Motion planning: sampling-based planners |l

basic modifications

Vojtéch Vonasek

Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague

>

&

MULTI-ROBOT
SYSTEMS.

Known issues of sampling-based planning & s

CTU IN PRAGUE

® One may consider sampling-based planning as a “magic” tool
... but that’s not true at all!

Sampling-based planners have many issues

* Narrow passage problem
¢ Difficulty of sampling small region in Cg.. Surrounded by Cops
* Problematic if (all) solutions have to pass that region

e Sensitivity to metric & parameters
* How to measure distance in C ?
® Selecting a good metric is as difficult as motion planning!
® Many methods have “too many” parameters
® Some parameters are hidden (or not well described)
* How to tune the parameters?
e Supporting functions
® Collision detection & nearest-neighbor search
* Fast and reliable implementation

How do we recognize the issue? — performance measurement!

O

GROUP

Narrow passage problem

Narrow passage (NP)
® Aregion R C Cgee With a small volume
vol(R) < vol(C)
* Probability that a random sample falls to R is
~ Vvol(R)/vol(C)
* NP are problematic if their removal changes
connectivity of Ceee

e NP are regions in C — they are given implicitly
® Location/size/volume/shape of NPs is not known!
Consequences of having NP

° PRM builds unconnected roadmaps — no solution
¢ RRT/EST cannot enter NP — no solution

e Number of samples must be significantly increased
¢ Runtime is increased

RRT/EST & NP

ULTI-ROBOT
YSTEMS.
ROUP

Narrow passage & RRT

, FACULTY

Narrow passage o s

* Narrow passages are in C
® Sometimes, we cannot (easily) see/estimate them from workspace!
e What makes the narrow passage in the Alpha-puzzle benchmark?

How does C,,s appears?

e Can we guess shape of Cy,s based on workspace?

* vol(A) < vol(O)
m

Workspace Configuration space
* vol(A) < vol(O)

-

Workspace Configuration space

* When obstacles O dominate, they mostly influence the shape of Cops

How does C,»s appear?

e Let X, Y C R", X and Y are nonempty

® Brunn-Minkowski theorem:

n

Vol(X & Y) = (vol(X)# + vol(Y)#)

® vol(Cops) is larger than min(vol(A), vol(O))
® vol(Cops) can be much larger!
Example: vol(A) = vol(O)

A

Workspace Configuration space

O S

Improvements o

CTU IN PRAGUE

Why improvements of PRM/RRT/EST?

* To cope with the narrow passage problem, improve path quality,
speed-up planning, to enable planning in specific cases

Main tricks 1 Tniialize free 7 With G
2 fori=1,..., Inax do
e Change distribution of random 2 Grana = generate randomly in C
samples 4 q,gar = find nearest node in 7 towards
rand
e Dedicated metrics 5 Gnew = localPlanner from guear towards
H Qrand
® |Improved nearest-neighbor . if CANCONNECt (Grear, Goew) then
search 7 T .addNode(Gnew)
¢ Use suitable local planners 8 7'.addEdge(Gnear Gnew)
L . 9 if Q(anw-, ngal) < dgoa/ then
* |mprove collision-detection 10 | return path from Ginit t0 Gnew

UU SYSTEMS

GROUP

Improvements o

CTU IN PRAGUE

e Many existing modifications of sampling-based planners, look at
surveys
¢ Next slides present the basic principle of improvements

@ Elbanhawi, M., & Simic, M. (2014). Sampling-based robot motion planning: A review. IEEE
access, 2, 56-77.

@ Veras, Luiz Gustavo D. O,, Felipe L. L. Medeiros, and Lamartine N. F. Guimaraes. Systematic
Literature Review of Sampling Process in Rapidly-Exploring Random Trees. IEEE Access 7
(2019)

RRT improvement I: goal bias

Observation

* RRT tree grows towards random samples

¢ If we samples some region more dense, the tree is “attracted” to grow
there

Goal-bias

* Random sample G is generated in C with probability (1 — pgoar),
otherwise it is set t0 Grand = Geoal

e The rest of RRT algorithm is the same

¢ Improves the performance if the tree can directly reach the goal

® Decreases the performance if the tree is hindered by obstacles

Pgoal = 0.7

RRT improvement |: goal bias ¥ e

Observation

* RRT tree grows towards random samples

¢ If we samples some region more dense, the tree is “attracted” to grow
there

Goal-bias

* Random sample G is generated in C with probability (1 — pgoar),
otherwise it is set t0 Grand = Geoal

e The rest of RRT algorithm is the same

¢ Improves the performance if the tree can directly reach the goal

® Decreases the performance if the tree is hindered by obstacles

Pgoal =0 Pgoal = 0.1 Pgoal = 0.7

FACULTY Q

RRT improvement |: goal bias L [F e

CTU IN PRAGUE

e Goal-bias may improve or even worse the performance!

