{ PROFINIT 7

BOM33BDT — Apache Kafka,
Architecture patterns

Josef Vonasek 5. Listopadu 2025

Apache Kafka

Motivation for message broker { PROFINIT 7

? Itis a vacation day, your flight is scheduled for
14:00

7 Is my flight on time?

%

N7 S
g
\}

7

S /]
%}ae%%eﬁ'
3> .

Apache Kafka { PROFINIT ?

7 Started as message broker at Linkedin, now it’s a
data processing ecosystem

? Key characteristics
— High-throughput
— Distributed
— Scalable

R S e S S

- 1) e
SSSSSS APP TWITTER SFDC source

DATA
NoSQL ORACLE HADOOP WAREHOUSE

https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines

Kafka 101 — naming convention { PROFINIT 7

7 Consumer

— An application that is reading data from Kafka

7 Consumer Group
— A group of an application processes that read data from Kafka

? Producer
— An application that is writing data to Kafka
? Broker

— Kafka process (single server) that is receiving data from producers, storing
data on disk and provide them to consumers

Kafka 101 — naming convention { PROFINIT 7

7 Topic
— Named ,message queue”
7 Partition

— Topics are broken down into partitions
7 Offset

— The position of a last committed message of a consumer in a topic/partition

Kafka cluster

? Broker — a single Kafka server

{ PROFINIT 7

7 Kafka cluster — collection of brokers that work together

Messages
from A/0

Consumer

Messages
from A1

Kafka Cluster
jmmmmmmmmmm—m—m—mmm oo
[}
]
: Broker 1
i I TopicA TopicA
for AS0 ' I_ fa d er
[}
| Replicate Replicate
Producer i A0 : jr|]'
: v 1
Messages ! Broker 2
for A1 ! - -
| : . Topic A TopicA
: Partition 0 Partition 1
- Leader
\

T ————

Kafka basics — Topic and partitioning { PROFINIT 7

? Topic
— Named container for similar events
« Usually there are many topics in a system
- Data in one topic can be duplicated with data in another topic
— Durable logs of events
* New message always on the end

« Can be read by seaking arbitrary offset

« Are immutable - once something has happened, it is exceedingly difficult to
make it un-happen

* Are durable — stored on filesystem

Kafka basics — Topic and partitioning { PROFINIT 7

7 Partitioning

— Breaked single topic log to multiple logs that can live independently
— Are spread out across a cluster

Topic "topicName"

PartitionOO]234567891011121311—

Partition1 | O | 1 | 2 |3 |4 |5]|6]|7]|8%}9

| Message

Writes
partion2 [0 [1] 23| als]e|7[8]9]0 "l'—
partiion3 [0 [1| 2 [3]afs]e[7]s]o]rn][n}nie—

Kafka basics - Offset { PROFINIT

7 The consumer offset is a way of tracking the sequential order in which messages are received by Kafka
topics.

7 Consumer offsets are persisted

Topic "topicName" Consumer
partitiono [0 |1 | 23]als |67]8|o|0]n]n 13} I,--.GL"EP.--,I
! | 1
ilConsumerori
Partition1 | 0 | 1 | 2|3 |4 |5]|6]|7]|8}9 : :
¥ | e |
' il(onsumerlli
Partilion2|0 1l2]3lals]e|l7]8]o]win ! !
]]
s : Consumer 2 E
Partition3|0 1f23]als]e]l7ls|lolw]|nin -—— a

Message structure { PROFINIT 7

Key
Value
Header

VOOV WV WV

Key and Value can be any type (as long as we can
serialize/deserialize them to bytes)
— We can easily send json records as Values

— Another very popular format to serialize data is Avro, but it requires Schema
Registry

Message with

(onsumer
schema 1D

Producer

Deserializer

Serializer

Current version
of schema

Schema
Registry

Message ordering in Kafka { PROFINIT 7

? Message order
— Kafka guarantees to maintain a message order per partition
— That doesn’t guarantee an order of messages per topic

