
B0M33BDT – Apache Kafka,

Architecture patterns

Josef Vonášek 5. Listopadu 2025

Apache Kafka

3

Motivation for message broker

It is a vacation day, your flight is scheduled for

14:00

Is my flight on time?

Flight radar

mobile app

Getting rid of peer-to-peer data transfer

Message broker

(Apache Kafka)

Flight radar

mobile app

analytics

5

Apache Kafka

Started as message broker at Linkedin, now it’s a

data processing ecosystem

Key characteristics

– High-throughput

– Distributed

– Scalable

– Multiple producers support

– Multiple consumers support

https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines

6

Kafka 101 – naming convention

Consumer

– An application that is reading data from Kafka

Consumer Group

– A group of an application processes that read data from Kafka

Producer

– An application that is writing data to Kafka

Broker

– Kafka process (single server) that is receiving data from producers, storing

data on disk and provide them to consumers

7

Kafka 101 – naming convention

Topic

– Named „message queue“

Partition

– Topics are broken down into partitions

Offset

– The position of a last committed message of a consumer in a topic/partition

8

Kafka cluster

Broker – a single Kafka server

Kafka cluster – collection of brokers that work together

9

Kafka basics – Topic and partitioning

Topic

– Named container for similar events

• Usually there are many topics in a system

• Data in one topic can be duplicated with data in another topic

– Durable logs of events

• New message always on the end

• Can be read by seaking arbitrary offset

• Are immutable - once something has happened, it is exceedingly difficult to

make it un-happen

• Are durable – stored on filesystem

10

Kafka basics – Topic and partitioning

Partitioning

– Breaked single topic log to multiple logs that can live independently

– Are spread out across a cluster

11

Kafka basics - Offset

The consumer offset is a way of tracking the sequential order in which messages are received by Kafka

topics.

Consumer offsets are persisted

12

Message structure

Key

Value

Header

Key and Value can be any type (as long as we can

serialize/deserialize them to bytes)

– We can easily send json records as Values

– Another very popular format to serialize data is Avro, but it requires Schema

Registry

13

Message ordering in Kafka

Message order

– Kafka guarantees to maintain a message order per partition

– That doesn’t guarantee an order of messages per topic

Messages with the same key are guaranteed to be send to the

same partition

– By default a hash partitioned is used

– Messages without a key will be uniformly distributed between partitions

14

Kafka basic - Producer

Client application

Write data to appropriate kafka topic and broker

– Serialize data

– Define partition

– Compress data

– Handle errors

15

Kafka basic - Producing data

16

Kafka basic - Consumer

Client application

Read data from Kafka topic

Scallable – organized to consumer groups

Keep up to date metadata (offset)

17

Kafka basics – Consumer Group

18

Kafka basics – Consumer Groups

19

Log compaction

When the data is no longer needed (after retention period) the

default action is to delete the message

Kafka has special retention policy called “compaction” in case we

want to store most recent message for each key

20

Schema registry

Centralized repository for managing schemas of kafka messages

Key component for data governance

– Schema management including validation

– Compatibility check

– Versioning

Supported schema types

– AVRO

– JSON

– Protobuff

Message delivery

22

Message delivery semantics

Exactly once

– Every message is delivered only once

– We need to keep track which messages were delivered and processed

At least once

– A message might be delivered more than once

– Might be OK given pragmatic consideration

At most once

– The system will never try to deliver a message again once it was sent

– Good option for non-critical data, that quickly become irrelevant

23

Exactly once – Kafka support

Idempotence: Exactly-once in order semantics per partition

– Safeguard against duplicates in retry logic, that might be caused by broker or

producer failure

– The message will be written to the Kafka topic once

– Enable enable.idempotence=true in producer configuration

› Transactions: Atomic writes across multiple partitions

– New transation API - atomic writes across multiple partitions

– Consumer side - configuration

• isolation.level (read_committed, read_uncommitted)

