Motion planning: combinatorial path planning

Vojtěch Vonásek

Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

The art of motion planning

The art of motion planning

Combinatorial (geometric) path planning

- Assume point/disc robots
- Use geometric (usually polygonal) representation of W

Voronoi diagram, Visibility map, Decomposition-based

- In these cases, representation of ${\mathcal W}$ is also representation of ${\mathcal C}$
- The representation is explicit → enumeration of obstacles is easy

- Point robot in 2D or 3D ${\cal W}$
 - The map of ${\mathcal W}$ is also representation of ${\mathcal C}$
 - Polygons/polyhedrons are suitable

Disc/sphere robot in 2D or 3D ${\mathcal W}$

methods

- The obstacles are "enlarged" by the radius of the robot (Minkowski sum)
- Then, representation of $\mathcal W$ is also representation of $\mathcal C$

2D \mathcal{W} and a path for the point robot

2D W +
enlargement of
obstacles, and a
path for the disc
robot

4/33

Combinatorial (geometric) path planning

www.youtube.com/watch?v=hKVBJMHivA4

Visibility graph (VG)

- Two points v_i, v_i are visible \iff $(sv_i + (1 s)v_i) \in \mathcal{C}_{\text{free}}, s \in (0, 1)$
- Visibility graph (V, E), V are vertices of polygons, E are edges between visible points
- Start/goal are connected in same manner to visible vertices

- No clearance
- Suitable only for 2D

Visibility graph (VG)

Straightforward, näive implementation $O(n^3)$

- n² pairs of vertices
- Complexity of checking one intersection is O(n)
- \rightarrow Total complexity $O(n^3)$

Fast methods

Lee's algorithm O(n² log n)

Journal on Computing, 1991

- Overmars/Welz method $O(n^2)$
- Ghosh/Mount method $O(|E|n \log n)$
- Lee, Der-Tsai, Proximity and reachability in the plane, 1978
- D. Coleman, Lee's O(n2 log n) Visibility Graph Algorithm Implementation and Analysis, 2012.
- M. H. Overmars, E. Welzl, New methods for Computing Visibility Graphs, Proc. of 4th Annual Symposium on Comp. Geometry, 1998 S. Ghosh and D. M. Mount, An output-sensitive algorithm for computing visibility graphs, SIAM

Voronoi diagram

- Let $P = v_1, \dots, v_n$ are n distinct points ("input sites") in a d-dimensional space
- Voronoi Diagram (VD) divides P into n cells V(p_i)

$$V(p_i) = \{x \in \mathbf{R}^d : ||x - p_i|| \le ||x - p_j|| \ \forall j \le n\}$$

- Cells are convex
- Used in point location (1-nn search), closest-pair search, spatial analysis
- Construction using Fortune's method in $O(n \log n)$
- S. Fortune. A sweepline algorithm for Voronoi diagrams. Proc. of the 2nd annual composium. on Computational geometry, pages 313-322, 1986.

Voronoi diagram

- Let $P = v_1, \dots, v_n$ are n distinct points ("input sites") in a d-dimensional space
- Voronoi Diagram (VD) divides P into n cells V(p_i)

$$V(p_i) = \{x \in \mathbf{R}^d : ||x - p_i|| \le ||x - p_j|| \ \forall j \le n\}$$

Note, that other metrics can be considered

Voronoi diagrams are everywhere

Voronoi diagram in robotics

- (Basic) Voronoi diagram: computed on points
- Generalized Voronoi Diagram: computed on e.g., points + weights, segments, spheres, ...

Segment Voronoi Diagram (SVD)

- computed on line-segments describing obstacles
- requires polygonal map or line/segment map
- Maximal clearance
 - largest distance between a path and the nearest obstacle
 - Is it optimal? Is it complete?

Classic VD

Weighted VD

Segment VD

Segment Voronoi diagram: complexity

Algorithms for computing Segment Voronoi diagram of *n* segments

- Lee & Drysdale: $O(n \log^2 n)$, no intersections
- Karavelas: $O((n+m)\log^2 n)$, m intersections between segments

Karavelas 2004

- Karavelas, M. I. "A robust and efficient implementation for the segment Voronoi diagram."
 International symposium on Voronoi diagrams in science and engineering. 2004
- Lee, D. T, R. L. Drysdale, III. "Generalization of Voronoi diagrams in the plane." SIAM Journal on Computing 10.1 (1981): 73-87.

