Motion planning: basic concepts

Vojtéch Vonasek

Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague

i

1/30

Motion planning: introduction

Informal definition: Motion planning is about
automatic finding of ways how to move an object
(robot) while avoiding obstacles (and considering
other constraints).

* “Piano mover’s problem”

e (Classical problem of robotics

¢ Relation to other fields

Mathematics: graph theory & topology
Computational geometry: collision detection
Computer graphics: visualizations

Control theory: feedback controllers
required to navigate along paths

® Motion planning finds application in many
practical tasks

2/30

, FACULTY OO0
References JoRS Shsticmen | MRS, mumor

CTU IN PRAGUE GROUP

Principles of Computational
Robot Motion Geometry

Th

@ S. M. LaValle, Planning algorithms, Cambridge, 2006, online: planning.cs.uiuc.edu

@ H. Choset, K. M. Lynch et al., Principles of Robot Motion: Theory, Algorithms, and
Implementations (Intelligent Robotics and Autonomous Agents series), Bradford Book,
2005

< M. de Berg, Computational Geometry: Algorithms and Applications, 1997
@ C. Ericson. Real-time collision detection. CRC Press, 2004.

3/30

Lectures overview M e | s
Introduction & motivation J
1
Formal definition, configuration space
Why we need discretization of configuration space J
A A

Combinatorial planning
(Low-dimensional cases)
Visibility graphs, Voronoi

diagrams, ...

(High-dimensional cases)

Sampling-based planning
RRT, PRM, EST, ... J

Technical details
benchmarking

sampling, collision-detection, metrics,
planning under constraints, physical simulations, tips & tricks, ...

4/30

Motion planning: definitions
World W

® is space where the robot operates
e Wisusually W C R2or W C R®
e O C W are obstacles

Robot A

e A is the geometry of the robot
e ACR?(or ACR?
e or set of links A, ... A, for n—body robot

Configuration g

* Specifies position of every point of A in W
e Usually a vector of Degrees of freedom (DOF)

q: (Q1aq27~-~7Qn)
Configuration space C (aka C-Space or C-space)

e Cis a set of all possible configurations

3D Bugtrap benchmark

@)

WCR3 ACR?

O CR?
(x,y,z) is 3D position
(rx, ry, rz) is 3D rotation

q=(X,y,2, I 1y, I7)
C-space is 6D

5/30

Configuration space Fo s

* A configuration is a point in C

A(q) is set of all points of the robot determined by configuration g € C
¢ Therefore, point g € C fully describes how the robot looks in W

¢ C has as many dimensions as robot's DOFs

e (Cis considered “high-dimensional” if number of DOFS > 4

Example: a robotic arm with two revolute joints; g = (1, 1) = 2D C-space
Robot geometry has two rigid shapes: Ay and A,

?,

°
=S

6/30

, FACULTY

Configuration space Fo s,

Obstacles in the configuration space: C,;

CObS:{q€C|A(q)mO#®}7 Cors CC

® Cus CONtains robot-obstacle collisions and self-collisions
e Self-collisions: e.g. in the case of robotic arms
e g is feasible, if it is collision free — g € Cee

Cfree = C\Cobs

7/30

Path & trajectory

e A pathin C is a continuous curve connecting two configurations gy, and
Tl s € [0,1] > 7(5) €C: 7(0) = G and (1) = Gou

¢ A trajectory is a path parameterized by time
T:tel0, T]—>7(t)eC

¢ Trajectory/path defines motion in workspace

C-space IW—space

Path in C Workspace motion

8/30

Path/motion planning problem e i

G
CTU IN PRAGUE

Given
e model of the world VW and robot A

Cooal
e start gt € Cree q <
° goal region Cgoal C Cfree godl
Path planning
Dinit
* To find a collision-free path 7(s) from Gii¢ t0 Cooa C-space