100 100
. 9 < Yo
£ 80 £ 80
2 =
3 70 3
o j=2]
£ 60 £ 60
o / 2 /
3w / 5w
S w /
Q Qo
N/ o0 — 8 2 oy —
10 gb=0.1 - gb=0.1
0 gb=02 —— 0 9b=02
0 1000 2000 3000 4000 5000 6000 0 2000 4000 6000 8000 10000 12000 14000
iterations iterations

RRT improvement Il: guided sampling JeR e

Observation Qi
* Goal-bias attracts the tree towards g,.a, but the tree may

be blocked by obstacles @
* Generalization: we can attract the tree toward any region =

R C C if we sample R densely RRT + goal-bias

Guided-based sampling
e Estimate a path that can “guide” the tree in the C-space

e Generate Gng around the path-waypoints (starting from
first waypoint) until the tree reaches the waypoint Guiding path

* Then generate g..,a around the next waypoint

Sampling at 1 Sampling at 2 Sampling at 3 Sampling at 4

Guided sampling

Guided sampling e

G
CTU IN PRAGUE

How to compute the guiding path?

¢ Generally, the guiding path has to be located in C !!

¢ Finding a good guiding path has the same complexity as
the original planning problem!

e (i.e., guiding sampling is ‘planning solved by planning’)
e Practically, we have two options
Guiding path in W

¢ Path is computed in workspace — geometric planning Guiding(path in)W
L e q=(Xy, ¢
(Voronoi diagram, Visibility graph, etc.) (x,y) from the
e Suitable for low-dimensional problems path

. . . . random|
® The remaining dimensions are sampled uniformly v y

Guiding path in C

e Path is computed in C by a simplified search

e

U STEMS

Computing guiding path in C P i

CTU IN PRAGUE

sYs’
GROUP

Guiding path in C

* Problem is simplified — relaxation of constraints

e For example, robot is scaled-down

¢ Solve simplified planning problem

e Use the solution to generate random samples along it
The process can be iterative

Problem to be solved: Solution:

~D

Extract trajectory from the previous tree

Initial trajectory for —

scaled-down robot Scale the robot -

Use it as a guiding path
in RRT-Path

scale=1.0

¥ N
» &,
5 S
b4 N

N
(Lqug“‘ :/\éjl %Dﬁ]

init init

"oy,
)

Computing guiding path in C

The final solution for the ori robot

Computing guiding path in C ek

Computing guiding path in C

RRT improvement lIl: bidirectional search & s |68 e

CTU IN PRAGUE

® Use two trees: 7; rooted at Gini, 7g rooted Geou Qinit
¢ One tree expands towards g4, Second tree F goal
expands towards gn.w of the first tree [S

1 T;.addNode(qinit)
2 Tg.addNode(Ggoa1) Qinit q
3 fori=1,..., Imax do R LT
4 Grand = generate randomly in C goa
5 Ghear = find nearest node in 7; towards Grang Qe [S
6 Gnew = localPlanner from Quear towards grang
7 if canConnect(Qnear, Gnew) then Qinit
8 T;.addNode(gnew) q
9 ﬁ-addEdge(Qnear, qnew) Fv/. Y qgoal
10 Qlear = find nearest node in Ty towards Guew 2: \
1 Qlew = localPlanner from Gnear towards Grana riew 9near
12 if canConnect(Qe,:, Qhew) then
13 Tg-addNode(ghew)
14 Tg-addEdge(Gnear, Ghew)
15 if canConnect(q,..,, Grew) then
16 joint trees
17 return path from gini¢ t0 Ggoal

18 | Ti, Tg = Tg, Ti // swap trees

FACULTY
OF ELECTRICAL

ENGINEERING

RRT improvement lll: bidirectional search & &

® Use two trees: 7; rooted at Gini, 7g rooted Geou
¢ One tree expands towards g4, Second tree
expands towards g, of the first tree
* Helps to enter narrow passages (sometimes)
e Connection of two trees
¢ Computationally intensive
® To speed up, performs only if o(Qnew, Ghew) IS
small enough

e Difficult if motion model/constraints have to be
considered

* Balanced trees: swap trees if | 7;| > |Tq|

PRAGUE

PRM variants I: sampling strategies

Original PRM/sPRM

e Uniform sampling g ~ U(C)
Gaussian sampling: two-samples

e Uniform sample g ~ U(C), then another sample
g2 ~ N(g, %) (around g from Gaussian distribution)

e Ignore if g1, @2 € Ciee OF G1, Q2 € Cops, Otherwise
® add the collision-free one to the roadmap

¢ Generates the random samples near C,s only!
Gaussian + uniform

e Combination of two previous methods

* More dense sampling around C,,s than basic PRM
Bridge test

¢ Generate g; and g. using the Gaussian method

e Determine the midpoint @’ on the line segment |g4, g2
® Use ¢ if @' € Ciee and g1, G2 € Cobs

Uniform

& »

Gaussian

° L]

e _0 ...
@ &
0. .. °

Gaussmn + Uniform

@ dlscard

Bridge-Test

PRM variants Il: Lazy PRM

Build PRM roadmap, but without collision detection of edges

e After a path is found, edges are checked for collision and the path is
recalculated

If no path is found, extend the roadmap by new samples/edges
Otherwise, the path is collision-free

~200 nodes ~500 nodes ~2000 nodes
green: valid edges, red: invalid edges

e Faster planning in certain scenarios, but not always!

« R. Bohlin and L. E. Kavraki, "Path planning using lazy PRM," IEEE ICRA, 2000.

PRM variants II: Lazy PRM Py i

CTU IN PRAGUE

