
(Big) Data in Time

Petr Filas 15. 10. 2025

2

Agenda

1. Motivation

2. A Little Bit of History

3. A Little Bit of Theory

4. Conclusion

3

4

Motivation

Brief history and brief introduction to big data concepts will show

– Money are important

– Every technology has its rise, peak and decline

– Key concept remains

– Take the best and fix issues

– Let’s go through data dinosaur land.

RDBMS

BigData AI hype

A Little Bit of History

6

• 1950s–1960s: Early developments in database management systems
(DBMS) like hierarchical databases and IBM’s Information Management
System (IMS). File systems etc.

• 1970: Edgar F. Codd invented the relational database model, laying the
foundation for modern databases. He was working in IBM. Codd’s rules
applied. SQL development.

• 1980s: Parallel database systems emerge, offering methods for scaling
and distributing data workloads across multiple machines.

• 1989: The term “Big Data” was first used in relation to the challenge of
managing and processing massive datasets, especially in scientific
computing.

1950s–1980s: Foundations of Data Processing

https://dzone.com/articles/rdbms-importance-of-codds-12-rules
https://dzone.com/articles/rdbms-importance-of-codds-12-rules

7

• 1990s: The explosion of the web leads to a growing need for handling
unstructured data at a larger scale. NoSQL databases appeared.

• 1994: Companies like Yahoo! and Altavista create search engines,
bringing forth the need to process massive amounts of data.

• Altavista 1998 ~13 millions queries/day, 2000 ~80millions queries each day

• 1997: Michael Cox and David Ellsworth publish a paper Application-
controlled demand paging for out-of-core visualization (NASA, Intel,
Nvidia Research), using the term "Big Data" to describe the challenges of
visualizing large datasets.

1990s: WWW and Search Engines - this is where it really started

https://ntrs.nasa.gov/api/citations/20020046803/downloads/20020046803.pdf
https://ntrs.nasa.gov/api/citations/20020046803/downloads/20020046803.pdf

8

• 2003: Google introduces the Google File System (GFS), a distributed file system
designed to support large-scale data processing.

• 2004: Google’s paper on MapReduce: Simplified Data Processing on Large Clusters
is published. This paradigm revolutionized how distributed data is processed by
simplifying parallel computing.

• 2004: Google introduces Bigtable paper, a distributed storage system for managing
structured data. Google is still using it.

Not Open Source

2000s: Pre-Hadoop Google Big data Era

MapReduce paper

https://research.google.com/archive/gfs-sosp2003.pdf
https://research.google.com/archive/mapreduce-osdi04.pdf
https://research.google.com/archive/bigtable-osdi06.pdf

9

2006: Apache Hadoop release as OS project.
– First Hadoop = HDFS + MapReduce

2007: Yahoo! adopts Hadoop for its web search engine, and Hadoop
starts gaining significant momentum in industry.

2006: Open-Source Hadoop Era

Bright future ahead predicted…

10

2010: Apache Hive emerge, providing higher-level abstractions for
querying large datasets in Hadoop “something like database”

New SQL databases (noSQL with ACID) , cloud databases.

2011: Commercial fight: Cloudera, Hortonworks, and MapR - making it
accessible for enterprises.

2012: Apache releases Hadoop 2.0 with YARN (Yet Another Resource
Negotiator), enabling Hadoop to support non-MapReduce applications
and ushering in a more flexible resource management framework.

2012: Spark, originally developed by UC Berkeley's AMPLab, is
released as a faster, in-memory alternative to MapReduce for
distributed data processing.

2010s: BigData = Hadoop for a while…

11

Late 2010s–now: Peak and decline of Hadoop, Bigdata still on

2018: Hadoop's dominance starts to decline in favor of cloud-native platforms
and frameworks such as Apache Kafka, Apache Flink, and more
containerized, microservice-based architectures.

Google trends. Do you remember where it all started?

The rise of Hadoop

The rise of BigData

The rise of Spark The rise of Databricks (and cloud) = the fall of Hadoop

12

2020: Modern data platforms like Databricks, Snowflake, and Google
BigQuery gain traction due to their scalability, simplicity, and cloud-native
architectures.

2023–2024: Boom started with ChatGPT (OpenAI release 2022). The AI,
generative AI and machine (earlier known as Data Science ☺). Everyone is
integrating big data with AI/ML pipelines, moving towards more real-time
analytics and AI-powered decision-making.

