϑ
‖E[Bϑ]− 〈B〉ϑ ‖

p
` (2.29)
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VQAs: After the measurement what?

|Ψ(ϑ)⟩|Ψ0⟩ U(ϑ)

argminϑ ∥E[Bϑ]− ⟨B⟩ϑ ∥
p
ℓ

E[Bϑ]updated ϑ∗

Quantum

w.r.t. B

Classical
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VQA: The Classical Part

During the optimization, one uses a finite statistic estimator of the cost or its
gradients.

Essentially we are “training” the VQA by learning the parameters ϑ.

It is known that for many optimization tasks using information in the cost
function gradient can help in speeding up and guaranteeing the convergence of
the optimizer.

One of the main advantages of many VQAs is that often one can analytically
evaluate the cost function gradient.
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Parameter Shift Rule: compute gradients

Consider a cost function as in Eq. (2.27):

B(ϑ) = Tr
(
BU(ϑ)ρinU

†(ϑ)
)
, (2.30)

(fk = Id, k = 1). Furthermore, let the unitaries read:

U(ϑj) = eıϑjσ
a
j . (2.31)

Then:

∂B(ϑ)

∂ϑj
∼ 1

sinα
(Tr(BU†(ϑ+)ρU(ϑ+))− Tr(BU†(ϑ−)ρU(ϑ−)) (2.32)

where ϑ± = ϑ± αe. Here ej is a vector having 1 as its j-th element and 0
otherwise. Thus, one can evaluate the gradient by shifting the l-th parameter by
some amount α.
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It’s hard to train VQAs
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Undecidability conjecture

I conjecture that actually the situation is worse. VQAs are undecidable.

UNDECIDABLE

DECIDABLE

P-SPACE

NP BQPP
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Training VQAs
The success of a VQA depends on the efficiency and reliability of the optimization
method used.

As we saw the training can be NP-Hard. Training a VQA one can encounter new
challenges:

huge number of local minima

barren plateaus

stochastic environment due to the finite budget for measurements

hardware noise affecting E[Bϑ]

restricted qubit connectivity

statepreparation-and-measurement (SPAM) errors

...

This has led to the development of many quantum hardware-aware optimizers,
with the optimal choice still being an active topic of debate. A common choice is
the family of SGD (e.g. SPSA).
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Break

Questions?
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QAOA

Quantum Approximation Optimization Algorithm (QAOA) can be implemented in
NISQ devices.

QAOA is an approximation algorithm: it does not deliver the “best” result, but
only the “good enough” result, which is characterized by a lower bound of the
approximation ratio.

Interestingly QAOA can be applied to the MaxCut problem via a traverse Ising
filed model.
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Trotterization
Recall that in the case of AQC we have:

H(s) = (1− s)Hinit + sHfinal. (3.1)

Time evolution under this time-dependent Hamiltonian involves is hard:

U(T ) ∼ exp

(
−ı
∫ t

0
H(w)dw

)
. (3.2)

Solution:Trotterization. Discretize U(T ) ≡ U(T , 0) into intervals ∆t (in total
T = L∆t) small enough that the Hamiltonian is approximately constant over each
interval. Then:

U(T , 0) = U(T ,T −∆t)U(T −∆t,T − 2∆t) . . .U(∆t, 0) (3.3)

=
L−1∏
j=0

U((L− j)∆T , (L− j − 1)∆t) (3.4)

=L→∞

L−1∏
j=0

e−ıH[(L−j)∆t]∆t (3.5)
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Using the identity

eı(A+B)x = eı(A)xeı(B)x +O(x2) (3.6)

we deduce that

U(T , 0) ≈
p∏

j=1

e{−ı(1−s(j∆t))Hinit∆t}e{−ıs(j∆t)Hfinal∆t}. (3.7)

Thus we can approximate AQC by repeatedly letting the system evolve under
Hfinal for s(j∆t) and then under Hinit for (1− s(j∆t)).

Aspman/Korpas/Mareček (CTU) Quantum Computing May 2, 2024 98 / 104



Using the identity

eı(A+B)x = eı(A)xeı(B)x +O(x2) (3.6)

we deduce that

U(T , 0) ≈
p∏

j=1

e{−ı(1−s(j∆t))Hinit∆t}e{−ıs(j∆t)Hfinal∆t}. (3.7)

Thus we can approximate AQC by repeatedly letting the system evolve under
Hfinal for s(j∆t) and then under Hinit for (1− s(j∆t)).
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Combinatorial Optimization

Recall that a combinatorial optimization problem amounts to finding the n-bit
string z that (approximately) satisfies the maximal amount of m constraints Cα,
each of which takes the form

Cα(z) =

{
1 if z satisfies the constraint
0 otherwise.

(3.8)

We wish to find a string z that approximately maximizes the objective function

C (z) =
m∑
α=1

Cα(z) (3.9)
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Quantum Analogue

For the quantum analogue of the previous problem we define a diagonal operator:
HC acting on the 2n-dimensional Hilbert space where each bitstring z is a basis
vector |z〉.
HC acts on |z〉 as follows:

HC |z〉 = C (z)|z〉 (3.10)

and since C (z) is scalar valued, we can see that each |z〉 is an eigenstate of HC .

Let us view Ĉ as a Hamiltonian and the highest energy eigenstate |z〉 is the
solution to the combinatorial optimization problem, as it gives the highest value of
C (z).
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Max-Cut

In the case of Max-Cut we have:

C (z) =
1

2

∑
(i ,j)∈E(G)

zizj (3.11)
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QAOA at last

QAOA leverages approximate adiabatic quantum computation via Trotterization.
We use two Hamiltonians: The first one is the problem Hamiltonian HC which
just by looking at Eq. (3.11) you should suspect its the Ising Hamiltonian.

The other one is called mixer Hamiltonian which is

HB =
n∑

j=1

σxj (3.12)

The corresponding unitaries we need are:

UC = e−IγHC (3.13)

UB = e−ıβHB (3.14)
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QAOA: Optimization
The goal is to maximize the expression

ML(γ, β) := 〈γ, β|ML|γ, β〉 (3.15)

γ ∈ [0, 2π]L, β ∈ [0, π]L.

and

|γ, β〉 = UC (γL)UB(βL) . . .UC (γ1)UB(β1)|+〉n. (3.16)

Compare with Eq. (3.3). Its basically the same.

. . . |γ, β⟩|+⟩n UC(γL) UB(βL) U1(γ) U1(β) ML

Layer L Layer 1 Observable
. . .
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QAOA: Intuition

We begin in an eigenstate of HB and then repeatedly let the system evolve under
HC and HB , alternating between the two.

The approximation increase as L→∞.

We are trying to find

(γ∗, β∗) = arg max
γ,β
‖E[ML]− 〈ML〉 ‖p` (3.17)

In the end we measure |γ, β〉 in the computational basis to get some bitstring z ,
and evaluate C (z).

We repeat the above steps O(m logm) (m number of constraints) such that we
bound C (z) with high probability.

Key result: QAOA with L = 1 achieves an approximation ratio of
rc = C (z)/Cmax = 0.6924 when performing Max-Cut on 3-regular graphs.
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