
Motion planning: combinatorial path planning

Vojtěch Vonásek

Department of Cybernetics
Faculty of Electrical Engineering

Czech Technical University in Prague

1 / 33

The art of motion planning

Continuous space

Discretization

Search

C-space

2 / 33

The art of motion planning

Continuous space

Discretization

Graph

Robot+map

No contraints/dynamics/kinematics

Combinatorial
motion planning

Sampling-based
motion planning

Complete Probabilistic complete

Graph-search methods

Solution (path/trajectory)

Input

Point/disc robot, 2D/3D map Arbitrary robots/maps

constraints/kinematics/dynamics

Dijkstra, A*, BFS, ...

3 / 33

Combinatorial (geometric) path planning
• Assume point/disc robots
• Use geometric (usually polygonal) representation of W
• In these cases, representation ofW is also

representation of C
• The representation is explicit→ enumeration of

obstacles is easy
• Voronoi diagram, Visibility map, Decomposition-based

methods

Point robot in 2D or 3DW
• The map ofW is also representation of C
• Polygons/polyhedrons are suitable

Disc/sphere robot in 2D or 3DW
• The obstacles are “enlarged” by the radius of the robot

(Minkowski sum)
• Then, representation ofW is also representation of C

2DW and a path
for the point robot

r

2DW +
enlargement of

obstacles, and a
path for the disc

robot
4 / 33

Combinatorial (geometric) path planning

www.youtube.com/watch?v=hKVBJMHivA4

5 / 33

Visibility graph (VG)
• Two points vi , vj are visible ⇐⇒ (svi + (1− s)vj) ∈ Cfree, s ∈ (0,1)

• Visibility graph (V ,E), V are vertices of polygons, E are edges
between visible points

• Start/goal are connected in same manner to visible vertices

Visibility graph After connecting start/goal + path

• No clearance
• Suitable only for 2D

6 / 33

Visibility graph (VG)
• Straightforward, näive implementation O(n3)

Input: polygonal obstacle
Output: visibility graph G = (V ,E)

1 V = all vertices of polygonal obstacles
2 foreach u, v ∈ V do
3 foreach obstacle edge e do
4 if segment u, v intersects e then
5 continue;

6 add edge u, v to E

• n2 pairs of vertices
• Complexity of checking

one intersection is O(n)

→ Total complexity O(n3)

Fast methods

• Lee’s algorithm O(n2 log n)

• Overmars/Welz method O(n2)

• Ghosh/Mount method O(|E |n log n)

* Lee, Der-Tsai, Proximity and reachability in the plane, 1978

* D. Coleman, Lee’s O(n2 log n) Visibility Graph Algorithm Implementation and Analysis, 2012.

* M. H. Overmars, E. Welzl, New methods for Computing Visibility Graphs, Proc. of 4th Annual
Symposium on Comp. Geometry, 1998

* S. Ghosh and D. M. Mount, An output-sensitive algorithm for computing visibility graphs, SIAM
Journal on Computing, 1991

7 / 33

Voronoi diagram
• Let P = v1, . . . , vn are n distinct points (“input sites”) in a d−dimensional

space
• Voronoi Diagram (VD) divides P into n cells V (pi)

V (pi) = {x ∈ Rd : ||x − pi || ≤ ||x − pj || ∀j ≤ n}

• Cells are convex
• Used in point location (1-nn search), closest-pair search, spatial analysis
• Construction using Fortune’s method in O(n log n)

* S. Fortune. A sweepline algorithm for Voronoi diagrams. Proc. of the 2nd annual composium
on Computational geometry. pages 313-322. 1986.

8 / 33

Voronoi diagram
• Let P = v1, . . . , vn are n distinct points (“input sites”) in a d−dimensional

space
• Voronoi Diagram (VD) divides P into n cells V (pi)

V (pi) = {x ∈ Rd : ||x − pi || ≤ ||x − pj || ∀j ≤ n}

• Note, that other metrics can be considered

9 / 33

Voronoi diagrams are everywhere

10 / 33

Voronoi diagram in robotics
• (Basic) Voronoi diagram: computed on points
• Generalized Voronoi Diagram: computed on e.g., points

+ weights, segments, spheres, . . .

Segment Voronoi Diagram (SVD)

• computed on line-segments describing obstacles
• requires polygonal map or line/segment map
3 Maximal clearance

• largest distance between a path and the nearest
obstacle

• Is it optimal? Is it complete?

Classic VD

Weighted VD

Segment VD

11 / 33

Segment Voronoi diagram: complexity
Algorithms for computing Segment Voronoi diagram of n segments

• Lee & Drysdale: O(n log2 n), no intersections
• Karavelas: O((n + m) log2 n), m intersections between segments

Karavelas 2004

* Karavelas, M. I. "A robust and efficient implementation for the segment Voronoi diagram."
International symposium on Voronoi diagrams in science and engineering. 2004

* Lee, D. T, R. L. Drysdale, III. "Generalization of Voronoi diagrams in the plane." SIAM
Journal on Computing 10.1 (1981): 73-87.