2024: Hadoop is still alive but mostly for on-premise solution (e.g.
Cloudera) = cloud-based data platforms won the war (new era is
comming)

2020s: Rise of AI, Streaming, and Modern Data Platforms

A Little Bit of Theory

Motivation for Paralell (Data) Processing

Solve real life problems

– Complexicity - Problems that are difficult to solve sequentially can often be

broken down into smaller, parallel tasks

– Efficiency and Speed - By breaking down large tasks into smaller,

concurrent processes, parallel processing significantly reduces the time

required to complete data-intensive tasks.

– Optimization: Parallel processing makes better use of available resources.

By distributing tasks across multiple processors, it maximizes the use of

computational power and minimizes idle time

Examples

– SETI - Search for Extra-Terrestrial Intelligence

– Financial Modeling

– Recommendations (Netflix)

– Big Data in enterprise

Key Principles

Decomposition

– Tasks being spread across multiple nodes to work in parallel

Load Balancing

– Distributing tasks evenly across compute (workers)

Synchronization & Communication

– Coordinating the execution of parallel tasks to ensure they

work together correctly.

Scalability

– Ensuring that the parallel processing system can handle

increasing amounts of data and processing power without

significant performance degradation

Typical Architecture

Key Principles

Decomposition of

– Data – leads to distributed storage (HDFS, ADLS, S3)

– Compute – leads to distributed compute (MapReduce, Spark)

Data and Compute separation (cloud data platforms)

– By decoupling storage and compute, organizations can scale each component

independently.

• Storage is cheap

• Compute is expensive

– A lot of data ≠ $$$, if you don’t process them

– A small amount of data ≠ $, if you process them real-time (e.g. streaming)

Distributed Storage

Distributed File System (DFS)

– HDFS (Hadoop Distributed File System)

– Traditional FS with directories and

subdirectories (hierarchy)

– Data are split to blocks that are distributed

– Support random writes anywhere ☺

– Tightly coupled with compute (deployed

alongside compute nodes) 

Object-Based Storage (OBS)

– ADLS (Azure Data Lake Storage)

– AWS S3 (Simple Storage Service)

– Flat address space, where each object contains the

data, a unique identifier, and metadata

– No random writes within objects (read and write

whole object) 

– Loosely coupled with compute ☺

Parquet: Columnar, highly efficient for analytics.

Great for Spark and Fabric.

Avro: Row-based, schema evolution friendly.

Common in Kafka pipelines.

Delta: Adds ACID, versioning, time travel and

schema evolution to Parquet. Ideal for

Lakehouse architecture.

Iceberg: Similar to Delta but open standard.

Supports hidden partitioning and time travel.

JSON/CSV: Human-readable but inefficient. Best

for small data or interoperability.

Storage formats

Storage formats

Format Compression
Schema

Evolution

ACID

Transactions
Partitioning

Read

Performance

Write

Performance

Typical Use

Cases

 Excellent Limited No Yes Fast Fast Analytics, ML

 Good Full No Yes Good Good Streaming, Kafka

 Excellent Full Yes Yes Very Fast Fast Lakehouse, CDC

 Excellent Full Yes Yes Very Fast Fast
Lakehouse,

versioning

 Poor Manual No No Slow Easy Logs, APIs

 None Manual No No Slow Easy
Legacy, simple

ETL

Distributed Compute

MapReduce = programming paradigm

 = implementation of MapReduce paradigm on

 Hadoop platform

Map - each node applies the mapping

function to its data portion, filtering and

sorting it according to parameters.

Shuffle - mapped data is redistributed to

other nodes on the system so that each

node contains groups of key-similar data

Reduce - Data is processed in parallel, per

node, per key

Spark

Does the same thing but more efficiently and conveniently

– Processing speed: Apache Spark is much faster than Hadoop MapReduce (100x).

– Data processing paradigm: Hadoop MapReduce is designed for batch processing,

while Apache Spark is more suited for real-time data processing and iterative analytics

(but handles batch as well).

– Ease of use: Apache Spark has a more user-friendly programming interface and

supports multiple languages, while Hadoop MapReduce requires developers to write

code in Java.

