AI CENTER FEE CTU

Quantum Computing

Jakub Mareček, with
Johannes Aspman, Georgios Korpas, Germán Matilla, and Waqas Parvaiz

Faculty of Electrical Engineering
Czech Technical University in Prague

Quantum Computing

1. Motivation: "A social phenomenon"
2. Motivation: Opportunities and Limitations
3. Organization of the Course
4. Qubits and How to Implement them
5. A Theoretical Computer Science Point of View
6. Three Use Cases in Financial Services

Quantum Computing: A Short History

- 1965: Nobel prize for Richard P. Feynman.
- 1973: Alexander Holevo publishes a paper showing that n qubits can carry more than n classićal bits of information, but at most n classical bits are accessible.
- 1973: Charles H. Bennett publishes papers on reversible computing.
- 1980: Tommaso Toffoli introduces the Toffoli gate, which is a key element in both classical reversible computing and quantum computing.
- 1980: Paul Benioff and Yuri Manin publish papers on quantum computing.
- 1981: At the "First Conference on the Physics of Computation," Paul Benioff and Richard Feynman give talks on quantum computing.
- 1985: David Deutsch introduces the first universal model of quantum computing.
- 1993: Dan Simon suggests the so-called Simon's problem, for which a quantum computer could be exponentially faster than a conventional computer (under mild assumptions on the oracles).
- 1994: Peter Shor extends Simon's work to Shor's algorithm for factoring integers.
- 1998: A team incl. Isaac L. Chuang demonstrates a 2-qubit NMR-based quantum computer.
- 2022: Nobel prize for Alain Aspect, John F. Clauser and Anton Zeilinger.

Quantum Computing: A Social Phenomenon

- Feynman (1986): "Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy." ("Proof by authority")
- A prototypical problem: Computing the ground-state energy (eigenvalue of the fermionic Hamiltonian), usually discretized into a basis (of size L). One needs to restrict oneself to "generic" molecules and materials.
- Seth Lloyd (1996): Exponential quantum advantage conjecture
- Kitaev (2003): Ground state characterization is QMA (cf. the Ising Hamiltonian)

[^0]https://www.science.org/doi/abs/10.1126/science.273.5278.1073
https://arxiv.org/abs/quant-ph/0302079
https://arxiv.org/abs/quant-ph/0406180v2
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.3.010318

Quantum Computing: A Social Phenomenon

- McKinsey estimates and recommendations to CEOs:

Four industries expected to see first impact

Value at stake with incremental impact of QC by 2035, $\$$ billion

1. Follow industry developments and actively screen quantum-computing use cases with an in-house team of quantum-computing experts or by collaborating with industry entities and by joining a quantum-computing consortium.
2. Understand the most significant risks and disruptions and opportunities in their industries.
3. Consider whether to partner with or invest in quantum-computing players-mostly software-to facilitate access to knowledge and talent.
4. Consider recruiting in-house quantum-computing talent. Even a small team of up to three experts may be enough to help an organization explore possible use cases and screen potential strategic investments in quantum computing.
5. Prepare by building digital infrastructure that can meet the basic operating demands of quantum computing; make relevant data available in digital databases and set up conventional computing workflows to be quantum ready once more powerful quantum hardware becomes available.

Quantum Computing: A Social Phenomenon

- McKinsey estimates and recommendations to CEOs vs. our expert opinion:

Quantum Computing: A Social Phenomenon

American Banker:

- 25\% of financial institutions already invest in quantum
- 45% plan to invest in 2023

Gartner:

- 40% of large companies are planning to create initiatives around quantum computing by 2025 .

AMERICAN BANKER

BANKING \vee POLICY \vee PAYMENTS $\vee T E C H \vee$ CREDIT UNIONS \vee WORKPLACE \vee OPINION
technology

How JPMorgan Chase and other banks plan to use quantum computing

By Penny Crosman September 22, 2022, 2:57 p.m. EDT 5 Min Read

y Though quantum computing technology is still new, JPMorgan Chase, Ally Bank, Credit
 in Agricole and other banks are actively testing and in some cases using it, according to speakers at the HPC + Al on Wall Street conference in New York this week.

"We realize that if a company doesn't do anything about the market right now, and just waits for quantum advantage to become a reality, when quantum advantage becomes real, it might be too late," said Marco Pistoia, managing director, distinguished engineer, head of global technology applied research and head of quantum computing at JPMorgan Chase. "We want to be ready when quantum advantage becomes possible on a higher level."

Quantum Computing: A Social Phenomenon

- Circa \$80B eco-system
- $\$ 30+$ B of public funding announced

Announced governmental investment, ${ }^{1} \$$ billion

EU public investment sources, \%

Quantum Computing: A Social Phenomenon

Top 10 venture capital/private equity investments in QT start-ups of all time, by deal size (descending)

		New entrants		Quantum computing	communications	tum sensing
Company	Country			Segment	Deal size, \$ million	Deal year
SandboxAO	United States	\bigcirc (0)	(\%)	Application software	500	2022
PsiQuantum	United States		\%	Hardware manufacturing	450	2021
Iona	United States		\%	Hardware manufacturing	350	2021
Rigetti Computing	United States		\%	Hardware manufacturing	345	2022
Arqit	United Kingdom	(0)		Hardware manufacturing	345	2021
Iona	United States		\%	Hardware manufacturing	300	2021
Quantinuum	United Kingdom		(\%)	Vertically integrated ${ }^{1}$	300	2021
D-Wave Systems	Canada		\%	Hardware manufacturing	300	2022
PsiQuantum	United States		\%	Hardware manufacturing	230	2020
Origin Quantum	China		(\%)	Hardware manufacturing	149	2022

Volume of raised investment in the indicated year,'\$ bilion

Quantum Computing: A Social Phenomenon

In the quantum-computing value chain, software has the largest number of players.
Overview of players in the quantum-computing value chain

Opportunities

Seen by John Preskill:

- There are problems that are believed to be hard for classical computers, but for which quantum algorithms have been discovered that could solve these problems easily under mild assumptions. E.g. factoring.
- Measuring qubits in certain states, which are easy to prepare, samples from a correlated probability distribution that can't be sampled from by any efficient classical means (unless the polynomial hierarchy collapses).
- No known classical algorithm can simulate a quantum computer efficiently.