? Messages with the same key are guaranteed to be send to the
same partition

— By default a hash partitioned is used
— Messages without a key will be uniformly distributed between partitions

Kafka basic - Producer { PROFINIT)

7 Client application

7 Write data to appropriate kafka topic and broker
— Serialize data

— Defi n e partiti o n |Acks Throughput Latency Durability

1o High Low No Guarantee. The producer
[does not wait for

— Compress data

1 Medium Medium Leader writes the record to its

local log, and responds without

— Handle errors

ifrom all followers.

-1 Low High Leader waits for the full set of in-
lsync replicas (ISRs) to
lacknowledge the record. This
lguarantees that the record is not
lost as long as at least one IRS
is active.

Kafka basic - Producing data

ProducerRecord
Topic
[Partition]
[Key]
Value

A 4

Serializer

When successful,
return Metadata

If can't retry,
throw exception

Partitioner

¢ v

Topic A TopicB
Partition 0 Partition 1

Batch 0 Batch 0
Batch 1 Batch 1
Batch 2 Batch 2

- e = i —————— ——————————

Kafka Broker

{ PROFINIT 7

Kafka basic - Consumer { PROFINIT)

7 Client application
? Read data from Kafka topic
? Scallable — organized to consumer groups

? Keep up to date metadata (offset)

Kafka basics — Consumer Group

TopicT1 Consumer Group 1
| Partition 0 Consumer 1
| Partition 1 7
| Partition 2 /
| Partition 3 (

TopicT1 Consumer Group 1
| Partition 0 N Consumer 1 I
| Partition 1 J| Consumer 2 l
| Partition 2 ‘II Consumer 3 |
| Partition 3 J| Consumer 4 '

TopicT1 Consumer Group 1
| Partition 0 ,I Consumer 1 '
| Partition 1 // ’I Consumer 2 l
| partition2 /
| Partition 3

TopicT1 Consumer Group 1

Partition 0 »| Consumer 1
I Partition 1 lr :I Consumer 2 '

Partition 2 ‘@

Partition 3 »| Consumer4

Consumer 5

0

{ PROFINIT 7

Kafka basics — Consumer Groups { PROFINIT >

TopicT1 Consumer Group 1
Partition 0 Consumer 1
Partition 1 Consumer 2

Partition 2
Partition 3

\

Consumer Group 1

Consumer 1
Consumer 2

Log compaction { PROFINIT 7

7> When the data is no longer needed (after retention period) the
default action is to delete the message

> Kafka has special retention policy called “compaction” in case we
want to store most recent message for each key

K1 | K2 | K3 | K4 | K1 | K2 | K2 | K5
Vifvifvipvivzvzyvsiw

v

K3 | K4 | KT | K2 | K5
Vipvi(vayivg|wv

Schemaregistry { PROFINIT 7

? Centralized repository for managing schemas of kafka messages

? Key component for data governance
— Schema management including validation
— Compatibility check
— Versioning

? Supported schema types
— AVRO

— JSON
— Protobuff

Message delivery

Message delivery semantics { PROFINIT 7

? Exactly once

— Every message is delivered only once
— We need to keep track which messages were delivered and processed

7 Atleast once
— A message might be delivered more than once
— Might be OK given pragmatic consideration

7 At most once
— The system will never try to deliver a message again once it was sent
— Good option for non-critical data, that quickly become irrelevant

Exactly once — Kafka support { PROFINIT 7

7 Idempotence: Exactly-once in order semantics per partition

— Safeguard against duplicates in retry logic, that might be caused by broker or
producer failure

— The message will be written to the Kafka topic once
— Enable enable.idempotence=true in producer configuration
» Transactions: Atomic writes across multiple partitions
— New transation API - atomic writes across multiple partitions
— Consumer side - configuration
 isolation.level (read_committed, read _uncommitted)
» Kafka streams
« processing.guarantee=exactly once

