{ PROFINIT 7

(Big) Data in Time

Petr Filas 15. 10. 2025

Agenda

Motivation
A Little Bit of History
A Little Bit of Theory

WD e

Conclusion

{ PROFINIT 7

{ PROFINIT 7

Motivation { PROFINIT)

7 Brief history and brief introduction to big data concepts will show

Deinonychus antirrhopus

— Money are important RDBMS

1960s

fast active predator
counterbalancing tail
% large sickle claw on foot
el related to birds

— Every technology has its rise, peak and decline

— Key concept remains

— Take the best and fix issues

— Let’s go through data dinosaur land. 1980s-1990s

pack hunter

Bi gData shrinkwrapping
sparse feathers/quills

bush predator
~ fully feathered
“ground hawk"

nixillustration.com | alphynix. tumblr.com

1950s-1980s: Foundations of Data Processing { PROFINIT 7

1950s-1960s: Early developments in database management systems
(DBMS) like hierarchical databases and IBM’s Information Management
System (IMS). File systems etc.

1970: Edgar F. Codd invented the relational database model, laying the
foundation for modern databases. He was working in IBM. Codd'’s rules

applied. SQL development.

1980s: Parallel database systems emerge, offering methods for scaling
and distributing data workloads across multiple machines.

1989: The term “Big Data” was first used in relation to the challenge of
managing and processing massive datasets, especially in scientific
computing.

https://dzone.com/articles/rdbms-importance-of-codds-12-rules
https://dzone.com/articles/rdbms-importance-of-codds-12-rules

1990s: WWW and Search Engines - this is where it really StarzeﬁROFlNlT >

1990s: The explosion of the web leads to a growing need for handling
unstructured data at a larger scale. NoSQL databases appeared.

DY
1994: Companies like Yahoo! and Altavista create search engines,
bringing forth the need to process massive amounts of data. W/
o Altavista 1998 ~13 millions queries/day, 2000 ~80millions queries each day YAHOO'

1997: Michael Cox and David Ellsworth publish a paper Application-
controlled demand paging for out-of-core visualization (NASA, Intel,
Nvidia Research), using the term "Big Data" to describe the challenges of

visualizing large datasets. 1 Introduction

Visualization provides an interesting challenge for computer
systems: data sets are generally quite large, taxing the capacities of
main memory, local disk, and even remote disk. We call this the
problem of big data. When data sets do not fit in main memory (in
core), or when they do not fit even on local disk, the most common
solution is to acquire more resources. This write-a-check algorithm

https://ntrs.nasa.gov/api/citations/20020046803/downloads/20020046803.pdf
https://ntrs.nasa.gov/api/citations/20020046803/downloads/20020046803.pdf

2000s: Pre-Hadoop Google Big data Era { PROFINIT 7

. 2003: Google introduces the Google File System (GFS), a distributed file system
designed to support large-scale data processing.

. 2004: Google’s paper on MapReduce: Simplified Data Processing on Large Clusters
is published. This paradigm revolutionized how distributed data is processed by
simplifying parallel computing.

. 2004: Google introduces Bigtable paper, a distributed storage system for managing
structured data. Google is still using it.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
Map Reduce paper chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.

Not Open Source

https://research.google.com/archive/gfs-sosp2003.pdf
https://research.google.com/archive/mapreduce-osdi04.pdf
https://research.google.com/archive/bigtable-osdi06.pdf

2006: Open-Source Hadoop Era

? 2006: Apache Hadoop release as OS project.
— First Hadoop = HDFS + MapReduce

? 2007: Yahoo! adopts Hadoop for its web search engine, and Hadoop
starts gaining significant momentum in industry.

@) Global Hadoop Market,
@ AcumeN 2022-2030 (USD Billion)

851.4

Bright future ahead predicted...

49.5

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Source: Acumen Research and Consulting

2010s: BigData = Hadoop for a while... { PROFINIT 7

?

2010: Apache Hive emerge, providing higher-level abstractions for
querying large datasets in Hadoop “something like database”

New SQL databases (noSQL with ACID), cloud databases.

2011: Commercial fight: Cloudera, Hortonworks, and MapR - making it
accessible for enterprises.

2012: Apache releases Hadoop 2.0 with YARN (Yet Another Resource
Negotiator), enabling Hadoop to support non-MapReduce applications
and ushering in a more flexible resource management framework.

2012: Spark, originally developed by UC Berkeley's AMPLab, is
released as a faster, in-memory alternative to MapReduce for
distributed data processing.