Seen by yours truly:

- Quantum computers are essentially analog computers, cf. "complexity over the reals", which may violate the "Extended Church-Turing Thesis".

Article | Published: 23 October 2019
Quantum supremacy using a programmable superconducting processor
Frank Autute, Kunal Arva, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fermando G. s. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Ziliun Chen, Ben chiaro, Roberto Collins, william Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Criai Gidney, Marissa Giustina, Rob Graff, Keith Guerin, ... John M. Martinis $\boxminus+$ Show authors

Nature 574, 505-510 (2019) \mid Cite this article


```
AND JIAN-WEIPAN (0) +14 authors Authors Info &Affliations
SCIENCE - 3 Dec 2020 - Vol 370,Issue 6523 - pp. 1460-1463 - DOl: 10.1126/science.abe8770
```

Article | Open Access | Published: 22 February 2023

Suppressing quantum errors by scaling a surface code logical qubit

Google Quantum AI

Nature 614, 676-681 (2023) \mid Cite this article

Eleven Objections of Scott Aaronson

- Works on paper, not in practice.
- Violates Extended Church-Turing Thesis.
- Not enough "real physics."
- Small amplitudes are unphysical.
- Exponentially large states are unphysical.
- Quantum computers are just souped-up analog computers.
- Quantum computers aren't like anything we've ever seen before.
- Quantum mechanics is just an approximation to some deeper theory.
- Decoherence will always be worse than the faulttolerance threshold.
- We don't need fault-tolerance for classical computers.
- Errors aren't independent.

Quantum Computing

1. Motivation: "A social phenomenon"
2. Motivation: Opportunities and Limitations
3. Organization of the Course
4. Qubits and How to Implement them
5. A Theoretical Computer Science point of view
6. Three use cases in financial services

Course Organization: The Team

Who is involved?

Lecturers:

- Bengt Arne Johannes Hansson Aspman
- Jakub Mareček

Guest speakers:

- Georgios Korpas (HSBC)
- Libor Caha (TU Munich)
and possibly more (IBM, Sandbox AQ).

Teaching assistants:

- Germán Martínez Matilla
- Waqas Parvaiz

Course Organization: Syllabus

- 1. Why quantum computing? What is quantum computation good for? The notions of quantum supremacy and quantum advantage. Has Google showcased the former? Why studying quantum computation can also push the limits of classical computation by finding better algorithms or quantum inspired algorithms. The global quantum computing scene. (Jakub)
- 2. Broad picture of quantum mechanics. Postulates of quantum mechanics and braket notation. Unitary operators and expectation values. Evolution of quantum states. Classical to quantum bits. The Bloch sphere. Reversible operations on qubits and quantum circuits. State preparation and measurement in quantum mechanics. (Johannes)
- 3. Broad overview of computational complexity. Classical Turing machines. The classes P, NP, P-space, Exp. The quantum Turing machine. The classes BQP and QMA. What lies beyond. (Jakub)
- 4. Broad overview of classical versus quantum algorithms. Showcase of the exponential speedup of quantum computers using the Deutsch-Josza algorithm. Shor's algorithm, quantum Fourier transform. (Jakub and Johannes)
- 5. Grover's algorithm and exponential-time dynamic programming. (Jakub)
- 6. Quantum algorithms and quantum random walks. Classical Monte-Carlo and quantum replacements for Monte-Carlo. Applications in Financial Services. (Georgios)
- 7. A broad overview of further trends in quantum technologies. Adiabatic computing. Phase estimation. Quantum annealing. Variational algorithms. Quantum Machine Learning. (Jakub)

Course Organization: Assessment

- There are 100 points to be collected, which are mapped to grades in the usual fashion ($<50 b=F, 50-59$ $=E, \ldots, 90-100=A$).
- To obtain "zapocet", you need to collect at least 30 points during the term time and attend the exercises. There were more than 60 points on offer last year.
- Up to 40 points are to be collected in a final exam, which can be retaken more than once, if needed.

Homework

A 20-point project by Alikhan Anuarbekov:

Quantum Fourier Transform IntroductionAlexander Kot

凹2 亿 A Share

Course Organization: Assessment

- There are 100 points to be collected, which are mapped to grades in the usual fashion ($<50 b=F, 50-59$ $=E, \ldots, 90-100=A$).
- Up to 60 points to be collected during term time (homework and a larger, independent "project").
- To obtain "zapocet", you need to collect at least 30 points during the term time and attend the exercises.
- Up to 40 points are to be collected in a final exam, which can be retaken more than once, if needed.

[^1]
Course Organization: Resources

Jakub Mareček and Georgios Korpas and Johannes Aspman

Quantum Computing
via Randomized Algorithms

November 10, 2023

Lectures

24. 2. 2023: Slides
1. 3. 2023: Lecture notes
1. 3. 2023: Lecture notes
1. 3. 2023: Slides, Lecture notes
1. 3. 2023: Slides, Lecture notes
1. 3. 2023: Slides, Lecture notes
1. 4. 2023: Guest lecture of Libor Caha on the quantum advantage with teleportation circuits
1. 4. 2023: Slides, Lecture notes
1. 4. 2023: Slides, Lecture notes
1. 4. 2023: Slides, Lecture notes
1. 5. 2023: Guest lecture of Google / SandboxAQ on post-quantum security. (KN:E-108)
1. 6. 2023: Exam.

Course Organization: Further Reading

IBM Quantum Learning

Learn the basics of quantum computing, and
how to use IBM Quantum services and systems
to solve real-world problems.

Explore the

latest course

Fundamentals of quantum algorithms

Use quantum computers to solve problems Use quantum computers to solve problems
more efficiently, including problems with more efficiently, including problems with
real-world relevance such as searching and factoring.