› Kafka streams

• processing.guarantee=exactly_once

Recap

25

Latest releases

KRaft : Zookeeper

Tiered Storage: „hot“ a „cold“ storage

Cloud-native Kafka: Improved elasticity - autoscaling

Queues support: More consumers for one partition

New Rebalancing: Reatime rebalancing

Kafka ecosystem

27

Kafka Connect

Common framework for building connectors to integrate various

data stores with Kafka

Allows both getting data into and from Kafka

If you find yourself trying to get data into or from Kafka, there is

probably a connector for that

The ingest process can be speeded up by running multiple

connector instances in distributed fashion

Aside from plain piping the data from system a to Kafka, also

supports simple transformations of data records in transition

https://docs.confluent.io/kafka-connectors/self-managed/supported.html#supported-self-managed-connectors

https://docs.confluent.io/cloud/current/connectors/index.html

28

Kafka Connect- Example

{

 "name": "gcs-sink-01",

 "config": {

 "connector.class": "io.confluent.connect.gcs.GcsSinkConnector",

 "tasks.max": "1",

 "topics": "gcs_topic",

 "gcs.bucket.name": "<my-gcs-bucket>",

 "storage.class": "io.confluent.connect.gcs.storage.GcsStorage",

 "format.class": "io.confluent.connect.gcs.format.avro.AvroFormat",

 "partitioner.class": "io.confluent.connect.storage.partitioner.DefaultPartitioner",

 "value.converter": "io.confluent.connect.avro.AvroConverter",

 "value.converter.schema.registry.url": "http://localhost:8081",

 "schema.compatibility": "NONE",

 "confluent.topic.bootstrap.servers": "localhost:9092",

 "errors.tolerance": "all",

 "errors.deadletterqueue.topic.name": "dlq-gcs-sink-01"

 }

}

29

Kafka Streams

Library build on-top of Kafka Producer/Consumer API for real-time

stream processing

It’s best suited for reading data from Kafka topic, doing some work

and then writing data to another Kafka topic

Application instance is a JVM process

The parallelism of a Kafka Streams application is primarily

determined by how many partitions the input topics have

Stafefull support (RockDB)

30

Kafka Streams naming convention

Source processor

– produces an input stream to its topology from one or multiple Kafka topics by
consuming records from these topics.

Sink processor

– sends any received records from its up-stream processors to a specified Kafka topic.

› Stream processor

– represents a processing step in a topology - it is used to transform data. Standard
operations are map or filter, joins, and aggregations.

› Stream task

– smallest unit of work within a Kafka Streams

application instance. The number of tasks is determined

by an application’s source topic with the highest number

of partitions.
Stream task

31

Kafka Streams Architecture

32

ksqlDB

DB-like abstraction on top of Kafka Streams

Provides table-like interface over Kafka topic (using extended SQL

syntax)

Main components

– KSQL Server – processes SQL statements and queries

– KSQL CLI – CLI program to interact with Server

Kafka Connect - Debezium

34

Debezium

Debezium is a set of distributed services that capture row-level

changes in your databases (CDC – change data capture)

35

Debezium - sources

MySQL

MariaDB

MongoDB

Oracle

MSSQL server

Cassandra

…

36

Debezium – connector operations

CDC – debezium send changes

Full snapshot – debezium send full mirror of table

Incremental snapshot - debezium send records based on provided

filter (request)

Use Cases

38

UseCases

Messaging - replacement of messages brokers (RabitMQ,Active

MQ)

Log Aggregation – stream of log events with applied business logic

Web Tracking - user aktivity tracking pipeline with publish subsribe

model

Stream Processing – RSS Feed

Event sourcing – Application style (current (at every a point of

time) state can be reconstruct based on past events)

CommitLog – support for distributed system

Reporting – operational monitoring

Cloudification

40

Confluent cloud

Cloud streaming platform build on Apache Kafka

– Available on AWS, Azure, Google Cloud

Streaming data accross different cloud providers

Integration with Apache Flink (streaming platform)

New Kora Engine (better performance – latency)

Pricing

– Basic – Limited storage

– Standard – HA 99,99

– Enterprise - Private networking

Source: https://developer.confluent.io/

41

Azure Event Hubs

Streaming platform with native Apache Kafka support

– Advanced Message Queuing Protocol (AMQP)

– Apache Kafka

– HTTPS protocols

Pricing

– Basic – without Kafka

– Standard – Kafka support, pay per event

– Premium – 90 days retetion

– Dedicated – 10 TB retention

Source: https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-about

42

Amazon Managed Streaming for Apache Kafka (MSK)

Fully managed Kafka service

– MSK Cluster

– MSK Connect

– MSK Replicator

MSK serverless

– Serverless cluster

Pricing

– Cluster instances (cluster size per hour)

– Serverless (price per hour - cluster, partition, storage, data in, data out)

– Connect (MCU per hour)

Source: https://docs.aws.amazon.com/msk/latest/developerguide/what-is-msk.html

Architectures

44

Lambda

From Apache Storm

Nathan Marz, 2011

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

Yahoo, Netflix

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

45

Lambda

4 layers

46

Lambda

Mapping to the technologies

47

Kappa

2014 Jay Kreps – Linkedin

https://www.oreilly.com/ideas/questioning-the-lambda-architecture

https://www.oreilly.com/ideas/questioning-the-lambda-architecture

48

Kappa

3 layers – batch layer removed

Long retention can be used

How to work with state – microbatches?

