Optimalizace

Použití lineární úlohy nejmenších čtverců (a podobných)

Tomáš Werner

FEL ČVUT
Mnoho aplikací úlohy

\[
\min_{x \in \mathbb{R}^n} \|Ax - b\|^2
\]

je v knize (zdarma ke stažení i se slajdy):

(Slides in this lecture are compiled from various courses taught by S.Boyd and L.Vanderberghe.)
Interpretations of $y = Ax$

- y is measurement or observation; x is unknown to be determined
- x is ‘input’ or ‘action’; y is ‘output’ or ‘result’
- $y = Ax$ defines a function or transformation that maps $x \in \mathbb{R}^n$ into $y \in \mathbb{R}^m$
Linear elastic structure

- x_j is external force applied at some node, in some fixed direction
- y_i is (small) deflection of some node, in some fixed direction

$(\text{provided } x, y \text{ are small})$ we have $y \approx Ax$

- A is called the \textit{compliance matrix}
- a_{ij} gives deflection i per unit force at j (in m/N)
Total force/torque on rigid body

- x_j is external force/torque applied at some point/direction/axis
- $y \in \mathbb{R}^6$ is resulting total force & torque on body
 $(y_1, y_2, y_3$ are x-, y-, z- components of total force,
 y_4, y_5, y_6 are x-, y-, z- components of total torque)
- we have $y = Ax$
- A depends on geometry
 (of applied forces and torques with respect to center of gravity CG)
- jth column gives resulting force & torque for unit force/torque j
Linear static circuit

interconnection of resistors, linear dependent (controlled) sources, and independent sources

• \(x_j \) is value of independent source \(j \)
• \(y_i \) is some circuit variable (voltage, current)
• we have \(y = Ax \)
• if \(x_j \) are currents and \(y_i \) are voltages, \(A \) is called the impedance or resistance matrix
Final position/velocity of mass due to applied forces

- unit mass, zero position/velocity at $t = 0$, subject to force $f(t)$ for $0 \leq t \leq n$

- $f(t) = x_j$ for $j - 1 \leq t < j$, $j = 1, \ldots, n$
 (x is the sequence of applied forces, constant in each interval)

- y_1, y_2 are final position and velocity (i.e., at $t = n$)

- we have $y = Ax$

- a_{1j} gives influence of applied force during $j - 1 \leq t < j$ on final position

- a_{2j} gives influence of applied force during $j - 1 \leq t < j$ on final velocity
Gravimeter prospecting

- $x_j = \rho_j - \rho_{avg}$ is (excess) mass density of earth in voxel j;
- y_i is measured *gravity anomaly* at location i, *i.e.*, some component (typically vertical) of $g_i - g_{avg}$
- $y = Ax$

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ρ_j</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_i</td>
<td>g_{avg}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• A comes from physics and geometry

• jth column of A shows sensor readings caused by unit density anomaly at voxel j

• ith row of A shows sensitivity pattern of sensor i
Thermal system

- x_j is power of jth heating element or heat source

- y_i is change in steady-state temperature at location i

- thermal transport via conduction

- $y = Ax$
• a_{ij} gives influence of heater j at location i (in °C/W)

• jth column of A gives pattern of steady-state temperature rise due to 1W at heater j

• ith row shows how heaters affect location i
Illumination with multiple lamps

- n lamps illuminating m (small, flat) patches, no shadows
- x_j is power of jth lamp; y_i is illumination level of patch i
- $y = Ax$, where $a_{ij} = r_{ij}^{-2} \max\{\cos \theta_{ij}, 0\}$
 \[(\cos \theta_{ij} < 0 \text{ means patch } i \text{ is shaded from lamp } j) \]
- jth column of A shows illumination pattern from lamp j
Broad categories of applications

linear model or function \(y = Ax \)

some broad categories of applications:

• estimation or inversion

• control or design

• mapping or transformation

(this list is not exclusive; can have combinations . . .)
Estimation or inversion

\[y = Ax \]

- \(y_i \) is \(i \)th measurement or sensor reading (which we know)
- \(x_j \) is \(j \)th parameter to be estimated or determined
- \(a_{ij} \) is sensitivity of \(i \)th sensor to \(j \)th parameter

Sample problems:

- find \(x \), given \(y \)
- find all \(x \)'s that result in \(y \) (\(i.e., \) all \(x \)'s consistent with measurements)
- if there is no \(x \) such that \(y = Ax \), find \(x \) s.t. \(y \approx Ax \) (\(i.e., \) if the sensor readings are inconsistent, find \(x \) which is almost consistent)
Control or design

\[y = Ax \]

- \(x \) is vector of design parameters or inputs (which we can choose)
- \(y \) is vector of results, or outcomes
- \(A \) describes how input choices affect results

Sample problems:

- find \(x \) so that \(y = y_{\text{des}} \)
- find all \(x \)'s that result in \(y = y_{\text{des}} \) (i.e., find all designs that meet specifications)
- among \(x \)'s that satisfy \(y = y_{\text{des}} \), find a small one (i.e., find a small or efficient \(x \) that meets specifications)
Mapping or transformation

- x is mapped or transformed to y by linear function $y = Ax$

sample problems:

- determine if there is an x that maps to a given y
- (if possible) find an x that maps to y
- find all x’s that map to a given y
- if there is only one x that maps to y, find it (i.e., decode or undo the mapping)
Example: illumination

- n lamps at given positions above an area divided in m regions
- A_{ij} is illumination in region i if lamp j is on with power 1 and other lamps are off
- x_j is power of lamp j
- $(Ax)_i$ is illumination level at region i
- b_i is target illumination level at region i

Example: $m = 25^2$, $n = 10$; figure shows position and height of each lamp
Example: illumination

- left: illumination pattern for equal lamp powers ($x = 1$)
- right: illumination pattern for least squares solution \hat{x}, with $b = 1$
we choose the model $\hat{f}(x)$ from a family of models

$$
\hat{f}(x) = \theta_1 f_1(x) + \theta_2 f_2(x) + \cdots + \theta_p f_p(x)
$$

- the functions f_i are scalar valued basis functions (chosen by us)
- the basis functions often include a constant function (typically, $f_1(x) = 1$)
- the coefficients $\theta_1, \ldots, \theta_p$ are the model parameters
- the model $\hat{f}(x)$ is linear in the parameters θ_i
- if $f_1(x) = 1$, this can be interpreted as a regression model

$$
\hat{y} = \beta^T \tilde{x} + \nu
$$

with parameters $\nu = \theta_1$, $\beta = \theta_{2:p}$ and new features \tilde{x} generated from x:

$$
\tilde{x}_1 = f_2(x), \ldots, \tilde{x}_p = f_p(x)
$$
Least squares model fitting

- fit linear-in-parameters model to data set \((x^{(1)}, y^{(1)}), \ldots, (x^{(N)}, y^{(N)})\)
- residual for data sample \(i\) is

\[
r^{(i)} = y^{(i)} - \hat{f}(x^{(i)}) = y^{(i)} - \theta_1 f_1(x^{(i)}) - \cdots - \theta_p f_p(x^{(i)})
\]

- least squares model fitting: choose parameters \(\theta\) by minimizing MSE

\[
\frac{1}{N} \left((r^{(1)})^2 + (r^{(2)})^2 + \cdots + (r^{(N)})^2 \right)
\]

- this is a least squares problem: minimize \(\| A \theta - y^d \|^2\) with

\[
A = \begin{bmatrix}
f_1(x^{(1)}) & \cdots & f_p(x^{(1)}) \\
f_1(x^{(2)}) & \cdots & f_p(x^{(2)}) \\
\vdots & \ddots & \vdots \\
f_1(x^{(N)}) & \cdots & f_p(x^{(N)})
\end{bmatrix}, \quad \theta = \begin{bmatrix}
\theta_1 \\
\theta_2 \\
\vdots \\
\theta_p
\end{bmatrix}, \quad y^d = \begin{bmatrix}
y^{(1)} \\
y^{(2)} \\
\vdots \\
y^{(N)}
\end{bmatrix}
\]
Example: polynomial approximation

\[\hat{f}(x) = \theta_1 + \theta_2 x + \theta_3 x^2 + \cdots + \theta_p x^{p-1} \]

- a linear-in-parameters model with basis functions 1, \(x \), \(\ldots \), \(x^{p-1} \)