Course Organization: Further Reading

Course Organization: Resources

Quantum Optimization: Potential, Challenges, and the Path Forward Amira Abbas, ${ }^{1}$ Andris Ambainis, ${ }^{2}$ Brandon Augustino, ${ }^{3}$ Andreas Bärtschi, ${ }^{4}$ Harry Buhrman, ${ }^{1}$ Carleton Coffrin, ${ }^{4}{ }^{4}$
Giorgio Cortiana, ${ }^{5}$ Vedran Dunjoko, ${ }^{\text {D }}$ Daniel J. Egger, ${ }^{7}$ Bruce G. Elmegreen, ${ }^{8}$ Nicola Franco, ${ }^{9}$ Filitipo Fratini ${ }^{10}$ Giorgio Cortiana, ${ }^{5}$ Vedran Dunjko, ${ }^{6}$ Daniel J. Egger, ${ }^{7}$ Bruce G. Elmegreen ${ }^{8}$ Nicola Franco, ${ }^{9}$ Filippo Fratini, ${ }^{10} 1$
Bryce Fuller, ${ }^{11}$ Julien Gacon, ${ }^{7,12}$ Constantin Gonculea, ${ }^{13}$ Sander Gribling, ${ }^{14}$ Swati Gupta, ${ }^{3}$ Stuart Hadfield ${ }^{5,16,16}$
 Lenk ${ }^{23}$ Jakub Marecek, ${ }^{22}$ Vanio Markovo ${ }^{13}$ Guglielmo Mazzola, ${ }^{24}$ Stefano Mensa, ${ }^{25}$ Naeimeh Mobseni, ${ }^{5}$
Giacomo Nannicini ${ }^{26}$ Core O'Meara, ${ }^{5}$ Elena Peña Tapia ${ }^{7}$ Sebastian Pokutta ${ }^{19}, 20$ Manuel Proiss ${ }^{7}$ Patrick Giacomo Nannicini, ${ }^{26}$ Corey ${ }^{\circ}$ 'Meara, ${ }^{5}$ Elena Peña Tapia, ${ }^{7}$ Sebastian Pokutta, ${ }^{19}, 20$ Manuel Proissl, ${ }^{7}$ Patrick
Rebentrost, ${ }^{77}$ Emre Sahin, ${ }^{25}$ Benjamin C. B. Symons, ${ }^{25}$ Sabine Tornow, ${ }^{28}$ Victor Valls, ${ }^{29}$ Stefan Woerner, ${ }^{7}$ Rebentrost, ${ }^{27}$ Emre Sahin, ${ }^{25}$ Benjamin C. B. Symons, ${ }^{25}$ Sabine Tornow, ${ }^{28}$ Victor Valls, ${ }^{29}$ Stefan Woerner, ${ }^{7}$
Mira L. Wolf-Bauwens, ${ }^{7}$ Jon Yard, ${ }^{30}$ Sheir Yarkoni, ${ }^{14}$ Dirk Zechiel, ${ }^{18}$ Sergiy Zhuk, ${ }^{39}$ and Christa Zoufal ${ }^{7}$

$$
\begin{gathered}
\text { 3V Olkswagen } A G \\
\text { (Dated: December } 6,2023 \text {) }
\end{gathered}
$$

Recent advances in quantum computers are demonstrating the ability to solve problems at
a scale beyond brute force classicial simulation. As such, a widespread interest in tuantum
allorithms has developed in many areas with optimization being one of the most pronounced a scale beyond brute force classical simulation. As such, a widespread interest in quantum
algorithms has developed in many areas, with optimizaton being one of the most pronounced
domains. Across computer science and physics, there are a number of algorithmic approaches,
 optimization, convex optimization, non-convex optimization, and stochastic extensions, have
devoted communities. With these espects in mind, this work draw on multiple appraches to study quantum optimization. Provably exact versus heuristic settings are first explained using computational ocmplizexity theory - hishaighting where quantum advantare is possible in each
context. Then, the core building blocks for nuantum optimization altorithm sare outlined to context. Then, the core building bocks for quantum optimization algorithms are outlined to
subsequently defne prominent probleo lassen and identifyey open questions that, vi anserer,
will advance the field. The effects of scaling elevenant problems on noisy quantum devices are also
 benchmarking by proposing clear metrics to conduct appropriate comparisons wwitt classical
optimization techniques. Lastly, we highhlight two domans - finance and sustanability -as rich
surces of ond
sources of optimization problems that could be used
potential real-world impact of quantum optimization.

A Survey of Quantum Alternatives to Randomized Algorithms:
Philip Intallura, ${ }^{1, *}$ Georgios Korpas, ${ }^{1, \dagger}$ Sudeepto Chakraborty, ${ }^{2, \ddagger}$ Vyacheslav Kungurtsev, ${ }^{3,8}$ and Jakub Marecek ${ }^{3}, 9$ Monte Carlo Integration and Beyond ${ }^{1}$ HSBC Lab, Innovation 8 V Ventures, 8 Canada Squace, London E14. SHOQ 5 , U.K.
 Karlovo nam. 13, Prague 2, Czech
(Dated: March 10, 2023)
Monte Carlo sampling is a powerful toolbox of algorit hmic techniques widely used for a number
of applications wherein some noisy quantity or summary statistic thereof is sought to be estimated. of applications wherein some noisy quantity, or summary statistic thereof, is sought to be estimated.
In this paper, we survey the literature for implementing Monte Carlo procedures using quantum In this paper, we survey the literature for implementing Monte Carlo procedures using quantum
circritss focusing on the potential to otatin a quantum advantage in the computational pseed of
these procedures. We revisit the quantum algorithms that could replace clasical circuits, focusing on the potential to obtain a quantum advantage in the computational speed of
these procedure. We revisit the quantum algoriths that could replace classical Monte Carlo and
then consider both the existing quantum algorithms and the potential guantum realizations that then consider both the existing quantum algorithms and the potential qu
include adaptive enhancements as alternatives to the classical procedure.
I. introduction

Quantum computing promises to solve instances of eerformance) classical computers. The range of applications is vast; to name e a few prominent ones, see the sur-
eves $[11][12$, and 3$]$ discussing applications in chemistr veys $[1],[2]$, and $[3]$ discussing applications in chemistry