Late 2010s-now: Peak and decline of Hadoop, Bigdata still oN,/ PROFINIT »

Google trends. Do you remember where it all started?

120

The rise of Spark The rise of Databricks (and cloud) = the fall of Hadoop

100

50 The rise of Hadoop

The rise of BigData

60

20

DI o A— o
, -
2006-01 2007-09 2008-05 2011-01 2012-09 2014-05 201e-01 2017-08 2019-05 2021-01 2022-09 2024-05

e A OOp = Databricks = Eig Data Apache Spark

7 2018: Hadoop's dominance starts to decline in favor of cloud-native platforms
and frameworks such as Apache Kafka, Apache Flink, and more
containerized, microservice-based architectures.

2020s: Rise of Al, Streaming, and Modern Data Platforms { PROFINIT 7

?

2020: Modern data platforms like Databricks, Snowflake, and Google
BigQuery gain traction due to their scalability, simplicity, and cloud-native
architectures.

2023-2024: Boom started with ChatGPT (OpenAl release 2022). The Al
generative Al and machine (earlier known as Data Science ©). Everyone is
integrating big data with Al/ML pipelines, moving towards more real-time
analytics and Al-powered decision-making.

I WANT YOU TO
CREATE ARTIFICIAL
INTELLIGENCE THAT
IS AS SMART AS ME.

BECAUSE
YOURE A

FAST SURE.
WORKER?

OKAY. I SHOULD
HAVE THAT BY
LUNCHTIME.

Dilbert.com DilbertCartoonist@gmail.com
7-4-14 ©2014 Scott Adams, INC. /Dt by Unwersal Uckck

2024: Hadoop is still alive but mostly for on-premise solution (e.g.
Cloudera) = cloud-based data platforms won the war (new era is

Motivation for Paralell (Data) Processing { PROFINIT 7

?

Solve real life problems

— Complexicity - Problems that are difficult to solve sequentially can often be
broken down into smaller, parallel tasks

— Efficiency and Speed - By breaking down large tasks into smaller,
concurrent processes, parallel processing significantly reduces the time
required to complete data-intensive tasks.

— Optimization: Parallel processing makes better use of available resources.
By distributing tasks across multiple processors, it maximizes the use of
computational power and minimizes idle time ' S

Examples

— SETI - Search for Extra-Terrestrial Intelligence

— Financial Modeling

— Recommendations (Netflix)

— Big Data in enterprise

Key Principles { PROFINIT 7

? Decomposition
— Tasks being spread across multiple nodes to work in parallel

? Load Balancing
— Distributing tasks evenly across compute (workers)

? Synchronization & Communication Scalability

Vertical scaling Horizontal scaling

0 o
5 (i

— Coordinating the execution of parallel tasks to ensure they
work together correctly.

7 Scalability

— Ensuring that the parallel processing system can handle
increasing amounts of data and processing power without
significant performance degradation

ocessing power

2 , s
a Increase in number of machines
c

gl < i<

Typical Architecture { PROFINIT)

Metadata Operations
to Get Block Info

Name Node

job Assignment to Cluster Master Node

A
i JobTracker . 9:
& o %
\\(\d\ AR - =, v ",; 45':
S SEND
&N, - S,
\\stog-‘ =0 . f“e s

e 2
E: 8
= o
8 3
5
=] o

Slave Node Slave Node Slave Node Slave Node
TaskTracker TaskTracker TaskTracker TaskTracker

Data Node N Data Node I Data Node - Data Node

Map Reduce Map Reduce Map Reduce Map Reduce

Data Replication on Multiple Nodes

Key Principles { PROFINIT 7

? Decomposition of
— Data — leads to distributed storage (HDFS, ADLS, S3)
— Compute — leads to distributed compute (MapReduce, Spark)

7 Data and Compute separation (cloud data platforms)
— By decoupling storage and compute, organizations can scale each component
independently.
« Storage is cheap
« Compute is expensive

— Alot of data # $$9, if you don’t process them
— Asmall amount of data # $, if you process them real-time (e.g. streaming)

Distributed Storage { PROFINIT 7

7 Distributed File System (DFS) 7 Object-Based Storage (OBS)

ADLS (Azure Data Lake Storage)
AWS S3 (Simple Storage Service)

Object
IDs

— HDFS (Hadoop Distributed File System)

HDFS Blocks continues...