Latest releases { PROFINIT)

KRaft : Zookeeper
Tiered Storage: ,hot" a ,cold” storage
Cloud-native Kafka: Improved elasticity - autoscaling

Queues support: More consumers for one partition

VOOV VYWV

New Rebalancing: Reatime rebalancing

Kafka ecosystem

Kafka Connect { PROFINIT

7

Common framework for building connectors to integrate various
data stores with Kafka

Allows both getting data into and from Kafka

If you find yourself trying to get data into or from Kafka, there is
probably a connector for that

The ingest process can be speeded up by running multiple
connector instances in distributed fashion

Aside from plain piping the data from system a to Kafka, also
supports simple transformations of data records in transition

https://docs.confluent.io/cloud/current/connectors/index.html

https://docs.confluent.io/kafka-connectors/self-managed/supported.html#supported-self-managed-connectors

Kafka Connect- Example { PROFINIT 7
)

JDBC Source | Connect data | bte]]
ResultSet Connector APl format | Avroconventer (Avro)
——Dbytell | avroConverter [—Connect data | HDFS Sink —
% {Avro) API format Connector Pargue
{
"name™: "gcs-sink-01",
"config": {

"connector.class": "io.confluent.connect.gcs.GesSinkConnector”,

"tasks.max": "1",

"topics™: "gcs_topic”,

"gcs.bucket.name": "<my-gcs-bucket>",

"storage.class": "io.confluent.connect.gcs.storage.GcsStorage”,
"format.class": "io.confluent.connect.gcs.format.avro.AvroFormat",
"partitioner.class": "io.confluent.connect.storage.partitioner.DefaultPartitioner",
"value.converter": "io.confluent.connect.avro.AvroConverter",
"value.converter.schema.registry.url": "http://localhost:8081",
"schema.compatibility": "NONE",
"confluent.topic.bootstrap.servers": "localhost:9092",
"errors.tolerance™: "all",
"errors.deadletterqueue.topic.name": "dlg-gcs-sink-01"

Kafka Streams { PROFINIT

7

Library build on-top of Kafka Producer/Consumer API for real-time
stream processing

It's best suited for reading data from Kafka topic, doing some work
and then writing data to another Kafka topic

Application instance is a JVM process

The parallelism of a Kafka Streams application is primarily
determined by how many partitions the input topics have

Stafefull support (RockDB)

Kafka Streams naming convention { PROFINIT 7

7 Source processor

— produces an input stream to its topology from one or multiple Kafka topics by
consuming records from these topics.

7 Sink processor

— sends any received records from its up-stream processors to a specified Kafka topic.
» Stream processor

— represents a processing step in a topology - it is used to transform data. Standard
operations are map or filter, joins, and aggregations.

Pprocessor

y Stream task

W,/-S‘umce N
Tocesgor -
O P ¥~ shream
\
\ /

— smallest unit of work within a Kafka Streams O)
application instance. The number of tasks is determined Ok,f
by an application’s source topic with the highest number e
of partitions. ®)

Processor ToPoLoGy

Kafka Streams Architecture { PROFINIT

Infa{ Kafka Stre amg

\

o .
I Contumer 1 I I Consumer n I
s / S Record Butfers iy v~ Rerord Bl
/ L% NS

& \ &

%
)
5 % ==
- ,
\ ’ \ v
Task 1-1 Se— L7 Tk tp Tosknd = . iy? Tak wy
froducer 1 Producer n

Stﬂlm-l;l\'jil i - Y Stream Thread u

0u+r\1 Katka Stre amg

ksqlDB { PROFINIT 7

? DB-like abstraction on top of Kafka Streams

7 Provides table-like interface over Kafka topic (using extended SQL
syntax)

7 Main components

— KSQL Server — processes SQL statements and queries
— KSQL CLI — CLI program to interact with Server

ksqlDB architecture and components

% Kafka cluster
1

ksqIDB Server

REST API
80B8/tcn

ksqIDBCLI| | ksqiDB UI ‘

ksqIDB clients: \ ksql>

Kafka Connect - Debezium

Debezium { PROFINIT 7

? Debezium is a set of distributed services that capture row-level
changes in your databases (CDC — change data capture)