Monte Carlo sampling (see, for example, [4]) is a set of
techniques that randomly eenerate numerical quantities techniques that randomly generate numerical quantities
for the purpose of simulating a statistical distribution or computing a moment or other expectation thereof (e.g., mean, variance). It is prominent in many disciplines, in-
cluding computational finance $[5 \mid$, computational physics $[6]$, artififial intelligence $[7,8]$, and various branches of engineering $[9]$. Although the concepts and ideas dis-
cussed in this paper cussed in this paper readily generalize to other disci-
plines, we present our exposition with a focus on compines, we present
putational finance.
Signife
Significant computational resources are deployed for
the asset pricing of e.g., stocks, bonds, futures, and other the asset pricing of, e.g., stocks, bonds, futures, and other
exotic commodities such as derivatives, along with the risk management of portfolios comprising those assets. The dynamiscs of financial assets are subject to significicant
randomness, and there are several stochastic method for randomness, and there are several stochastic methods for
fair pricing, most prominently the Black-Scholes-Merton fair pricing, most prominently the Black-Scholes-Merton
model $[10,11]$. However, machine learning techniques
have become more prevalent since the have become more prevalent since the financial crisis of
2008 and the subsequent recession. Classical and quasi2008 and the subsequent recession. Classical and quasi-
Monte Carlo methods are routinely used to perform computations involving random quantities [12], and feature -

```
% philip.intaluraOhsbc.com
$
{
```

for example, $[13-15]$ for work on option pricing and $[16]$
for work on credit risk assessment. See also [17]. In
fact, the use of Monte Carlo methods is mandated by fact, the use of Monte Carlo methods is mandated by
ever more stringent regulations in most developed counever more stringent reguations in most developed coun-
tries, leading to incraasing computational efforts being
expended on Monte Carro in these applications. Conseexpended on Monte Carlo in these applications. Conse
quently, there is a significant interest in impoving the quently, there is a significant interest in improving the
quality and efficiency of these methods.
Given the contemporary explosion in research and de veloppent in quantum computing, there has seen much
recent interest in exploring quantum alternatives to clas recent interest in exploring quantum alternatives to claa
sical Monte Carlo. Leading financial institutions, in
cluding HSC sical Monte Carlo. Leading financial institutions, in
cluding HSCC [18], Barclays [19], Fidelity Investment
[20|, Goldman Sachs [20], Goldman Sachs $[15$, , 12, 22]], JPMorgan Chase 114$]$,
and Mitsubishi UFJ search in the field, while it is likely that there will be eve more industrial research that is unpublished
The motivation for the search for quantum alterna-
tives is rooted in the nature of these procedures, which are general and flexible enough to be effective for a wid are general and fexbie enough to be effective for a wide
array of possible real-life probability distributions but,
in so doing typically require a large quantity of sam in so doing, typically require a large quantity of sam
ples to achieve good approximations. Current algorithm ples to achieve good approximations. Current algorithms
for particularly complex financial instruments, therefore, typically demand high-performance computing (HPC) or using a number of computing nodes in parallel to in
crease the number of samples while maintaining reaso crease the number of samples while maintaining reason-
able wall-clock times. However, HPC only partially mit abte walt-clock times. However, HPC only partially mit-
igates the significant drawback of classical Monte Carlo,
which can be eves which can be expressed as slow mixing time. The mixing fime can be thought of as a measure of how long it takes
theoretically desired quan an acceptabled distance from the
th practical applications, theoretically desired quantity. In practical applications apart from situations where simple distributions are in
use, the procedure is known to mix slowly, requiring sig use, the procedure is known to mix slowly, requiring sig
nificant computing hours and thus time as well as energ expenditure.
Once fully scalable faul-tolerant error corrected quan-
tum computers are available, quantum alternatives to tum computers are available, quantum arternatives to
Monte Carlo can potentially achieve a competitive ad

Quantum Computing

1. Motivation: "A social phenomenon"
2. Motivation: Opportunities and Limitations
3. Organization of the Course
4. Qubits and How to Implement them
5. A Theoretical Computer Science Point of View
6. Three Use Cases in Financial Services

Quantum States and Qubits

- Digital computers vs. "analog computers"
- $\{0,1\}$ vs. the state vector $\left.\left|\psi>=c_{1}\right| 0\right\rangle+c_{2}|1\rangle$ of 2 complex numbers $\mathrm{C}_{1}, \mathrm{C}_{2}$
- Bloch-sphere representation thereof
- n qubits, 2^{n} complex numbers

Quantum States and Qubits

- Quantum states are vectors in a complex vector space.
- A state is represented by the ket | $\psi>$.
- The elements of the dual space are called bras and denoted $<\varphi \mid$.
- The inner product, or bracket, $\langle\varphi| \psi>$, is a complex number, and its complex conjugate is given by $(\langle\varphi \mid \psi\rangle)^{*}=\langle\psi \mid \varphi\rangle$.
- We normalize the states such that $\langle\varphi \mid \psi\rangle=1$
- Quantum states can be in a superposition of states, $|\psi\rangle=\alpha\left|\psi_{1}\right\rangle+\beta\left|\psi_{2}\right\rangle$, for some complex numbers α, β.
- More generally, we can express any quantum state in a vector space as a superposition of the basis vectors of that vector space, $|\psi\rangle=c_{1}\left|a_{1}\right\rangle+c_{2}\left|a_{3}\right\rangle \ldots$, for some complex numbers c_{i} and basis vectors $\left|a_{i}\right\rangle$.
|0)

Quantum Postulates

- States are described by unit vectors in a complex vector space, and observables are described by linear Hermitian operators.
- The possible outcomes of a measurement are given by the eigenvalues of the operator corresponding to the observable being measured.
- If the system is in a state $\mid \psi>$, and we measure an observable A with eigenvectors $\mid a_{j}>$ and eigenvalues a_{j}, the probability of measuring eigenvalue a_{j} is given by $\left.P\left(a_{j}\right)=\left|<a_{j}\right| \psi\right\rangle\left.\right|^{2}=\left\langle\psi \mid a_{j}\right\rangle\left\langle a_{j} \mid \psi\right\rangle$.
- The evolution of a quantum system is described by unitary operators.
|0)

Qubits and How to Implement Them

- Most quantum computers so far look like this:

Are we There yet?

