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Interpretations of y = Ax

e y is measurement or observation; x is unknown to be determined
e T iIs 'input’ or ‘action’; y is ‘output’ or ‘result’

e y = Ax defines a function or transformation that maps x € R" into
y € R™
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Linear elastic structure

e 1, is external force applied at some node, in some fixed direction

e y; is (small) deflection of some node, in some fixed direction

5133 i | !
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provided x, y are small) we have y ~ Ax
Yy

e A is called the compliance matrix

e a;; gives deflection ¢ per unit force at 5 (in m/N)
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Total force/torque on rigid body

e 1, is external force/torque applied at some point/direction/axis

e y € R® is resulting total force & torque on body
(y1, Y2, y3 are X-, y-, z- components of total force,
Y4, Y5, Yo are x-, y-, z- components of total torque)

e we have y = Ax

e A depends on geometry
(of applied forces and torques with respect to center of gravity CG)

e jth column gives resulting force & torque for unit force/torque j

Linear functions and examples
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Linear static circuit

interconnection of resistors, linear dependent (controlled) sources, and
independent sources
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e z; is value of independent source j
e 1, is some circuit variable (voltage, current)
e we have y = Ax

e if x; are currents and y; are voltages, A is called the impedance or
resistance matrix
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Final position/velocity of mass due to applied forces

—

e unit mass, zero position/velocity at t = 0, subject to force f(t) for
0<t<n

o f(t)=xforj—1<t<yj,j=1,...,n
(z is the sequence of applied forces, constant in each interval)

e 11, Yo are final position and velocity (i.e., at t = n)
e we have y = Ax
e a;; gives influence of applied force during j —1 < ¢ < j on final position

® ay; gives influence of applied force during 7 —1 < ¢ < j on final velocity
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Gravimeter prospecting

. gi / Javg
y

Pj

® ;= p; — pPavg IS (excess) mass density of earth in voxel j;

e 1, is measured gravity anomaly at location ¢, i.e., some component
(typically vertical) of g; — gavg

o y=Ax
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e A comes from physics and geometry

e jth column of A shows sensor readings caused by unit density anomaly
at voxel j

e 1th row of A shows sensitivity pattern of sensor i
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Thermal system
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e 1, is power of jth heating element or heat source

e 1, is change in steady-state temperature at location ¢
e thermal transport via conduction

o y—=Ax
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e a;; gives influence of heater j at location ¢ (in °C/W)

e jth column of A gives pattern of steady-state temperature rise due to
1W at heater j

e ith row shows how heaters affect location
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lllumination with multiple lamps

e n lamps illuminating m (small, flat) patches, no shadows

e z; is power of jth lamp; y; is illumination level of patch i

o y= Az, where q;; = ey

(cosf;; < 0 means patch i is shaded from lamp j)

max{cos#;;,0}

e jth column of A shows illumination pattern from lamp j

Linear functions and examples
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Broad categories of applications

linear model or function y = Ax

some broad categories of applications:

e estimation or inversion
e control or design

e mapping or transformation

(this list is not exclusive; can have combinations . . . )

Linear functions and examples 2-25



Estimation or inversion

y = Ax

e y; is ith measurement or sensor reading (which we know)
e 1, is jth parameter to be estimated or determined

® a;; Is sensitivity of ith sensor to jth parameter
sample problems:

e find z, given y

e find all x's that result in y (i.e., all £'s consistent with measurements)

e if there is no x such that y = Az, find = s.t. y = Ax (i.e., if the sensor
readings are inconsistent, find & which is almost consistent)
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Control or design

y = Ax

e x is vector of design parameters or inputs (which we can choose)
e y is vector of results, or outcomes

e A describes how input choices affect results
sample problems:

e find x so that Y = Ydes

e find all x's that result in y = yqes (i-€., find all designs that meet
specifications)

e among x's that satisfy y = yqes, find a small one (i.e., find a small or
efficient x that meets specifications)

