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Motivation

Brief history and brief introduction to big data concepts will show

– Money are important

– Every technology has its rise, peak and decline

– Key concept remains

– Take the best and fix issues

– Let’s go through data dinosaur land.

RDBMS

BigData AI hype



A Little Bit of History
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• 1950s–1960s: Early developments in database management systems 
(DBMS) like hierarchical databases and IBM’s Information Management 
System (IMS). File systems etc.

• 1970: Edgar F. Codd invented the relational database model, laying the 
foundation for modern databases. He was working in IBM. Codd’s rules 
applied. SQL development.

• 1980s: Parallel database systems emerge, offering methods for scaling 
and distributing data workloads across multiple machines. 

• 1989: The term “Big Data” was first used in relation to the challenge of 
managing and processing massive datasets, especially in scientific 
computing.

1950s–1980s: Foundations of Data Processing

https://dzone.com/articles/rdbms-importance-of-codds-12-rules
https://dzone.com/articles/rdbms-importance-of-codds-12-rules
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• 1990s: The explosion of the web leads to a growing need for handling 
unstructured data at a larger scale. NoSQL databases appeared.

• 1994: Companies like Yahoo! and Altavista create search engines, 
bringing forth the need to process massive amounts of data.

• Altavista 1998 ~13 millions queries/day, 2000 ~80millions queries each day

• 1997: Michael Cox and David Ellsworth publish a paper Application-
controlled demand paging for out-of-core visualization (NASA, Intel, 
Nvidia Research), using the term "Big Data" to describe the challenges of 
visualizing large datasets.

1990s: WWW and Search Engines - this is where it really started

https://ntrs.nasa.gov/api/citations/20020046803/downloads/20020046803.pdf
https://ntrs.nasa.gov/api/citations/20020046803/downloads/20020046803.pdf
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• 2003: Google introduces the Google File System (GFS), a distributed file system 
designed to support large-scale data processing. 

• 2004: Google’s paper on MapReduce: Simplified Data Processing on Large Clusters
is published. This paradigm revolutionized how distributed data is processed by 
simplifying parallel computing.

• 2004: Google introduces Bigtable paper, a distributed storage system for managing 
structured data. Google is still using it.

Not Open Source

2000s: Pre-Hadoop Google Big data Era 

MapReduce paper

https://research.google.com/archive/gfs-sosp2003.pdf
https://research.google.com/archive/mapreduce-osdi04.pdf
https://research.google.com/archive/bigtable-osdi06.pdf
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2006: Apache Hadoop release as OS project. 
– First Hadoop = HDFS + MapReduce 

2007: Yahoo! adopts Hadoop for its web search engine, and Hadoop 
starts gaining significant momentum in industry.

2006: Open-Source Hadoop Era

Bright future ahead predicted…
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2010: Apache Hive emerge, providing higher-level abstractions for 
querying large datasets in Hadoop “something like database”

New SQL databases (noSQL with ACID) , cloud databases.

2011: Commercial fight: Cloudera, Hortonworks, and MapR - making it 
accessible for enterprises.

2012: Apache releases Hadoop 2.0 with YARN (Yet Another Resource 
Negotiator), enabling Hadoop to support non-MapReduce applications 
and ushering in a more flexible resource management framework.

2012: Spark, originally developed by UC Berkeley's AMPLab, is 
released as a faster, in-memory alternative to MapReduce for 
distributed data processing.

2010s: BigData = Hadoop for a while…
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Late 2010s–now: Peak and decline of Hadoop, Bigdata still on

2018: Hadoop's dominance starts to decline in favor of cloud-native platforms 
and frameworks such as Apache Kafka, Apache Flink, and more 
containerized, microservice-based architectures.

Google trends. Do you remember where it all started?

The rise of Hadoop

The rise of BigData

The rise of Spark The rise of Databricks (and cloud) = the fall of Hadoop
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2020: Modern data platforms like Databricks, Snowflake, and Google 
BigQuery gain traction due to their scalability, simplicity, and cloud-native 
architectures.

2023–2024: Boom started with ChatGPT (OpenAI release 2022). The AI, 
generative AI and machine (earlier known as Data Science ☺). Everyone is 
integrating big data with AI/ML pipelines, moving towards more real-time 
analytics and AI-powered decision-making.

2024: Hadoop is still alive but mostly for on-premise solution (e.g. 
Cloudera) = cloud-based data platforms won the war (new era is 
comming)

2020s: Rise of AI, Streaming, and Modern Data Platforms



A Little Bit of Theory



Motivation for Paralell (Data) Processing

Solve real life problems

– Complexicity - Problems that are difficult to solve sequentially can often be 

broken down into smaller, parallel tasks

– Efficiency and Speed - By breaking down large tasks into smaller, 

concurrent processes, parallel processing significantly reduces the time 

required to complete data-intensive tasks.

– Optimization: Parallel processing makes better use of available resources. 

By distributing tasks across multiple processors, it maximizes the use of 

computational power and minimizes idle time

Examples

– SETI - Search for Extra-Terrestrial Intelligence

– Financial Modeling

– Recommendations (Netflix)

– Big Data in enterprise



Key Principles

Decomposition

– Tasks being spread across multiple nodes to work in parallel

Load Balancing

– Distributing tasks evenly across compute (workers)

Synchronization & Communication

– Coordinating the execution of parallel tasks to ensure they 

work together correctly.

Scalability

– Ensuring that the parallel processing system can handle 

increasing amounts of data and processing power without 

significant performance degradation



Typical Architecture



Key Principles

Decomposition of

– Data – leads to distributed storage (HDFS, ADLS, S3)

– Compute – leads to distributed compute (MapReduce, Spark)

Data and Compute separation (cloud data platforms)

– By decoupling storage and compute, organizations can scale each component 

independently.