DiVicenzo's criteria:

- A scalable physical system with well-characterized qubit
- The ability to initialize the state of the qubits to a simple fiducial state
- Long relevant decoherence times
- A "universal" set of quantum gates
- A qubit-specific measurement capability

Fortschr. Phys. 48 (2000) 9-11, 771-783

The Physical Implementation of Quantum Computation David P. DiVincenzo

IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 USA

Abstract ments for the physical implementation of quantum computation are discussed. These five requirements, ments for the physical implementation of quantum computation are discussed. These five requirements,
plus two relating to the communication of quantum information, are extensively explored and related to the many schemes in atomic physics, quantum optics, nuclear and electron magnetic resonance spectroscopy, superconducting electronics, and quantum-dot physics, for achieving quantum computing.

Qubits and How to Implement Them

- "What is on the chip" differs
- Superconducting qubits (transmon, ...)
- Double quantum dots (in $\mathrm{Si}, \mathrm{Ge}, \ldots$)
- Photonic qubits
- Ions and neutral atoms
- Fullerenes, carbon nanotubes, etc.

Qubits and How to Implement Them

- "What is on the chip" differs
- Superconducting qubits (transmon, ...)

Investment, \$ million

- Double quantum dots (in $\mathrm{Si}, \mathrm{Ge}, \ldots$)
- Photonic qubits
- Ions and neutral atoms

- Fullerenes, carbon nanotubes, etc.

Qubits and How to Implement Them

- 1962: Josephson effect tunneling of superconducting Cooper pairs (Nobel Prize in Physics, 1973)
- Based on Josephson junction, superconducting qubits ess. implement a quantum oscillator
- Transmon qubits @ IBM
- Xmon @ Google
- Cca. At 10 mK

Qubits and How to Implement Them

- 1963: Quantum well with discrete energy values (Kroemer, Alferov, Kazarinov)
- Double quatum dots @ Intel, ...
- At 1 K at Intel (?), up to 20 K (Myronov)

FIG. 1. (a) Schematic of the Hall bar device used, showing the composition of the heterostructure. (b) (001) plane of the wafer, illustrating the $\langle 110\rangle$ and $\langle 100$ directions. (c) Optical images of the Ge heterostructure Hall bars showing cross hatching from epitaxial growth. This pattern is aligned to the $\langle 110\rangle$ directions.

Characteristics	Holes in strained Ge	Electrons in Si
Effective mass $\left(\mathrm{m}_{0}\right)$	0.035	0.19 m
Coherence time $(\mathrm{T} 2 *)$	$150 \mu \mathrm{~s}$	$120 \mu \mathrm{~s}$
Rabi frequency	140 MHz	community accepts $20 \mu \mathrm{~s}$
Single-qubit operation fidelity	99.3%	10 MHz

Qubits and How to Implement Them

- Neutral atoms @ QuEra / Amazon / Harvard / ...
- 2D optical tweezer array
- Cca. at $25 \mu \mathrm{~K}$ (!)
- Entangled atoms cca. $110 \mu \mathrm{~m}$ apart
- Ions @ IoniQ / Alpine Quantum / Innsbruck / ...

Quantum Computing

1. Motivation: "A social phenomenon"
2. Motivation: Opportunities and Limitations
3. Organization of the Course
4. Qubits and How to Implement them
5. A Theoretical Computer Science Point of View
6. Three Use Cases in Financial Services

Computational Complexity

- P: a class of problems with certificates computable by a Turing machine in polynomial time. E.g. shortest
path in a graph.
- NP: a class of problems with certificates verifiable by a Turing machine in polynomial time. E.g. the travelling salesman problem.
- BPP: a classical class of randomized algorithms.
- BQP: a "quantum equivalent" class to BPP.
- BQNP = QMA (Quantum Merlin Arthur): a "quantum equivalent" to NP. Specifically: A class of problems with polynomial-size quantum proof (a quantum state) that convinces a polynomial time quantum verifier (running on a quantum computer) with high probability.
- $\quad B Q N P=$ QMA includes NP. It is not clear whether this is strict.

Computational Complexity

Classical and
Quantum Computation
A. Yu. Kitaev
A. H. Shen
M. N. Vyalyi

Graduate Studies

in Mathematics
Volume 47American Mathematical Society
14.4. Local Hamiltonian is BQNP-complete

Theorem 14.3. The problem local Hamlitonian is BQNP-complet with respect to the Karp reduction.

The rest of this section constitutes a proof of this theorem. The main dea goes back to Feynman [24]: replacing a unitary evolution by a time independent Hamiltonian (i.e., transition from the circuit to a local Hamiltonian).

Thus, suppose we have a circuit $U=U_{L} \cdots U_{1}$ of size L. We will assume that U acts on N qubits, the first m of which initially contain Merlin's ecssage $\mid \xi)$, the rest being initialized by 0 . The gates U_{j} act on pairs of qubits.
14.4.1. The Hamiltonian associated with the circuit. It acts on the space

$\mathcal{L}=\mathcal{B}^{\oplus N} \otimes \mathbb{C}^{L \mid 1}$

where the first factor is the space on which the circuit acts, whereas the econd factor is the space of a step counter (clock). The IIamiltomian consist f three terms which will be defined later

$$
H=H_{\text {in }}+H_{\text {prop }}+H_{\text {out }} .
$$

We are interested in the minimum eigenvalue of this IIamiltonian, or the ninimum of the cost function $f(|\eta\rangle)=\langle\eta| I| | \eta\rangle$ over all vectors $|\eta\rangle$ of unit minimum of the cost function $f(\mid \eta))=\langle\eta| I|\eta\rangle$ over all vectors $|\eta\rangle$ of uni
length. We will try to arrange that the Hamiltonian has a small eigenvalue if and only if there exists a quantum state $|\xi\rangle \in \mathcal{B}^{\bullet m}$ cansing U to output 1 with high probability. In such a case, the minimizing vector $|\eta\rangle$ will be related to that $|\xi\rangle$ in the following way:

$$
|\eta\rangle=\frac{1}{\sqrt{L+1}} \sum_{j=0}^{L} U_{j} \cdots U_{1}|\xi, 0\rangle \otimes|j\rangle .
$$

n constructing the terms of the Hamiltonian, we will try to "enforce" this structure of the vector $|\eta\rangle$ by imposing "penalties" that increase the cost function whenever $|\eta\rangle$ deviates from the indicated form.