12 / 33

Voronoi diagrams in bioinformatics
• Proteins are modeled using hard-sphere model
• Weighted Voronoi diagram of the spheres (weight is the atom radii —

Van der Waals radii)
• Path in the Voronoi diagram reveals “void space” and “tunnels”
• Tunnel properties (e.g. bottleneck) estimate possibility of interaction

between protein and a ligand

Tunnels∗ Voronoi diagram ∗ Tunnels on 1BL8

* * A. Pavelka, E. Sebestova, B. Kozlikova, J. Brezovsky, J. Sochor, J. Damborsky, CAVER:
Algorithms for Analyzing Dynamics of Tunnels in Macromolecules, IEEE/ACM Trans. on compt.
biology and bioinformatics, 13(3), 2016.

13 / 33

Voronoi diagram for collision avoidance

• Change of positions between various formations (e.g. in drone art)

www.youtube.com/watch?v=YH1BD7kKqKw

14 / 33

Voronoi diagram for collision avoidance

• Change of positions between various formations (e.g. in drone art)

* Zhou, Dingjiang, Zijian Wang, Saptarshi Bandyopadhyay, and Mac Schwager. Fast, On-Line
Collision Avoidance for Dynamic Vehicles Using Buffered Voronoi Cells. IEEE Robotics and
Automation Letters, (2), 2017.

14 / 33

Voronoi diagram for spatial analysis
• One of first analysis was Cholera epidemic in London
• Often used in criminology

* Melo, S. N. D., Frank, R., Brantingham, P. (2017). Voronoi diagrams and spatial analysis of
crime. The Professional Geographer, 69(4), 579-590.

15 / 33

Voronoi diagram in computer graphics
• Used in many low-level routines (e.g., point location)
• Modeling fractures

• Object is filled with some random points
• VD is computed to provide set of convex cells
• Interaction between cells can be modeled e.g. using rigid body

dynamics

www.youtube.com/watch?v=FIPu9_OGFgc

16 / 33

Decomposition-based methods
• The free space is partitioned into a finite set of cell

• Determination of cell containing a point should be trivial
• Computing paths inside the cells should be trivial

• The relations between the cells is described by a graph
Vertical cell decomposition
• Make vertical line from each vertex, stop at obstacles
• Determine centroids of the cells, centers of each segments
• Graph connects the neighbor centroids through the centers
• Connect start/goal to centroid of their cells
• Can be built in O(n log n) time

goal

start

17 / 33

Decomposition via triangulation I
• Variant of decomposition-based methods
• Cfree is triangulated
• Can be computed in O(n log log n) time
• Polygons can be triangulated in many ways
• Cfree is represented by graph G = (V ,E)

• V are centroids of the triangles
• E = (ei,j) if ∆i is neighbor of ∆j

Or

• V are vertices of the triangulation
• E are edges of the triangulation

• Planning: start/goal are connected to graph, then
graph search

18 / 33

Decomposition via triangulation II
• Finer triangulation via Constrained Delaunay Triangulation (CDT)

• if a triangle does not meet a criteria, it is further triangulated
• criteria: triangle area or the largest angle

CDT Finer CDT (area of ∆)

19 / 33

Decomposition via triangulation II
• Finer triangulation via Constrained Delaunay Triangulation (CDT)

• if a triangle does not meet a criteria, it is further triangulated
• criteria: triangle area or the largest angle

Path on edges Modification: ignore segments connecting obstacles

19 / 33

CDT in civil engineering
• Structural analysis: modeling behavior of a structure under load, wind,

pressure, . . .
• Finite element method

20 / 33

CDT in civil engineering
• Structural analysis: modeling behavior of a structure under load, wind,

pressure, . . .
• Finite element method

20 / 33

Navigation functions
• Let’s assume a forward motion model

q̇ = f (q,u)

where q ∈ C and u ∈ U ; U is the action space
• The navigation function F (q) tells which action to take at q to reach the

goal

Example: robot moving on grid, actions U = {→,←, ↑, ↓, •}

goal

Discrete planning problem Navigation function

• In discrete space, navigation f. is a by-product of graph-search methods

21 / 33

Wavefront planner
• Simple way to compute navigation function on a discrete space X
• Explores X in “waves” starting from goal until all states are explored