L‘ e .
g; %y elastic

—>= Infiniscon

ceberon e T T T T T 1T~

b \|||||||||||/,>
Debezium

PostgreSQL —l | | | | | | | | |

inispan
. -—
Connector \
Kafka Connect with Apache Kafka Kafka Connect with Data Warehouse
Debezium source connectors sink connectors

Debezium - sources

MySQL
MariaDB
MongoDB
Oracle
MSSQL server

Cassandra

VOOV NV VY Y

{ PROFINIT 7

Debezium — connector operations { PROFINIT 7

? CDC - debezium send changes
7 Full snapshot — debezium send full mirror of table

? Incremental snapshot - debezium send records based on provided
filter (request)

Use Cases

UseCases { PROFINIT)

7

Messaging - replacement of messages brokers (RabitMQ,Active

MQ)

Log Aggregation — stream of log events with applied business logic

Web Tracking - user aktivity tracking pipeline with publish subsribe
model

Stream Processing — RSS Feed

Event sourcing — Application style (current (at every a point of
time) state can be reconstruct based on past events)

CommitLog — support for distributed system

Reporting — operational monitoring

Cloudification

Confluent cloud { PROFINIT)

7 Cloud streaming platform build on Apache Kafka
— Available on AWS, Azure, Google Cloud

Streaming data accross different cloud providers
Integration with Apache Flink (streaming platform)

New Kora Engine (better performance — latency)

VOOV NV WV

Pricing

— Basic — Limited storage

— Standard — HA 99,99

— Enterprise - Private networking

Source: https://developer.confluent.io/

Azure Event Hubs { PROFINIT)

7 Streaming platform with native Apache Kafka support

— Advanced Message Queuing Protocol (AMQP)
— Apache Kafka
— HTTPS protocols

7 Pricing
— Basic — without Kafka

AMQP

— Standard — Kafka support, pay per event
— Premium — 90 days retetion
— Dedicated — 10 TB retention

Source: https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-about

Amazon Managed Streaming for Apache Kafka (MSK) { PROFINIT 7

7 Fully managed Kafka service

— MSK Cluster
— MSK Connect
— MSK Replicator

? MSK serverless
— Serverless cluster
7 Pricing
— Cluster instances (cluster size per hour)

— Serverless (price per hour - cluster, partition, storage, data in, data out)
— Connect (MCU per hour)

Source: https://docs.aws.amazon.com/msk/latest/developerguide/what-is-msk.html

Architectures

Lambda { PROFINIT 7

From Apache Storm
Nathan Marz, 2011

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

Yahoo, Netflix)

VOOV WV WV

IIC > Incoming data

Queries

1

1

1

1

i

]

H Historical

! o Results
i —| data =

i storage
1

1

storage

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

Lambda { PROFINIT 7

? 4 layers

BATCH LAYER'!

———————

e o

] E> Incoming data Smmmmmemmsmsmem oo
N

REAL-TIME LAYER | Serving &’
= 31 backend
Queries
1 Real-time
engine

o e

p———

Historical
data
storage

Results
storage

o

Lambda

? Mapping to the technologies

Kafka Cluster Storm

App

Serving DB(s)
/r processing_job |~
i i d_table
input_topic speed_ .
<\. Hadoop queries
batch_table
N processing_job H

Speed Layer Stream
Processing
NesaL @
or @I ; --- :a _______
envin er

Web Logs o

= Batch View
ERP P New Data Streams
pemsieow (] | TTTTTT====
Logacy @ Batch Layer

All Data

Incremental
Views

Real-time
View

Batech View

Pre-Compute
Views

{ PROFINIT 7

Kappa { PROFINIT ?