The term $H_{\text {in }}$ corresponds to the condition that, at step 0 , all the qubits but m are in state $|0\rangle$. Specifically,
(14.4) $\quad H_{\mathrm{in}}=\left(\sum_{s=m+1}^{N} \Pi_{s}^{(1)}\right) \otimes|0\rangle\langle 0|$,
where $\Pi_{s}^{(a)}$ is the projection onto the subspace of vectors for which the s-th qubit equals α. The second factor in this formula acts on the space of the counter. (Informally speaking, the term $\Pi_{s}^{(1)} \otimes|0\rangle(0 \mid$ "collects a penalty" by

Computational Complexity

Let us consider a different class of problems, related to counting satisfying assignments, numerical integration, etc (\#P):

- Classical Monte Carlo with N sample paths achieves error O(1/VN)
- Quasi Monte Carlo methods on classical computers w/ error $O\left(\log (N)^{s} / N\right)$ for some s that may depend on dimension.
- Quantum replacements of Monte Carlo achieve error O(1/N)

This is often mis-understood in the hunt for elusive algorithms for NP-Complete problems!

Even P\#P is within PSPACE.

UNDECIDABLE

Quantum Computing

1. Motivation: "A social phenomenon"
2. Motivation: Opportunities and Limitations
3. Organization of the Course
4. Qubits and How to Implement them
5. A Theoretical Computer Science Point of View
6. Three Use Cases in Financial Services

Three Use Cases

Cryptography

- The Big Scare
- Quantum Cryptography
- Post-quantum Cryptography

Simulation

- Monte Carlo Replacements

Optimization \& Control

- Variational Algorithms?
ar 亿iv> quant-ph > arxv:2006. 14510

Search...
 Help | Advanced

Quantum Physics

[Submitted on 25 Jun 2020 (v1), last revised 28 Jan 2021 (this version, v3)]

Quantum Computing for Finance: State of the Art and Future Prospects

Daniel J. Egger, Claudio Gambella, Jakub Marecek, Scott McFaddin, Martin Mevissen, Rudy Raymond, Andrea Simonetto, Stefan Woerner, Elena Yndurain
This article outlines our point of view regarding the applicability, state-of-the-art, and potential of quantum computing for problems in finance. We provide an introduction to quantum computing as well as a survey on problem classes in finance that are computationally challenging classically and for which quantum computing algorithms are promising. In the main part, we describe in detail quantum algorithms for specific applications arising in financial services, such as those involving simulation, optimization, and machine learning problems. In addition, we include demonstrations of quantum algorithms on IBM Quantum back-ends and discuss the potential benefits of quantum algorithms for problems in financial services. We conclude with a summary of technical challenges and future prospects.

The Big Scare

〈 Xuantum
the open journal for quantum science

How to factor 2048 bit RSA integers in 8 hours using 20

million noisy qubits

Craig Gidney ${ }^{1}$ and Martin Ekerå ${ }^{2,3}$

${ }^{1}$ Google Inc., Santa Barbara, California 93117, USA
${ }^{2}$ KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
${ }^{3}$ Swedish NCSA, Swedish Armed Forces, SE-107 85 Stockholm, Sweden

Factoring 2048-bit RSA Integers in 177 Days with 13436 Qubits a Multimode Memory

Élie Gouzien and Nicolas Sangouard
Phys. Rev. Lett. 127, 140503 - Published 28 September 2021
Physĩ̃

FIG. 2. Number of qubits in the processor and run-time to factor n-bit RSA integers with a computer architecture using a multimode memory.

Quantum Cryptography

Long Distance QKD System

The Long Distance QKD System operates with a quantum channel in the telecom C-band for the longest possible range and highest possible secure key rate. It can tolerate limited bandwidths of multiplexed data within the C-band

Key Features

1. Typical key rate $=300 \mathrm{~kb} / \mathrm{s}$ for 10 dB loss
2. Range of up to 120 km
3. Two fibers required
4. Efficient BB84 protocol with decoy states and phase encoding
5. Key failure probability of less than 10^{-10} equivalent to less than once in 30,000 years
6. Proprietary self-differencing semiconductor detectors

Why Toshiba QKD

We started research into quantum cryptography in 2003 at the Cambridge Research Laboratory of Toshiba Research Europe Limited. Since then we have demonstrated a number of notable world firsts. We were the first to announce quantum key distribution over 100 km of fiber in 2004 and the first with a continuous key rate exceeding 1 Mbit/second in 2010 and 10 Mbit/second in 2017

Post-Quantum Cryptography

NG

Information Technology Laboratory

Post-Quantum Cryptography PQC

Status Report on the Third Round of the NIST Post-Quantum Cryptography Standardization Process

Selected Algorithms: Public-key Encryption and Key-establishment Algorithms
Selected Algorithms 2022

Algorithm	Algorithm Information	Submitters	Comments
CRYSTALS-KYBER	$\underline{\text { Zip File (7MB) }}$	Peter Schwabe	$\underline{\text { Submit Comment }}$
	$\underline{\text { IP Statements }}$	Roberto Avanzi	View Comments
	$\underline{\text { Website }}$	Joppe Bos Leo Ducas	
		Eike Kiltz	
		Tancrede Lepoint	
		Vadim Lyubashevsky	
		John M. Schanck	

Post-Quantum Cryptography

Kyber is based on lattice cryptography, which are NP-Hard and not known to be PSPACE-Hard. Non-trivially, the problem is related to SIVP: Given a lattice basis, find k linearly independent lattice vectors minimizing the maximum of their norms.

Worst-case to average-case reductions for module lattices

Adeline Langlois \& Damien Stehlé \boxtimes

Designs, Codes and Cryptography 75, 565-599 (2015) \mid Cite this article

1912 Accesses 171 Citations 3 Altmetric Metrics
Kyber is already baing used:

- Cloudflare Interoperable, Reusable Cryptographic Library
- Amazon Web Services Key Management Service
- IBM's World's First Quantum Computing Safe Tape Drive (using Kyber and Dilithium).