% BlockReport contains all the blocks on 2 Datanode.
HDFS block placement

metadata File system
AE =)
Nz AC txts je
Name Node m

Object | Object

Object | Object

Flat Address Space

— Traditional FS with directories and — Flat address space, where each object contains the
subdirectories (hierarchy) data, a unique identifier, and metadata
— Data are split to blocks that are distributed — No random writes within objects (read and write

— Support random writes anywhere © whole object) ®

— Tightly coupled with compute (deployed — Loosely coupled with compute ©

alongside compute nodes) ®

Storage formats { PROFINIT 7

? Parquet: Columnar, highly efficient for analytics. - -
Great for Spark and Fabric. sl product location | available

1 chair Boston 15

? Avro: Row-based, schema evolution friendly.

Common in Kafka pipelines. 2 chair Ohio 6
3 char Denver 9
> Delta: Adds ACID, versioning, time travel and - _ i
schema evolution to Parquet. Ideal for row-oriented
Lakehouse architecture. column-oriented
.. 1 roduct D locati 1D ilabl
? Iceberg: Similar to Delta but open standard. : : : on s available
Supports hidden partitioning and time travel. 1 chair 1 Boston 1 15
. .. 2 chair 2 I)
7 JSON/CSV: Human-readable but inefficient. Best " Chio 6
for small data or interoperability. 3 chair 3 Denver 3 9

Storage formats

{ PROFINIT 7

Schema

Format Compression ACID Partitionin Read Write Typical Use
P Evolution Transactions 9 Performance Performance Cases
/fo
/(7// 2 Excellent 2 Limited » No 2 Yes 2 Fast 2 Fast Analytics, ML
Parquet
iAvro (2 Good 2 Full X No 2 Yes (2 Good 2 Good Streaming, Kafka
2 Excellent 2 Full 2 Yes 2 Yes (2 Very Fast (2 Fast Lakehouse, CDC
DELTA LAKE
ICEBERG Lakeh
akehouse,
u 2 Excellent 2 Full 2 Yes 2 Yes (2 Very Fast 2 Fast versioning
EE ¥ Poor ¥ Manual ¥ No > No ¥ Slow [Z Easy Logs, APIs
@ X None > Manual X No X No X Slow 2 Easy Legacy, simple

ETL

Distributed Compute { PROFINIT 7

? MapReduce = programming paradigm

MapReduce 7 Map - each node applies the mapping
oy Mg e function to its data portion, filtering and
||||||'€EEEEEEEE'\/,>||||||}CU= sorting it according to parameters.
Node 2 W = . .
T = 7 Shuffle - mapped data is redistributed to
"““'é :::“:--3}%' IIIIII} = other nodes on the system so that each
MNode 3 E . _cimi
T ‘éiiiﬁiﬁé& IIIIII}/' = node contains 9roups of key-S|m|Iar data
? Reduce - Data is processed in parallel, per
map shuffle reduce nOde1 per key

= implementation of MapReduce paradigm on

Hadoop platform

APACHE&I

spark §parK’ { PROFINIT 7

?

Does the same thing but more efficiently and conveniently

Processing speed: Apache Spark is much faster than Hadoop MapReduce (100x).

Data processing paradigm: Hadoop MapReduce is designed for batch processing,
while Apache Spark is more suited for real-time data processing and iterative analytics
(but handles batch as well).

Ease of use: Apache Spark has a more user-friendly programming interface and
supports multiple languages, while Hadoop MapReduce requires developers to write
code in Java.

Fault tolerance: Apache Spark's Resilient Distributed Datasets (RDDs) offer better
fault tolerance than Hadoop MapReduce's Hadoop Distributed File System (HDFS).

Integration: Apache Spark has a more extensive ecosystem and integrates well with
other big data tools, while Hadoop MapReduce is primarily designed to work with
Hadoop Distributed File System (HDFS).

spark §0Q

? So, are there any cons?
— It's all about the RAM
— RAM used to be expensive but the world has changed...

{ PROFINIT 7

ST Linked [
@TRRaveendra
e Real $ / GB of DRAM
$100,000,000,000
°
[]
o0
_ $1,000,000,000 °
()
$10,000,000 L")

$/GB

$100,000
Hadoop Map Reduce Job

$1,000

The rise
of Hadoop

$10

The rise of Spark

1960 1970 1980 1990 2000 2010

What Caused Hadoop’s Decline (Some of) { PROFINIT)

7 Complex setup, skilled administrators and developers.

7 MapReduce (Java based) is slow and not sufficient for ML or RT
processing = Spark

7 HDFS is optimal for big data files and not flexible.

? Horizontal scalling lead to huge onprem clusters => hard and
expensive to maintain.