7 2014 Jay Kreps — Linkedin

? https://lwww.oreilly.com/ideas/questioning-the-lambda-architecture

__

Serving
=] backend

r%

Queries

.......................................

Hlstorlcal
Results
i) storage
storage €

https://www.oreilly.com/ideas/questioning-the-lambda-architecture

Kappa { PROFINIT ?

? 3 layers — batch layer removed
? Long retention can be used

? How to work with state — microbatches?

1
1 : : :
! ! Serving
N ~——— hackend
i i
1
’

Queries

I I
I

1

l i
I

Hlstorlcal '

i Results |
! GEIE] I
storage H

! storage !
1 1

Kappa

? Mapping to technologies

Kafka Cluster

Eraty

Stream Processing
System

Serving DB

-I job_version_n

output_table_n

queries

App

|
!
>

|
I
|
|

-I job_version_n+1

> output_table_n+1 |

i ©
m‘-\

S n

1)88

—_— /05
- @ O
= &

©

X

.
3

[[
(] §g {]
I:C kafka

tx_codes
(reference data)

transactions
(eventfu)

|:> ' Amazon 53

customers
(change log)

customers
(stateful)

sinks

Google
Cloud Storage

D e

Kafka Connect

Azure

ELOBE Storage

KStreams, KSQL

L™

{ PROFINIT 7

Apache Nifi

NIFI (Niagara Files, Hortonworks Data Flow (HDF)) { PROFINIT
7 NiFiis a processing engine designed to manage a continuous flow

of information as a series of events in an ecosystem
7 Visual creation and management of directed graphs of processors

7 Highly concurrent model without a developer having to worry about the
typical complexities of concurrency

7 Natural error handling

7 Cohesive and loosely coupled components which can then be reused

nifi@

Naming Convention { PROFINIT 7

7

Flowfiles - Information Packet. Represents each object moving through the
system and for each one. Map object (key, value pair)

Processors - Perform the work - data routing, transformation, or mediation
between systems.

Connections - Connections provide the actual linkage between processors.
These act as queues and allow various processes to interact at differing rates.

Flow Controller — Scheduler. The Flow Controller maintains the knowledge
of how processes connect and manages the threads and allocations thereof

which all processes use
- @
Ll

B Empty FlowFile

GenerateFlowFile

in 0/ 0 bytes
LR 0 (D O bytes £ O bytes
Out 0/0 bytes

et U 0/ 00:00:00.000

(5 min)
(5 min)

Hello World - Example

Name success
Queued 0/ 0 bytes

B Set JSON contents
ReplaceText

in 0/ 0 bytes
L0500 (D O bytes £ O bytes
Out 0/ 0 bytes
et U 0 00:00:00.000

B Add dummy filename
UpdateAttribute

0/ 0 bytes
0 bytes / 0 bytles
0/ 0 bytes
0/ 00:00:00.000

Name success
Queued 0/ 0 bytes

(5 min})
(5m

(5 min)

https://nifi.apache.org/docs.html

{ PROFINIT 7

(5 min)
(5 min)

Name success
Queued 0/0 byles

B ExecuteScript
ExecuteScript

In 0/ 0 bytes
R0 O bytes [O bytes
Out 0/ 0 bytes
Tasks/Time DFROEGATN]

9

(5 min)
(5 min)
(5 min)
(5 min)

MName success
Queued 0/ 0 bytes

v

H LogAttribute
LogAdtribute

in 070 bytes
R0 O bytes [O bytes
Out 0/ 0 bytes
Tasks/Time DFREGATR]

k2

(5 min)
(5 min)
(5 min)
(5 min)

Architecture { PROFINIT

7> FlowFile Repository - where NiFi keeps track of the state of what it
knows about a given FlowFile that is presently active in the flow.