Monte Carlo Replacements

Much of what banks do, boils down to Monte Carlo:

- Risk assessment and mandated by regulators
- Internal risk assessment
- Pricing of a variety of products (e.g. credit, European call options).

Journals \& Magazines > IEEE Transactions on Computers > Volume: 70 Issue: 12
Credit Risk Analysis Using Quantum Computers
Publisher: IEEE Cite This \&

Option Pricing using Quantum Computers

What error do I get with N sample paths?

- Classical Monte Carlo methods O(1/VN)
- Quasi-Monte-Carlo methods O(log(N)s/N)
- Quantum replacements $\mathrm{O}\left(1 / \mathrm{N}^{2}\right)$

Nikitas Stamatopoulos ${ }^{1}$, Daniel J. Egger ${ }^{2}$, Yue Sun ${ }^{1}$, Christa Zoufal ${ }^{2,3}$ Raban Iten ${ }^{2,3}$, Ning Shen ${ }^{1}$, and Stefan Woerner ${ }^{2}$
${ }^{1}$ Quantitative Research, JPMorgan Chase \& Co., New York, NY, 10017
${ }^{2}$ IBM Quantum, IBM Research - Zurich
${ }^{3}$ ETH Zurich

A Threshold for Quantum Advantage in Derivative Pricing

Shouvanik Chakrabarti ${ }^{1,2}$, Rajiv Krishnakumar ${ }^{1}$, Guglielmo Mazzola ${ }^{3}$, Nikitas Stamatopoulos ${ }^{1}$, Stefan Woerner ${ }^{3}$, and William J. Zeng ${ }^{1}$

Optimization \& Monte Carlo Replacements

Quantum Optimization: Potential, Challenges, and the Path Forward Amira Abbas, ${ }^{1}$ Andris Ambainis, ${ }^{2}$ Brandon Augustino, ${ }^{3}$ Andreas Bärtschi, ${ }^{4}$ Harry Buhrman, ${ }^{1}$ Carleton Coffrin, ${ }^{4}{ }^{4}$
Giorgio Cortiana, ${ }^{5}$ Vedran Dunjko, ${ }^{\text {a }}$ Daniel J. Egger, ${ }^{7}$ Bruce G. Elmegren, ${ }^{8}$ Nicola Franco, ${ }^{9}$ Filippo Fratini, ${ }^{10}$ Giorgio Cortiana, ${ }^{5}$ Vedran Dunjko, ${ }^{6}$ Daniel J. Egger, ${ }^{7}$ Bruce G. Elmegreen ${ }^{8}$ Nicola Franco, ${ }^{9}$ Filippo Fratini, ${ }^{10} 1$
Bryce Fuller, ${ }^{11}$ Julien Gacon, ${ }^{7,12}$ Constantin Gonculea, ${ }^{13}$ Sander Gribling, ${ }^{14}$ Swati Gupta, ${ }^{3}$ Stuart Hadfield ${ }^{5}, 16$ Raoul Heese ${ }^{17}$ Gerhard Kircher, ${ }^{10}$ Thomas Kleinert, ${ }^{18}$ Thorsten Koch, ${ }^{19,20}$ Georgios Korpas, ${ }^{21,22}$ Steve Lenk ${ }^{23}$ Jakub Marecek, ${ }^{22}$ Vanio Markovo ${ }^{13}$ Guglielmo Mazzola, ${ }^{24}$ Stefano Mensa, ${ }^{25}$ Naeimeh Mobseni, ${ }^{5}$
Giacomo Nannicini ${ }^{26}$ Core O'Meara, ${ }^{5}$ Elena Peña Tapia ${ }^{7}$ Sebastian Pokutta ${ }^{19}, 20$ Manuel Proiss ${ }^{7}$ Patrick Giacomo Nannicini, ${ }^{26}$ Corey ${ }^{\circ}$ 'Meara, ${ }^{5}$ Elena Peña Tapia, ${ }^{7}$ Sebastian Pokutta, ${ }^{19}, 20$ Manuel Proissl, ${ }^{7}$ Patrick
Rebentrost, ${ }^{77}$ Emre Sahin, ${ }^{25}$ Benjamin C. B. Symons, ${ }^{25}$ Sabine Tornow, ${ }^{28}$ Victor Valls, ${ }^{29}$ Stefan Woerner, ${ }^{7}$ Rebentrost, ${ }^{27}$ Emre Sahin, ${ }^{25}$ Benjamin C. B. Symons, ${ }^{25}$ Sabine Tornow, ${ }^{28}$ Victor Valls, ${ }^{29}$ Stefan Woerner, ${ }^{7}$
Mira L. Wolf-Bauwens, ${ }^{7}$ Jon Yard, ${ }^{30}$ Sheir Yarkoni, ${ }^{14}$ Dirk Zechiel, ${ }^{18}$ Sergiy Zhuk, ${ }^{39}$ and Christa Zoufal ${ }^{7}$

$$
\begin{aligned}
& { }^{27} \text { Centre for Unuiversity of Southern Calif ornia } \\
& { }_{28} \text { University of of of the Bundeteswehr Unversity of Singapore }
\end{aligned}
$$

$$
\begin{gathered}
\text { 3V Olkswagen } A G \\
\text { (Dated: December } 6,2023 \text {) }
\end{gathered}
$$

Recent advances in quantum computers are demonstrating the ability to solve problems at
a scale beyond brute force classicial simulation. As such, a widespread interest in tuantum
alooriths has developed in many areas with optimization being one of the most pronounced goritims has developed in many reas, with optimization being one of the most pronounced
domain. Aross ocmputer science and hhysiss, there are a number of algorithmic approaches,
Oten with little linkage. This is further complicated by the tragmented nature of the feld
 optimization, convex optimization, non-convex optimization, and stochastic extensions, have
devoted communities. With these aspects in mind, this work draws on multiple approaches to tevoted communities. With these aspects in mind, this work draws on multitipe approaches to
study uuantum optimization Provaly exact versus heuristicseting are frrt explined using
computational complexity theory - highlighting where quantum advantage is possinie in each study quantum optimization. Provably exacct versus heursict setings are eirst explained using
computational complexitt theory - hishhighting where quantum advantage is possible in each
context. Then, the core building blocks for quantum optimization algorithms are outlined to context. Then, the core building blocks for quantum optimization algorithms are outtined to
subsequently defne prominent problec classes and identif keeopen questios that, if ansered,
will advance the fiel. The effects of scaling relevant probems on noisy quantum devices are also will advance the field. The effects of scaling relevant problems on noisy quantum deviese are also
outlined in detail, alongside meaningul benchmarkng problems. We underscore the importace
of benchmarking by proposing clear metrics to conduct appropriate comparisons with classical