7 Numerous tools = difficult to make and maintain cohesive data
pipelines.

7 Weak bult-in governance and security tools => hard to be complient
with regulations.

? Developers heavy, not user friendly.

CAP Theorem { PROFINIT 7

7 What of CAP theorem is applicable to Relational Databases?
—~ CA

7 What of CAP theorem is applicable to BigData systems?
— CPor AP

_ Consistency
— Fault or Consistency tolerant

All clients see the
same view of data,
even right after
update or delete

CA \ cP

Availability o Partitioning
All clients can find a AP

The system continues
to work as expected,
even in presence of

partial network failure

replica of data, even
in case of partial
node failures

Partitioning

The system continues
to work as expected,
even in presence of

partial network failure

40% Google
BigTable
cassandra

{ PROFINIT 7

. mongoDB.

@ { PROFINIT 7

databricks
(CA) Databricks SQL Warehouse (CP) Delta Lake
For analytical queries on historical Consistency Delta Lake uses ACID transactions
data, consistency and availability and a transaction log (Deltalog).
are prioritized. Al clients s?cedtlle » Guarantees consistency across
- Partition tolerance is less critical e right aftar concurrent reads/writes.
since queries are often read-only. update or delete « May sacrifice availability during write
conflicts or schema enforcement.
S P
Availability R Partitioning
All clients can find a AP The system continues

replica of data, even
in case of partial
node failures

to work as expected,
even in presence of
partial network failure

(AP) Structured Streaming

» Prioritizes availability and low-latency processing.

« May tolerate temporary inconsistencies (e.g., late-
arriving data, out-of-order events).

]

.
-
3 °
/ . -
Conclusion
) .
: .
X/
.
. ’

Conslusion { PROFINIT)

7 Brief history and brief introduction to big data concepts will show

— Money are important — GOOGLE, Yahoo, Microsoft, IBM, Linkedin...
* Open Source developers need to eat too ©

— Every technology has its rise, peak and decline (Gartner hype cycle)
« Datawarehouse, Hadoop, TV ©, even gen Al started to decline

— Key concept remains — distributed data, distributed processing, fault
tolerancy etc.

— Take the best and fix issues — modern data platforms offer security,
governance, stream and batch processing, wide integration, great Ul,
support etc.

https://en.wikipedia.org/wiki/Gartner_hype_cycle
https://www.gartner.com/en/newsroom/press-releases/2024-08-21-gartner-2024-hype-cycle-for-emerging-technologies-highlights-developer-productivity-total-experience-ai-and-security

{ PROFINIT 7

PROFINIT

Déekujeme za pozornost

Profinit EU, s.r.0. in LINKEDIN f FACEBOOK
Tychonova 2, 160 00 Praha 6 linkedin.com/company/profinit facebook.com/Profinit. EU
X TWITTER fip YOUTUBE

Tel.: + 420 224 316 016, web: www.profinit.eu @profinit_EU Profinit EU, s.r.o.

	Slide 1: (Big) Data in Time
	Slide 2: Agenda
	Slide 3
	Slide 4: Motivation
	Slide 5: A Little Bit of History
	Slide 6: 1950s–1980s: Foundations of Data Processing
	Slide 7: 1990s: WWW and Search Engines - this is where it really started
	Slide 8: 2000s: Pre-Hadoop Google Big data Era
	Slide 9: 2006: Open-Source Hadoop Era
	Slide 10: 2010s: BigData = Hadoop for a while…
	Slide 11: Late 2010s–now: Peak and decline of Hadoop, Bigdata still on
	Slide 12: 2020s: Rise of AI, Streaming, and Modern Data Platforms
	Slide 13: A Little Bit of Theory
	Slide 14: Motivation for Paralell (Data) Processing
	Slide 15: Key Principles
	Slide 16: Typical Architecture
	Slide 17: Key Principles
	Slide 18: Distributed Storage
	Slide 19: Storage formats
	Slide 20: Storage formats
	Slide 21: Distributed Compute
	Slide 22
	Slide 23: Spark
	Slide 24: Spark
	Slide 25: What Caused Hadoop’s Decline (Some of)
	Slide 26: CAP Theorem
	Slide 27
	Slide 28
	Slide 29: Conclusion
	Slide 30: Conslusion
	Slide 31
	Slide 32: Děkujeme za pozornost