Voronoi diagrams in bioinformatics

- Proteins are modeled using hard-sphere model
- Weighted Voronoi diagram of the spheres (weight is the atom radii Van der Waals radii)
- Path in the Voronoi diagram reveals "void space" and "tunnels"
- Tunnel properties (e.g. bottleneck) estimate possibility of interaction between protein and a ligand

* • A. Pavelka, E. Sebestova, B. Kozlikova, J. Brezovsky, J. Sochor, J. Damborsky, CAVER: Algorithms for Analyzing Dynamics of Tunnels in Macromolecules, IEEE/ACM Trans. on compt. biology and bioinformatics, 13(3), 2016.

Voronoi diagram for collision avoidance

• Change of positions between various formations (e.g. in drone art)

Voronoi diagram for collision avoidance

• Change of positions between various formations (e.g. in drone art)

Zhou, Dingjiang, Zijian Wang, Saptarshi Bandyopadhyay, and Mac Schwager. Fast, On-Line Collision Avoidance for Dynamic Vehicles Using Buffered Voronoi Cells. IEEE Robotics and Automation Letters, (2), 2017.

Voronoi diagram for spatial analysis

- One of first analysis was Cholera epidemic in London
- Often used in criminology

Melo, S. N. D., Frank, R., Brantingham, P. (2017). Voronoi diagrams and spatial analysis of crime. The Professional Geographer, 69(4), 579-590.

Voronoi diagram in computer graphics

- Used in many low-level routines (e.g., point location)
- Modeling fractures
 - Object is filled with some random points
 - VD is computed to provide set of convex cells
 - Interaction between cells can be modeled e.g. using rigid body dynamics

 $www.youtube.com/watch?v=FIPu9_OGFgc$

Decomposition-based methods

- The free space is partitioned into a finite set of cell
 - Determination of cell containing a point should be trivial
 - Computing paths inside the cells should be trivial
- The relations between the cells is described by a graph

Vertical cell decomposition

- Make vertical line from each vertex, stop at obstacles
- Determine centroids of the cells, centers of each segments
- Graph connects the neighbor centroids through the centers
- Connect start/goal to centroid of their cells
- Can be built in $O(n \log n)$ time

Decomposition via triangulation I

- C_{free} is triangulated
- Can be computed in $O(n \log \log n)$ time
- Polygons can be triangulated in many ways
- C_{free} is represented by graph G = (V, E)
 - *V* are centroids of the triangles
 - $E = (e_{i,j})$ if Δ_i is neighbor of Δ_j

Or

- V are vertices of the triangulation
- E are edges of the triangulation
- Planning: start/goal are connected to graph, then graph search

Decomposition via triangulation II

- Finer triangulation via Constrained Delaunay Triangulation (CDT)
 - if a triangle does not meet a criteria, it is further triangulated
 - criteria: triangle area or the largest angle

Decomposition via triangulation II

- Finer triangulation via Constrained Delaunay Triangulation (CDT)
 - if a triangle does not meet a criteria, it is further triangulated
 - criteria: triangle area or the largest angle

Path on edges

Modification: ignore segments connecting obstacles

CDT in civil engineering

- Structural analysis: modeling behavior of a structure under load, wind, pressure, ...
- Finite element method

CDT in civil engineering

- Structural analysis: modeling behavior of a structure under load, wind, pressure, ...
- Finite element method

Navigation functions

Let's assume a forward motion model

$$\dot{q}=f(q,u)$$

where $q \in C$ and $u \in U$; U is the action space

• The navigation function F(q) tells which action to take at q to reach the goal

Example: robot moving on grid, actions $\mathcal{U} = \{\rightarrow, \leftarrow, \uparrow, \downarrow, \bullet\}$

Discrete planning problem

Navigation function

• In discrete space, navigation f. is a by-product of graph-search methods

Wavefront planner

- Simple way to compute navigation function on a discrete space X
- Explores X in "waves" starting from goal until all states are explored
- 1 $open = \{goal\}$ 3 while open $\neq \emptyset$ do $wave = \emptyset$ // new wave foreach $x \in open do$ value(x) = iforeach $y \in N(x)$ do if y is not explored then add v to wave

i = i + 1

10

11

- N(x) are neighbors of x
- 4-/8-point connectivity
- The increase of the wave value i should reflect the distance between x and its neighbors
- Path is retrieved by gradient descend from start
- O(n) time for n reachable states

Wavefront planner

Potential field: principle

- Potential field U: the robot is repelled by obstacles and attracted by $q_{
 m goal}$
- Attractive potential U_{att} , repulsive potential U_{rep}
- Weights K_{att} and K_{rep} , d is the distance to the nearest obstacle, ϱ is radius of influence

$$U_{att}(q) = \frac{1}{2} K_{att} dist(q, q_{\text{goal}})^2$$
 $U_{rep}(q) = \begin{cases} \frac{1}{2} K_{rep} (1/d - 1/\varrho)^2 & \text{if } d \leq \varrho \\ 0 & \text{otherwise} \end{cases}$

Combined attractive/repulsive potential

$$U(q) = U_{att}(q) + U_{rep}(q)$$

- Goal is reached by following negative gradient $-\nabla U(q)$
- Gradient-descend method
- Y. K. Hwang and N. Ahuja, A potential field approach to path planning, IEEE Transaction on Robotics and Automation, 8(1), 1992.