• Storage is cheap

• Compute is expensive

– A lot of data ≠ $$$, if you don’t process them

– A small amount of data ≠ $, if you process them real-time (e.g. streaming)



Distributed Storage

Distributed File System (DFS)

– HDFS (Hadoop Distributed File System)

– Traditional FS with directories and 

subdirectories (hierarchy)

– Data are split to blocks that are distributed

– Support random writes anywhere ☺

– Tightly coupled with compute (deployed 

alongside compute nodes) 

Object-Based Storage (OBS)

– ADLS (Azure Data Lake Storage)

– AWS S3 (Simple Storage Service)

– Flat address space, where each object contains the 

data, a unique identifier, and metadata

– No random writes within objects (read and write 

whole object) 

– Loosely coupled with compute ☺



Parquet: Columnar, highly efficient for analytics. 

Great for Spark and Fabric.

Avro: Row-based, schema evolution friendly. 

Common in Kafka pipelines.

Delta: Adds ACID, versioning, time travel and 

schema evolution to Parquet. Ideal for 

Lakehouse architecture.

Iceberg: Similar to Delta but open standard. 

Supports hidden partitioning and time travel.

JSON/CSV: Human-readable but inefficient. Best 

for small data or interoperability.

Storage formats



Storage formats

Format Compression
Schema 

Evolution

ACID 

Transactions
Partitioning

Read 

Performance

Write 

Performance

Typical Use 

Cases

 Excellent  Limited  No  Yes  Fast  Fast Analytics, ML

 Good  Full  No  Yes  Good  Good Streaming, Kafka

 Excellent  Full  Yes  Yes  Very Fast  Fast Lakehouse, CDC

 Excellent  Full  Yes  Yes  Very Fast  Fast
Lakehouse, 

versioning

 Poor  Manual  No  No  Slow  Easy Logs, APIs

 None  Manual  No  No  Slow  Easy
Legacy, simple 

ETL



Distributed Compute

MapReduce = programming paradigm

                              = implementation of MapReduce paradigm on  

                                      Hadoop platform

Map - each node applies the mapping 

function to its data portion, filtering and 

sorting it according to parameters.

Shuffle - mapped data is redistributed to 

other nodes on the system so that each 

node contains groups of key-similar data

Reduce - Data is processed in parallel, per 

node, per key





Spark

Does the same thing but more efficiently and conveniently

– Processing speed: Apache Spark is much faster than Hadoop MapReduce (100x).

– Data processing paradigm: Hadoop MapReduce is designed for batch processing, 

while Apache Spark is more suited for real-time data processing and iterative analytics 

(but handles batch as well).

– Ease of use: Apache Spark has a more user-friendly programming interface and 

supports multiple languages, while Hadoop MapReduce requires developers to write 

code in Java.

– Fault tolerance: Apache Spark's Resilient Distributed Datasets (RDDs) offer better 

fault tolerance than Hadoop MapReduce's Hadoop Distributed File System (HDFS).

– Integration: Apache Spark has a more extensive ecosystem and integrates well with 

other big data tools, while Hadoop MapReduce is primarily designed to work with 

Hadoop Distributed File System (HDFS).



Spark

So, are there any cons?

– It’s all about the RAM

– RAM used to be expensive but the world has changed…

The rise of Spark

The rise 

of Hadoop
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Complex setup, skilled administrators and developers.

MapReduce (Java based) is slow and not sufficient for ML or RT 

processing → Spark

HDFS is optimal for big data files and not flexible.

Horizontal scalling lead to huge onprem clusters => hard and 

expensive to maintain.

Numerous tools → difficult to make and maintain cohesive data 

pipelines.

Weak bult-in governance and security tools => hard to be complient 

with regulations.

Developers heavy, not user friendly.

What Caused Hadoop’s Decline (Some of)
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What of CAP theorem is applicable to Relational Databases?

– CA

What of CAP theorem is applicable to BigData systems?  

– CP or AP 

– Fault or Consistency tolerant

CAP Theorem
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(CA) Databricks SQL Warehouse

• For analytical queries on historical 

data, consistency and availability 

are prioritized.

• Partition tolerance is less critical 

since queries are often read-only.

(CP) Delta Lake

• Delta Lake uses ACID transactions 

and a transaction log (DeltaLog).

• Guarantees consistency across 

concurrent reads/writes.

• May sacrifice availability during write 

conflicts or schema enforcement.

(AP) Structured Streaming

• Prioritizes availability and low-latency processing.

• May tolerate temporary inconsistencies (e.g., late-

arriving data, out-of-order events).



Conclusion
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Conslusion

Brief history and brief introduction to big data concepts will show

– Money are important – GOOGLE, Yahoo, Microsoft, IBM, Linkedin…

• Open Source developers need to eat too ☺

– Every technology has its rise, peak and decline (Gartner hype cycle)

• Datawarehouse, Hadoop, TV ☺, even gen AI started to decline

– Key concept remains – distributed data, distributed processing, fault 

tolerancy etc.

– Take the best and fix issues – modern data platforms offer security, 

governance, stream and batch processing, wide integration, great UI, 

support etc.

https://en.wikipedia.org/wiki/Gartner_hype_cycle
https://www.gartner.com/en/newsroom/press-releases/2024-08-21-gartner-2024-hype-cycle-for-emerging-technologies-highlights-developer-productivity-total-experience-ai-and-security
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Profinit EU, s.r.o.

Tychonova 2, 160 00  Praha 6
LINKEDIN

linkedin.com/company/profinit

TWITTER

@profinit_EU

FACEBOOK

facebook.com/Profinit.EU

YOUTUBE

Profinit EU, s.r.o.Tel.: + 420 224 316 016, web: www.profinit.eu

Děkujeme za pozornost
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