7> Content Repository - where the actual content bytes of a given
FlowFile live

? Provenance Repository - where all provenance event data is stored.

Processor 1 Extension N

S FlowFile S Content S Provenance
Repository Repository Repository

£ Flow Controller

|Cluster

L2 Flow Controller

Processor 1 Extension M

g FlawFile g Content g Provenance
Repository Repositary Repository

{ PROFINIT 7

ZooKeeper Server)

& Cluster Coordinator
Primary Node
(» ZooKeeper Client

Minifi { PROFINIT 7

? A complementary data collection approach that
supplements the core tenets of NiFi

7> Small size and low resource consumption
— binary (3.2MB)
— Original Java agent (50MB)

7 Integration with NiFi for follow-on dataflow
management

Higher domain - remote server Field level - comms tower

Linux VM server Data Gateway OT device

signal
(rs) mosavitto «—— POCE
=g N { a
\ ey » e
(e Nifi ...
l p’°’°€ol
@y
~

onitoring
minifi<P (tc)
Data transforming
enriching and routing
SON data generator
§; runs on RPI
Z > ice

PROFINIT

Diky za pozornost

Profinit EU, s.r.0. in LINKEDIN f FACEBOOK
Tychonova 2, 160 00 Praha 6 linkedin.com/company/profinit facebook.com/Profinit. EU
TWITTER Yo YOUTUBE
X iy YouTu

Tel.: + 420 224 316 016, web: www.profinit.eu @profinit_EU Profinit EU, s.r.o.

	Slide 1: B0M33BDT – Apache Kafka, Architecture patterns
	Slide 2: Apache Kafka
	Slide 3: Motivation for message broker
	Slide 4: Getting rid of peer-to-peer data transfer
	Slide 5: Apache Kafka
	Slide 6: Kafka 101 – naming convention
	Slide 7: Kafka 101 – naming convention
	Slide 8: Kafka cluster
	Slide 9: Kafka basics – Topic and partitioning
	Slide 10: Kafka basics – Topic and partitioning
	Slide 11: Kafka basics - Offset
	Slide 12: Message structure
	Slide 13: Message ordering in Kafka
	Slide 14: Kafka basic - Producer
	Slide 15: Kafka basic - Producing data
	Slide 16: Kafka basic - Consumer
	Slide 17: Kafka basics – Consumer Group
	Slide 18: Kafka basics – Consumer Groups
	Slide 19: Log compaction
	Slide 20: Schema registry
	Slide 21: Message delivery
	Slide 22: Message delivery semantics
	Slide 23: Exactly once – Kafka support
	Slide 24: Recap
	Slide 25: Latest releases
	Slide 26: Kafka ecosystem
	Slide 27: Kafka Connect
	Slide 28: Kafka Connect- Example
	Slide 29: Kafka Streams
	Slide 30: Kafka Streams naming convention
	Slide 31: Kafka Streams Architecture
	Slide 32: ksqlDB
	Slide 33: Kafka Connect - Debezium
	Slide 34: Debezium
	Slide 35: Debezium - sources
	Slide 36: Debezium – connector operations
	Slide 37: Use Cases
	Slide 38: UseCases
	Slide 39: Cloudification
	Slide 40: Confluent cloud
	Slide 41: Azure Event Hubs
	Slide 42: Amazon Managed Streaming for Apache Kafka (MSK)
	Slide 43: Architectures
	Slide 44: Lambda
	Slide 45: Lambda
	Slide 46: Lambda
	Slide 47: Kappa
	Slide 48: Kappa
	Slide 49: Kappa
	Slide 50: Apache Nifi
	Slide 51: NIFI (Niagara Files, Hortonworks Data Flow (HDF))
	Slide 52: Naming Convention
	Slide 53: Hello World - Example
	Slide 54: Architecture
	Slide 55: |Cluster
	Slide 56: Minifi
	Slide 57: Díky za pozornost

