Constrained Least Squares

Stephen Boyd

EE103
Stanford University

November 15, 2016

Least squares with equality constraints

- the (linearly) constrained least squares problem (CLS) is

$$
\begin{array}{ll}
\underset{\operatorname{minimize}}{\text { subject to }} & \|A x-b\|^{2} \\
\text { sut }
\end{array}
$$

- variable (to be chosen/found) is n-vector x
- $m \times n$ matrix A, m-vector $b, p \times n$ matrix C, and p-vector d are problem data (i.e., they are given)
- $\|A x-b\|^{2}$ is the objective function
- $C x=d$ are the equality constraints
- x is feasible if $C x=d$
- \hat{x} is a solution of CLS if $C \hat{x}=d$ and $\|A \hat{x}-b\|^{2} \leq\|A x-b\|^{2}$ holds for any n-vector x that satisfies $C x=d$

Piecewise-polynomial fitting

- piecewise-polynomial \hat{f} has form

$$
\hat{f}(x)= \begin{cases}p(x)=\theta_{1}+\theta_{2} x+\theta_{3} x^{2}+\theta_{4} x^{3} & x \leq a \\ q(x)=\theta_{5}+\theta_{6} x+\theta_{7} x^{2}+\theta_{8} x^{3} & x>a\end{cases}
$$

(a is given)

- we require $p(a)=q(a), p^{\prime}(a)=q^{\prime}(a)$
- fit \hat{f} to data $\left(x_{i}, y_{i}\right), i=1, \ldots, N$ by minimizing sum square error

$$
\sum_{i=1}^{N}\left(\hat{f}\left(x_{i}\right)-y_{i}\right)^{2}
$$

- can express as a constrained least squares problem

Example

Piecewise-polynomial fitting

- constraints are (linear equations in θ)

$$
\begin{aligned}
\theta_{1}+\theta_{2} a+\theta_{3} a^{2}+\theta_{4} a^{3}-\theta_{5}-\theta_{6} a-\theta_{7} a^{2}-\theta_{8} a^{3} & =0 \\
\theta_{2}+2 \theta_{3} a+3 \theta_{4} a^{2}-\theta_{6}-2 \theta_{7} a-3 \theta_{8} a^{2} & =0
\end{aligned}
$$

- prediction error on $\left(x_{i}, y_{i}\right)$ is $a_{i}^{T} \theta-y_{i}$, with

$$
\left(a_{i}\right)_{j}= \begin{cases}\left(1, x_{i}, x_{i}^{2}, x_{i}^{3}, 0,0,0,0\right) & x_{i} \leq a \\ \left(0,0,0,0,1, x_{i}, x_{i}^{2}, x_{i}^{3}\right) & x_{i}>a\end{cases}
$$

- sum square error is $\|A \theta-y\|^{2}$, where a_{i}^{T} are rows of A

Least-norm problem

- special case of constrained least squares problem, with $A=I, b=0$
- least-norm problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|^{2} \\
\text { subject to } & C x=d
\end{array}
$$

i.e., find the smallest vector that satisfies a set of linear equations

Force sequence

- unit mass on frictionless surface, initially at rest
- 10 -vector f gives forces applied for one second each
- final velocity and position are

$$
\begin{aligned}
v^{\mathrm{fin}} & =f_{1}+f_{2}+\cdots+f_{10} \\
p^{\mathrm{fin}} & =(19 / 2) f_{1}+(17 / 2) f_{2}+\cdots+(1 / 2) f_{10}
\end{aligned}
$$

- let's find f for which $v^{\mathrm{fin}}=0, p^{\mathrm{fin}}=1$
- $f^{\mathrm{bb}}=(1,-1,0, \ldots, 0)$ works (called 'bang-bang')

Bang-bang force sequence

Least-norm force sequence

- let's find least-norm f that satisfies $p^{\mathrm{fin}}=1, v^{\mathrm{fin}}=0$
- least-norm problem:

$$
\begin{aligned}
& \operatorname{minimize} \\
& \text { subject to }
\end{aligned}\left[\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
19 / 2 & 17 / 2 & \cdots & 3 / 2 & 1 / 2
\end{array}\right] f=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

with variable f

- solution $f^{\ln }$ satisfies $\left\|f^{\ln }\right\|^{2}=0.0121$ (compare to $\left\|f^{\mathrm{bb}}\right\|^{2}=2$)

Least-norm force sequence