Linear functions and examples 2-27



Mapping or transformation

e r is mapped or transformed to y by linear function y = Ax

sample problems:

e determine if there is an x that maps to a given y
e (if possible) find an = that maps to y
e find all x's that map to a given y

e if there is only one = that maps to v, find it (i.e., decode or undo the
mapping)
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Example: illumination

e n lamps at given positions above an area divided in m regions

e A;;is illumination in region i if lamp j is on with power 1 and other lamps are off

e x;is power of lamp j

e (Ax); is illumination level at region i

e D; is target illumination level at region i

Example: m = 252, n = 10; figure shows position and height of each lamp

Least squares
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Example: illumination

e left: illumination pattern for equal lamp powers (x = 1)

e right: illumination pattern for least squares solution X, with b =1
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Linear-in-parameters model

we choose the model f(x) from a family of models
F(x) = 01f1(x) + 02 fo(x) + - - - + Op f(x)

e the functions f; are scalar valued basis functions (chosen by us)
e the basis functions often include a constant function (typically, fi(x) = 1)

e the coefficients 01, ..., 6, are the model parameters
e the model f(x) is linear in the parameters 6;

e if fi(x) = 1, this can be interpreted as a regression model
V= ,BT)Z + v
with parameters v = 61, 8 = 6,.;, and new features x generated from x:

X1 = folx), ..., Xp = fp(x)

Least squares data fitting 9.9



fit linear-in-parameters model to data set (x(1), y(y, ... (x(V), y(V))

Least squares model fitting

residual for data sample i is

r = 3@ _ A0y = 3O _ g, f(xD) = ... - gpfp(x(i))

least squares model fitting: choose parameters 6 by minimizing MSE

this is a least squares problem: minimize |46 — y9||% with

C AGxD)
fi(x?)

RGO

Least squares data fitting
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Example: polynomial approximation

f(x) =01 +6x + O3x° + -+ + prp_l
-1

e a linear-in-parameters model with basis functions 1, x, ..., x?

e |east squares model fitting: choose parameters 6 by minimizing MSE

% (60 = A2+ 6@ = Fa@)P 4o 6N = F™)2)

e in matrix notation: minimize ||A6 — y4||? with

EE N
1 p—
A=| xE (xE ) (x S) o ydo ys
1 ™ W2 Wyt )
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Example

f(x) degree 2 (p = 3) f(x) degree 6

f(x) degree 15

data set of 100 examples

Least squares data fitting



Piecewise-affine function

e define knot points a; < ap < --- < aj on the real axis

e piecewise-affine function is continuous, and affine on each interval |ay, a;41]

e piecewise-affine function with knot points ay, ..., a; can be written as

f(x) =01+ 0x +03(x —ay)s + - + Ok (x — ap)+

where 1, = max {u,0}

(x+1)4 (x = 1),
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Piecewise-affine function fitting
piecewise-affine model is in linear in the parameters 6, with basis functions

i) =1, Hx)=x, fx)=C&-a1)r, ..., fie2(x)=(x—ar)+

Example: fit piecewise-affine function with knots a; = —1, a» = 1 to 100 points

f(x)
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Auto-regressive (AR) time series model

41 =P1z+ -+ BMZ—m+1 t=M,M+1,...

® 71,722, ... Isatime series
e Z;.1 is a prediction of z;,1, made at time ¢
e prediction Z;, is a linear function of previous M values z, ..., Zr—p+1

e M is the memory of the model
Least squares fitting of AR model: given oberved data z;, ..., zr, minimize

~ 2 A 2 A N2
(Zm+1 = Zm+1)” + @y42 — Zy42)” + -+ (27 — 27)

this is a least squares problem: minimize ||A8 — y4||? with

M IM-1 e 21 B1 IM+1
IM+1 M 22 B2 d IM+2
A= : : : ? ’8 = : ? y = :
| Zr-1 Zr-2 ot W-M | - Bum | |27
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Example: hourly temperature at LAX
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Temperature (°F)

e blue line shows prediction by AR model of memory M = 8
e model was fit on time series of length T = 744 (May 1-31, 2016)

e plot shows first five days
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Generalization and validation

Generalization ability: ability of model to predict outcomes for new, unseen data

Model validation: to assess generalization ability,

e divide data in two sets: training set and test (or validation) set
e use training set to fit model
e use test set to get an idea of generalization ability

e this is also called out-of-sample validation

Over-fit model

e model with low prediction error on training set, bad generalization ability

e prediction error on training set is much smaller than on test set

Least squares data fitting 9.21



Example: polynomial fitting

Relative RMS error

0.2} 1

0 2 4 6 8 10 12 14 16 18 20
Degree

e training set is data set of 100 points used on page 9.11
e test set is a similar set of 100 points

e plot suggests using degree 6
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Over-fitting

polynomial of degree 20 on training and test set

]?(x) training set ]?(x) test set

over-fitting is evident at the left end of the interval

Least squares data fitting 9.23