A Survey of Quantum Alternatives to Randomized Algorithms:
Philip Intallura, ${ }^{1}$, Monte Carlo Integration and Beyond
Philip Intallura, ${ }^{1, *}$ Georgios Korpas, ${ }^{1, \dagger}$ Sudeepto Chakraborty, ${ }^{2, \ddagger}$ Vyacheslav Kungurtsev, ${ }^{3,8}$ and Jakub Marecek ${ }^{3}$,

 Karlovo nam. 13, Prague 2, Czech
(Dated: March 10, 2023)
Monte Carlo sampling is a powerful toolbox of algorit hmic techniques widely used for a number
of applications wherein some noisy quantity or summary statistic thereof is sought to be estimated. of applications wherein some noisy quantity, or summary statistic thereof, is sought to be estimated.
In this paper, we survey the literature for implementing Monte Carlo procedures using quantum In this paper, we survey the literature for implementing Monte Carlo procedures using quantum
circrits, focusing on the potential to otatin a quantum advantage in the computational pseed of
these procedures. We revisit the quantum algorithms that could replace clasical circuits, focusing on the potential to obtain a quantum advantage in the computational speed of
these procedure. We revisit the quantum algoriths that could replace classical Monte Carlo and
then consider both the existing quantum algorithms and the potential guantum realizations that then consider both the existing quantum algorithms and the potential quu
include adaptive enhancements as alternatives to the classical procedure.
I. introduction

Quantum computing promises to solve instances of performance) classical computers. The range of applica tions is vast; to name a few prominent ones, see the sur-
veys $[1],|2|$, and $|3|$ discussing applications in chemer veys $[1],[2]$, and $[3]$ discussing applications in chemistr,
Monte Carlo sampling (see, for example, [4]) is a set techniques that randomly generate numerical quantities computing a moment or other expectation thereof (e.g. mean, variance). It is prominent in many discipines, in
cluding computational finance (55 , computational physic $[6]$, artificial intelligence $[7,8]$, and various branches of engineering $[99$. Although the concepts and ideas dis-
cussed in this paper realiy cussed in this paper readily generalize to other disci
plines, we present our exposition with a focus on complines, we present
putational finance.
Signifcant
Significant computational resources are deployed for
he asset pricing of, e.g., stocks, bonds, futures, and other the asset pricing of, e.g., stocks, bonds, futures, and othe
exotic commodities such as derivatives, along with the rexic commodities such as derivatives, along with the
risk manent portfolios comprising those assets. The dynamics of financial assets are subject to significant Tandomness, and there are several stochastic methods for
fair pricing, most prominently the Black-Scholes-Merton fair pricing, most prominently the Black-Scholes-Merton
model $[10,11]$. However, machine learning techniques have become more prevalent since the financial crisis of
2008 and the subsequent recession. Classical and quasi2008 and the esubsequent recession. Classical and quasi-
Monte Carlo methods are routinely used to perform computations involving random quantities [12], and feature

for example, [13-15] for work on option pricing and [16]
for work on for work on credit riks assessment. See also [17]. . In
fact, the use of Monte Carlo methods is mandated by fact, the use of Monte Carlo methods is mandated by
ever more stringent regulations in most developed counever more stringent reguations in most developed coun-
tries, leading to incraasing computational efforts being
expended on Monte Carro in these applications. Conseexpended on Monte Carlo in these applications. Conse
quently, there is a significant interest in impoving the quently, there is a significant interest in improving the
quality and efficiency of these methods.
Given the contemporary explosion in research and de velopment in quantum computing, there has been much
recent interest in exploring uquantum alternatives to clas recent interest in exploring quantum alternatives to clas-
sical Monte Carlo. Leading financial institutions, in
cluding sical Monte Carlo. Leading financial institutions, in-
cluding HSBC [18], Barclays [19], Fidelity Investment
$[200$ Goldman Sachs
 search in the field, while it is likely that there will be eve more industrial research that is unpublished
The motivation for the search for quantum alterna-
tives is rooted in the nature of these procedures, which are general and flexible enough to be effective for a wid are general and Hexible enough to be effective for a wide
array of possible real-life probability distributions but
in so doing typically require in so doing, typically require a large quantity of sam
ples to achieve good approximations. Current algorithm ples to achieve good approximations. Current algorithm
for particularly complex financial instruments, therefore typically demand high-performance computing (HPC) or using a number of computing nodes in parallel to in-
crease the number of samples while maintaining reaso crease the number of samples while maintaining reason-
able wall-clock times. However, HPC only partialy mit
igates the siguifcant igates the significant drawwark, of classical Montialty Carlo,
which can be expressed as slow mixing time. The mixing which can be expressed as slow mixing time. The mixing
time can be thought of as a measure of how long it takes time can be thought of as a measure of how long it takes
for the estimates to reach an acceptable distance from the
theoretically desired quantity In practical application theoretically desired quantity. In practical applications apart from situations where simple distributions are in
use, the procedure is known to mix slowly, requiring sig nificant computing hours and thus time as well as energy expenditure.
Once fully scalable faul-tolerant error corrected quan-
tum computers are available, quantum alternatives to tum computers are available, quantum arternatives to
Monte Carlo can potentially achieve a competitive ad

Quantum Computing

1. Motivation: "A social phenomenon"
2. Motivation: Opportunities and Limitations
3. Organization of the Course
4. Qubits and How to Implement them
5. A Theoretical Computer Science Point of View
6. Three Use Cases in Financial Services

AI CENTER FEE CTU

www.aic.fel.cvut.cz

Artificial Intelligence Center
Faculty of Electrical Engineering
Czech Technical University in Prague

[^0]: https://www.ams.org/books/gsm/047/

[^1]: These students did not show up for the exam