– Fault tolerance: Apache Spark's Resilient Distributed Datasets (RDDs) offer better

fault tolerance than Hadoop MapReduce's Hadoop Distributed File System (HDFS).

– Integration: Apache Spark has a more extensive ecosystem and integrates well with

other big data tools, while Hadoop MapReduce is primarily designed to work with

Hadoop Distributed File System (HDFS).

Spark

So, are there any cons?

– It’s all about the RAM

– RAM used to be expensive but the world has changed…

The rise of Spark

The rise

of Hadoop

25

Complex setup, skilled administrators and developers.

MapReduce (Java based) is slow and not sufficient for ML or RT

processing → Spark

HDFS is optimal for big data files and not flexible.

Horizontal scalling lead to huge onprem clusters => hard and

expensive to maintain.

Numerous tools → difficult to make and maintain cohesive data

pipelines.

Weak bult-in governance and security tools => hard to be complient

with regulations.

Developers heavy, not user friendly.

What Caused Hadoop’s Decline (Some of)

26

What of CAP theorem is applicable to Relational Databases?

– CA

What of CAP theorem is applicable to BigData systems?

– CP or AP

– Fault or Consistency tolerant

CAP Theorem

27

28

(CA) Databricks SQL Warehouse

• For analytical queries on historical

data, consistency and availability

are prioritized.

• Partition tolerance is less critical

since queries are often read-only.

(CP) Delta Lake

• Delta Lake uses ACID transactions

and a transaction log (DeltaLog).

• Guarantees consistency across

concurrent reads/writes.

• May sacrifice availability during write

conflicts or schema enforcement.

(AP) Structured Streaming

• Prioritizes availability and low-latency processing.

• May tolerate temporary inconsistencies (e.g., late-

arriving data, out-of-order events).

Conclusion

30

Conslusion

Brief history and brief introduction to big data concepts will show

– Money are important – GOOGLE, Yahoo, Microsoft, IBM, Linkedin…

• Open Source developers need to eat too ☺

– Every technology has its rise, peak and decline (Gartner hype cycle)

• Datawarehouse, Hadoop, TV ☺, even gen AI started to decline

– Key concept remains – distributed data, distributed processing, fault

tolerancy etc.

– Take the best and fix issues – modern data platforms offer security,

governance, stream and batch processing, wide integration, great UI,

support etc.

https://en.wikipedia.org/wiki/Gartner_hype_cycle
https://www.gartner.com/en/newsroom/press-releases/2024-08-21-gartner-2024-hype-cycle-for-emerging-technologies-highlights-developer-productivity-total-experience-ai-and-security

31

Profinit EU, s.r.o.

Tychonova 2, 160 00 Praha 6
LINKEDIN

linkedin.com/company/profinit

TWITTER

@profinit_EU

FACEBOOK

facebook.com/Profinit.EU

YOUTUBE

Profinit EU, s.r.o.Tel.: + 420 224 316 016, web: www.profinit.eu

Děkujeme za pozornost

	Slide 1: (Big) Data in Time
	Slide 2: Agenda
	Slide 3
	Slide 4: Motivation
	Slide 5: A Little Bit of History
	Slide 6: 1950s–1980s: Foundations of Data Processing
	Slide 7: 1990s: WWW and Search Engines - this is where it really started
	Slide 8: 2000s: Pre-Hadoop Google Big data Era
	Slide 9: 2006: Open-Source Hadoop Era
	Slide 10: 2010s: BigData = Hadoop for a while…
	Slide 11: Late 2010s–now: Peak and decline of Hadoop, Bigdata still on
	Slide 12: 2020s: Rise of AI, Streaming, and Modern Data Platforms
	Slide 13: A Little Bit of Theory
	Slide 14: Motivation for Paralell (Data) Processing
	Slide 15: Key Principles
	Slide 16: Typical Architecture
	Slide 17: Key Principles
	Slide 18: Distributed Storage
	Slide 19: Storage formats
	Slide 20: Storage formats
	Slide 21: Distributed Compute
	Slide 22
	Slide 23: Spark
	Slide 24: Spark
	Slide 25: What Caused Hadoop’s Decline (Some of)
	Slide 26: CAP Theorem
	Slide 27
	Slide 28
	Slide 29: Conclusion
	Slide 30: Conslusion
	Slide 31
	Slide 32: Děkujeme za pozornost

