ARO

Name: \qquad

SLAM examples

1. ICP: Consider ICP algorithm [Besl and McKey, 1992] presented during the lecture. Derive that the rotation update is:

$$
\mathbf{R}:=\mathbf{R}^{\prime} \mathbf{R}
$$

and the translation update is:

$$
\mathbf{t}:=\mathbf{R}^{\prime} \mathbf{t}+\mathbf{t}^{\prime}
$$

Hint: R,t preserves overall transformation of the original pointcloud in the algorithm. Use following induction:

- We will first assume that after the k-th iteration the overall transformation of the original pointcloud is given by rotation \mathbf{R} and translation \mathbf{t}.
- Consequently, after $(k+1)$-th iteration the overall transformation of the original pointcloud is the concatenation of (i) the previous transformation \mathbf{R}, \mathbf{t} and (ii) the newly estimated increment $\mathbf{R}^{\prime}, \mathbf{t}^{\prime}$.

To show, that the suggested update is correct, derive that in the $(k+1)$-th iteration the concatenated transformation is given by rotation $\mathbf{R}^{\prime} \mathbf{R}$ and translation $\mathbf{R}^{\prime} \mathbf{t}+\mathbf{t}^{\prime}$

2. Harris corner detector:

(a) Derive following approximation for the Sum-of-squares dissimilarity function:

$$
E(\mathbf{t})=\sum_{\mathbf{x} \in \mathcal{W}(\mathbf{u})}(I(\mathbf{x}+\mathbf{t})-I(\mathbf{x}))^{2} \approx \mathbf{t}^{\top} \underbrace{\sum_{\mathbf{x} \in \mathcal{W}(\mathbf{u})} \frac{\partial I(\mathbf{x})}{\partial \mathbf{x}} \frac{\partial I(\mathbf{x})^{\top}}{\partial \mathbf{x}}}_{\mathbf{M}} \mathbf{t}
$$

Hint: Approximate $I(\mathbf{x}+\mathbf{t})$ using first order Taylor polynomial

$$
I(\mathbf{x}+\mathbf{t}) \approx I(\mathbf{x})+\frac{\partial I(\mathbf{x})}{\partial \mathbf{x}}^{\top} \mathbf{t}
$$

and substitute it into $\mathrm{E}(\mathrm{t})$.
(b) show that \mathbf{M} is positive semi-definite matrix.

Hint: Show that eigen-values of any matrix created as $\mathbf{g g}^{\top}$ are non-negative.
3. SLAM from 2D-3D correspondences: Consider camera-lidar setup, in which 2D-3D correspondence is provided (lidar measurement for time 1 is mising).

Camera is specified by the following parameters:

$$
\mathbf{K}=\left[\begin{array}{ccc}
500 & 0 & 500 \\
0 & 500 & 250 \\
0 & 0 & 1
\end{array}\right], \mathbf{R}_{\mathbf{c}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \mathbf{t}_{\mathbf{c}}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

You are given one 2D-3D correspondence $\mathbf{u}_{1}=[1500,750]^{\top}$ (pixel coordinates in camera $1), \mathbf{x}_{2}=[2,1,1]^{\top}$ (3D point measured by lidar in coordinate frame of camera 2). Derive criterion function for the alignment from this correspondence.
a) Construct camera projection matrix and estimate directional vector $\hat{\mathbf{x}}_{1} \in \mathcal{R}^{3}$ of pixel \mathbf{u}_{1} :

$$
\mathbf{P}=
$$

$$
\hat{\mathbf{x}}_{1}=
$$

b) We known that the correct rotation \mathbf{R} and translation \mathbf{t} transform point \mathbf{x}_{2} on the ray $d_{1} \hat{\mathbf{x}}_{1}$ (generated by pixel \mathbf{u}_{1}) as follows:

$$
d_{1} \hat{\mathbf{x}}_{1}=\mathbf{R x}_{2}+\mathbf{t}
$$

Split the matrix equation in 3 scalar equations and get rid of the unknown depth d_{1}, by dividing the first two equations by the third one. Result should be two equations with right-hand-side equal to zero.

Equation1:

Equation2 :

c) Estimate criterion to be minimized $f_{23}(\mathbf{R}, \mathbf{t})$ as the sum of squares of previously derived left-hand-sides.
$f_{23}(\mathbf{R}, \mathbf{t})=$
d) What is the value of the criterion for this pose $\mathbf{R}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right], \mathbf{t}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$