Potential field: parameters

 $K_{att} = 0$, no attraction

 $K_{att} \sim K_{rep}$

 $K_{att} \gg K_{rep}$, no repulsion

optimal settings

Potential field: local minima problem

- Potential field may have more local minima/maxima
- Gradient-descent stucks there

potential field

gradient-descent to minimum

- Escape using random walks
- Use a better potential function without multiple local minima harmonic field

Harmonic field

• Harmonic field is an ideal potential function: only one extreme

Paths from various q_{init}

Images by J. Mačák, Multi-robotic cooperative inspection, Master thesis, 2009

Potential field: summary

- ullet Usually computed using grid or a triangulation of the ${\mathcal W}$
- Suitable for 2D/3D C-space
 - memory requirements (in case of grid-based computation)
 - requires to compute distance d to the nearest obstacle in C!
- Parameters K_{att} , K_{rep} and ϱ need to be tuned
- $\bullet \ \, \text{Problem with local minima} \to \text{harmonic fields} \\$

But how to really find the path?

So far we know ...

- Visibility graphs, Voronoi diagrams, Decomposition-based planners
- Navigation functions & Potential fields

What they do?

- Discretize workspace/C-space by "converting" it to a graph structure
- The graph is also called roadmap
- The roadmap is a "discrete image" of the continuous C-space
- The path is then found as path in the graph

Graph-search

- Breath-first search
- Dijkstra
- A*, D* (and their variants)

Graph search: Dijkstra's algorithm

- Finds shortest path from $s \in V$ (source) to all nodes
- dist(v) is the distance traveled from the source to the node s; prev(v) denotes the predecessor of node v

```
Q = \emptyset
2 for v \in V do
   prev[v] = -1  // predecessor of v
      dist[v] = \infty // distance to v
5 \text{ dist}[s] = 0
6 add all v \in V to Q
  while Q is not empty do
        u = \text{vertex from } Q \text{ with min } dist[u]
        remove u from Q
        foreach neighbor v of u do
10
             dv = dist[u] + d_{u,v}
11
             if dv < dist[v] then
12
                 dist[v] = dv

prev[v] = u
13
14
```


- Path from $v \rightarrow s$: $v, pred[v], pred[pred[v]], \dots s$
- Dijkstra, E. W. "A note on two problems in connection with graphs." Numerische mathematik
 1.1 (1959): 269-271.

Completeness and optimality

Visibility graph

Complete and optimal

Voronoi diagram, decomposition-based method

Complete, non-optimal

Navigation function

- Complete
- Optimal for Wavefront/Dijkstra/-based navigation functions

Potential field

Complete only if harmonic field is used (one local minima!)

Consider the limits of these methods!

• Point/Disc robots, low-dimensional C-space

 E. Rimon and D. Koditschek. "Exact robot navigation using artificial potential functions." IEEE Transactions on Robotics and Automation, 1992.

Optimality of planning methods

Do we always need optimal solution?

- No! in many cases, non-optimal solution is fine
 - e.g. for assembly/disassembly studies, computational biology
 - generally: if the existence of a solution is enough for subsequent decisions
- in industry:
 - scenarios, where robot waits due to mandatory technological breaks
 - e.g., in robotic welding and painting

Optimality of planning methods

When to prefer optimal one?

- Repetitive executing of the same plan
- Benchmarking of algorithms

It is necessary to carefully design the criteria!

Shortest path vs. fastest path vs. path for good spraying

Summary of the lecture

- Motion planning: how to move objects and avoid obstacles
- Configuration space $\mathcal C$
 - ullet Generally, planning leads to search in continuous ${\mathcal C}$
- ullet But we (generally) don't have explicit representation of ${\mathcal C}$
- $\bullet \ \ \text{We have to first create a discrete representation of } \mathcal{C}$
- and search it by graph-search methods
- Special cases: point robot and 2D/3D worlds
 - Explicit representation of \mathcal{W} is also rep. of \mathcal{C}
 - Geometric planning methods: Visibility graph, Voronoi diagram, decomposition-based
 - Also navigation functions + potential field