49

Kappa

Mapping to technologies

Apache Nifi

51

NIFI (Niagara Files, Hortonworks Data Flow (HDF))

NiFi is a processing engine designed to manage a continuous flow

of information as a series of events in an ecosystem

Visual creation and management of directed graphs of processors

Highly concurrent model without a developer having to worry about the
typical complexities of concurrency

Natural error handling

Cohesive and loosely coupled components which can then be reused

52

Naming Convention

Flowfiles - Information Packet. Represents each object moving through the
system and for each one. Map object (key, value pair)

Processors - Perform the work - data routing, transformation, or mediation
between systems.

Connections - Connections provide the actual linkage between processors.
These act as queues and allow various processes to interact at differing rates.

Flow Controller – Scheduler. The Flow Controller maintains the knowledge
of how processes connect and manages the threads and allocations thereof
which all processes use

53

Hello World - Example

https://nifi.apache.org/docs.html

54

Architecture

FlowFile Repository - where NiFi keeps track of the state of what it

knows about a given FlowFile that is presently active in the flow.

Content Repository - where the actual content bytes of a given

FlowFile live

Provenance Repository - where all provenance event data is stored.

55

|Cluster

56

Minifi

A complementary data collection approach that

supplements the core tenets of NiFi

Small size and low resource consumption

– binary (3.2MB)

– Original Java agent (50MB)

Integration with NiFi for follow-on dataflow

management

Profinit EU, s.r.o.

Tychonova 2, 160 00 Praha 6
LINKEDIN

linkedin.com/company/profinit

TWITTER

@profinit_EU

FACEBOOK

facebook.com/Profinit.EU

YOUTUBE

Profinit EU, s.r.o.Tel.: + 420 224 316 016, web: www.profinit.eu

Díky za pozornost

	Slide 1: B0M33BDT – Apache Kafka, Architecture patterns
	Slide 2: Apache Kafka
	Slide 3: Motivation for message broker
	Slide 4: Getting rid of peer-to-peer data transfer
	Slide 5: Apache Kafka
	Slide 6: Kafka 101 – naming convention
	Slide 7: Kafka 101 – naming convention
	Slide 8: Kafka cluster
	Slide 9: Kafka basics – Topic and partitioning
	Slide 10: Kafka basics – Topic and partitioning
	Slide 11: Kafka basics - Offset
	Slide 12: Message structure
	Slide 13: Message ordering in Kafka
	Slide 14: Kafka basic - Producer
	Slide 15: Kafka basic - Producing data
	Slide 16: Kafka basic - Consumer
	Slide 17: Kafka basics – Consumer Group
	Slide 18: Kafka basics – Consumer Groups
	Slide 19: Log compaction
	Slide 20: Schema registry
	Slide 21: Message delivery
	Slide 22: Message delivery semantics
	Slide 23: Exactly once – Kafka support
	Slide 24: Recap
	Slide 25: Latest releases
	Slide 26: Kafka ecosystem
	Slide 27: Kafka Connect
	Slide 28: Kafka Connect- Example
	Slide 29: Kafka Streams
	Slide 30: Kafka Streams naming convention
	Slide 31: Kafka Streams Architecture
	Slide 32: ksqlDB
	Slide 33: Kafka Connect - Debezium
	Slide 34: Debezium
	Slide 35: Debezium - sources
	Slide 36: Debezium – connector operations
	Slide 37: Use Cases
	Slide 38: UseCases
	Slide 39: Cloudification
	Slide 40: Confluent cloud
	Slide 41: Azure Event Hubs
	Slide 42: Amazon Managed Streaming for Apache Kafka (MSK)
	Slide 43: Architectures
	Slide 44: Lambda
	Slide 45: Lambda
	Slide 46: Lambda
	Slide 47: Kappa
	Slide 48: Kappa
	Slide 49: Kappa
	Slide 50: Apache Nifi
	Slide 51: NIFI (Niagara Files, Hortonworks Data Flow (HDF))
	Slide 52: Naming Convention
	Slide 53: Hello World - Example
	Slide 54: Architecture
	Slide 55: |Cluster
	Slide 56: Minifi
	Slide 57: Díky za pozornost