1 open = {goal}
2 i = 0
3 while open 6= ∅ do
4 wave = ∅ // new wave
5 foreach x ∈ open do
6 value(x) = i
7 foreach y ∈ N(x) do
8 if y is not explored

then
9 add y to wave

10 i = i + 1
11 open = wave

• N(x) are neighbors of x
• 4-/8-point connectivity
• The increase of the wave value i

should reflect the distance
between x and its neighbors

• Path is retrieved by gradient
descend from start

• O(n) time for n reachable states

0

8
8

8 8 8 8
8

1

1

11

0

11

1

1

8
8

8 8 8 8
8

111 2

2 2 2

1012 2

1112 2

8
8

8 8 8 8
8

7 7

6

2

2

5

4

3

2

2

2

2

5

4

1

1

1

5

5

2

1

0

1

6

6

2

1

1

1

7

6

5

4

3

3

3

6

5

4

4

4

4

8
8

8 8 8 8
8

goal state i = 1 i = 2 i = 7
22 / 33

Wavefront planner

23 / 33

Potential field: principle
• Potential field U: the robot is repelled by obstacles and

attracted by qgoal

• Attractive potential Uatt , repulsive potential Urep

• Weights Katt and Krep, d is the distance to the nearest
obstacle, % is radius of influence

q
start

d

ρ

qgoal

Uatt (q) =
1
2

Kattdist(q,qgoal)
2 Urep(q) =

{ 1
2 Krep(1/d − 1/%)2 if d ≤ %

0 otherwise

• Combined attractive/repulsive potential

U(q) = Uatt (q) + Urep(q)

• Goal is reached by following negative gradient −∇U(q)

• Gradient-descend method

* Y. K. Hwang and N. Ahuja, A potential field approach to path planning, IEEE Transaction on
Robotics and Automation, 8(1), 1992.

24 / 33

Potential field: parameters

Katt = 0, no attraction Katt � Krep , no repulsion

Katt ∼ Krep optimal settings
25 / 33

Potential field: local minima problem
• Potential field may have more local minima/maxima
• Gradient-descent stucks there

potential field gradient-descent to minimum

• Escape using random walks
• Use a better potential function without multiple local minima — harmonic

field

26 / 33

Harmonic field
• Harmonic field is an ideal potential function: only one extreme

Harmonic field Paths from various qinit

Images by J. Mačák, Multi-robotic cooperative inspection, Master thesis, 2009

27 / 33

Potential field: summary
• Usually computed using grid or a triangulation of theW
• Suitable for 2D/3D C-space

• memory requirements (in case of grid-based
computation)

• requires to compute distance d to the nearest
obstacle in C!

• Parameters Katt ,Krep and % need to be tuned
• Problem with local minima→ harmonic fields

28 / 33

But how to really find the path?

So far we know . . .

• Visibility graphs, Voronoi diagrams,
Decomposition-based planners

• Navigation functions & Potential fields

What they do?

• Discretize workspace/C-space by “converting” it
to a graph structure

• The graph is also called roadmap
• The roadmap is a “discrete image” of the

continuous C-space
• The path is then found as path in the graph

Graph-search

• Breath-first search
• Dijkstra
• A*, D* (and their variants)

Continuous space
C-space

Discretization

Search

29 / 33

Graph search: Dijkstra’s algorithm
• Finds shortest path from s ∈ V (source) to all nodes
• dist(v) is the distance traveled from the source to the

node s; prev(v) denotes the predecessor of node v
1 Q = ∅
2 for v ∈ V do
3 prev[v] = -1 // predecessor of v
4 dist[v] =∞ // distance to v

5 dist[s] = 0
6 add all v ∈ V to Q
7 while Q is not empty do
8 u = vertex from Q with min dist[u]
9 remove u from Q

10 foreach neighbor v of u do
11 dv = dist[u] + du,v
12 if dv < dist[v] then
13 dist[v] = dv
14 prev [v] = u

• Path from v → s : v ,pred [v],pred [pred [v]], . . . s
* Dijkstra, E. W. "A note on two problems in connection with graphs." Numerische mathematik
1.1 (1959): 269-271.

30 / 33

Completeness and optimality

Visibility graph

• Complete and optimal

Voronoi diagram, decomposition-based method

• Complete, non-optimal

Navigation function

• Complete
• Optimal for Wavefront/Dijkstra/-based navigation functions

Potential field

• Complete only if harmonic field is used (one local minima!)

Consider the limits of these methods!

• Point/Disc robots, low-dimensional C-space

* E. Rimon and D. Koditschek. "Exact robot navigation using artificial potential functions." IEEE
Transactions on Robotics and Automation, 1992. 31 / 33

Optimality of planning methods

Do we always need optimal solution?

• No! in many cases, non-optimal solution is fine
• e.g. for assembly/disassembly studies, computational biology
• generally: if the existence of a solution is enough for subsequent

decisions
• in industry:

• scenarios, where robot waits due to mandatory technological
breaks

• e.g., in robotic welding and painting

32 / 33

Optimality of planning methods

When to prefer optimal one?

• Repetitive executing of the same plan
• Benchmarking of algorithms

It is necessary to carefully design the criteria!

Shortest path vs. fastest path vs. path for good spraying

33 / 33

Summary of the lecture
• Motion planning: how to move objects and avoid obstacles
• Configuration space C
• Generally, planning leads to search in continuous C
• But we (generally) don’t have explicit representation of C
• We have to first create a discrete representation of C
• and search it by graph-search methods
• Special cases: point robot and 2D/3D worlds

• Explicit representation ofW is also rep. of C
• Geometric planning methods: Visibility graph, Voronoi diagram,

decomposition-based
• Also navigation functions + potential field

34 / 33