- least squares model fitting: choose parameters \(\theta \) by minimizing MSE

\[
\frac{1}{N} \left((y^{(1)} - \hat{f}(x^{(1)}))^2 + (y^{(2)} - \hat{f}(x^{(2)}))^2 + \cdots + (y^{(N)} - \hat{f}(x^{(N)}))^2 \right)
\]

- in matrix notation: minimize \(\|A\theta - y^d\|^2 \) with

\[
A = \begin{bmatrix}
1 & x^{(1)} & (x^{(1)})^2 & \cdots & (x^{(1)})^{p-1} \\
1 & x^{(2)} & (x^{(2)})^2 & \cdots & (x^{(2)})^{p-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x^{(N)} & (x^{(N)})^2 & \cdots & (x^{(N)})^{p-1}
\end{bmatrix}, \quad y^d = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}
\]
Example

\(\hat{f}(x) \) degree 2 \((p = 3)\)

\(\hat{f}(x) \) degree 6

\(\hat{f}(x) \) degree 10

\(\hat{f}(x) \) degree 15

data set of 100 examples
Piecewise-affine function

- define knot points $a_1 < a_2 < \cdots < a_k$ on the real axis
- piecewise-affine function is continuous, and affine on each interval $[a_k, a_{k+1}]$
- piecewise-affine function with knot points a_1, \ldots, a_k can be written as

\[\hat{f}(x) = \theta_1 + \theta_2 x + \theta_3 (x - a_1)_+ + \cdots + \theta_{2+k} (x - a_k)_+ \]

where $u_+ = \max \{u, 0\}$
Piecewise-affine function fitting

piecewise-affine model is in linear in the parameters θ, with basis functions

$$f_1(x) = 1, \quad f_2(x) = x, \quad f_3(x) = (x - a_1)_+, \quad \ldots, \quad f_{k+2}(x) = (x - a_k)_+$$

Example: fit piecewise-affine function with knots $a_1 = -1, a_2 = 1$ to 100 points
Auto-regressive (AR) time series model

\[\hat{z}_{t+1} = \beta_1 z_t + \cdots + \beta_M z_{t-M+1}, \quad t = M, M + 1, \ldots \]

- \(z_1, z_2, \ldots \) is a time series
- \(\hat{z}_{t+1} \) is a prediction of \(z_{t+1} \), made at time \(t \)
- prediction \(\hat{z}_{t+1} \) is a linear function of previous \(M \) values \(z_t, \ldots, z_{t-M+1} \)
- \(M \) is the memory of the model

Least squares fitting of AR model: given observed data \(z_1, \ldots, z_T \), minimize

\[
(z_{M+1} - \hat{z}_{M+1})^2 + (z_{M+2} - \hat{z}_{M+2})^2 + \cdots + (z_T - \hat{z}_T)^2
\]

this is a least squares problem: minimize \(\|A\beta - y^d\|_2^2 \) with

\[
A = \begin{bmatrix}
 z_M & z_{M-1} & \cdots & z_1 \\
 z_{M+1} & z_M & \cdots & z_2 \\
 \vdots & \vdots & \ddots & \vdots \\
 z_{T-1} & z_{T-2} & \cdots & z_{T-M}
\end{bmatrix}, \quad \beta = \begin{bmatrix}
 \beta_1 \\
 \beta_2 \\
 \vdots \\
 \beta_M
\end{bmatrix}, \quad y^d = \begin{bmatrix}
 z_{M+1} \\
 z_{M+2} \\
 \vdots \\
 z_T
\end{bmatrix}
\]
Example: hourly temperature at LAX

- blue line shows prediction by AR model of memory $M = 8$
- model was fit on time series of length $T = 744$ (May 1–31, 2016)
- plot shows first five days
Generalization and validation

Generalization ability: ability of model to predict outcomes for new, unseen data

Model validation: to assess generalization ability,

- divide data in two sets: training set and test (or validation) set
- use training set to fit model
- use test set to get an idea of generalization ability
- this is also called out-of-sample validation

Over-fit model

- model with low prediction error on training set, bad generalization ability
- prediction error on training set is much smaller than on test set
Example: polynomial fitting

- training set is data set of 100 points used on page 9.11
- test set is a similar set of 100 points
- plot suggests using degree 6
Over-fitting

polynomial of degree 20 on training and test set

over-fitting is evident at the left end of the interval