® i.e., g(8) € Ciee forall s € [0,1], S(0) = Ginit,
5(1) € Cooul

Motion planning

¢ To find a collision-free trajectory 7(t) from Ginit 10 Cgoal
® i.e., q(t) € Cree forall t € [0, T], $(0) = Ginits
S(T) € Coour
Notes
® The above definition is considered as feasible path/motion planning
® Using Cyou instead of single geou € Ciree is more practical

* No optimality criteria is considered
9/30

Completeness and optimality R e

CTU IN PRAGUE

Completeness
¢ Algorithm is complete, if for any input it correctly reports in finite time if
there is a solution or no
¢ |f a solution exists, it must return one in a finite time
e Computationally very hard (P-Space complete)
e Complete methods exist only for low-dimensional problems

Probabilistic completeness

e Algorithm is prob. complete if for scenarios with an existing solution the
probability of finding that solution converges to one
¢ |f solution does not exist, the method can run forever

Optimal vs. non-optimal

e Optimal planning: algorithm ensures finding of the optimal solution
(according to a criterion)

¢ Non-optimal: any feasible solution is returned
Asymptotically optimal

e With increasing runtime, a solution provided by the algorithm converges

to the optimal solution
10/30

Complexity of motion planning

Configuration space
EXPSPACE

e “Converts” planning tasks to a search of path for a L
point in C e
¢ Once we can search C, we can solve any planning
problem

® Motion planning is P-Space complete!

Why is planning so difficult?
e Because we have to explicitly know C, Cqps and Cpree
* The most important are obstacles C,s, but they are given implicitly:

Cobs ={q€C|AQNO #D}, Cos CC

e Implicit definition does not allow to enumerate points in Cyps
¢ Difficult to determine the nearest colliding configuration

@ J. Canny. The complexity of robot motion planning. MIT press, 1988.

11/30

, FACULTY

Implicit functions RS diimen

CTU IN PRAGUE

f(x,y)=x3—2xy +y°

f(x.y)

12/30

, FACULTY

Implicit functions RS diimen

CTU IN PRAGUE

f(x,y)=x3—2xy +y°

12/30

, FACULTY

Implicit functions RS diimen

CTU IN PRAGUE

f(x,y)=x3—2xy +y°

12/30

, FACULTY

Implicit functions RS diimen

CTU IN PRAGUE

f(x,y)=x3—2xy +y°

12/30

Explicit construction of C-space p it

G
IN PRAGUE

* How to get explicit list of obstacles from the implicit obstacles
Cobs ={q€ClA(Q)NO #0}, Cobs CC
® j.e., how to enumerate points on the border of the obstacles?

Explicit construction of C,,
® A(0) is the robot at origin
e —A(0) is achieved by replacing all x € A(0) by —x

e Obstacles in C are determined by the Minkowski sum
Cobs = O & —A(0)

e Theoretical principle, not used in practise (you will see why)

13/30

Minkowski sum

Minkowski sum @ of two sets X, Y c R"is
XoY={x+yeRxeXandyec Y}

1D example: X =[-2,1], Y =[3,5]
XeY=[1,6]

X

1<

2-1 01 23 56
X®Y

2D example: X =[0,1] x [0,1], Y =[2,4] x [0,1]
XaeY=[25]x]0,2]

14/30

Configuration space: 1D case

Example: 1D robot A = [-2, 1] and obstacle O = [2,4]:
Cobs = O @ _-A(O)

A(0) (0]

w 4+
~ 4
[T
o 4+
9 4+

3 -2-1 01 2

Cobs = [1 ’ 6]

15/30

Configuration space: 2D disc robot 5 i | oS, e

GROUP

e 2D workspace W C R?

e 2D disc robot .A C R?, reference point in the disc’s center
¢ We assume only translation

* Therefore, configuration q = (x, y) and C is 2D

C obs

. ® C free

Workspace Configuration space

e All g € Cy. are collision-free — A(q) N O =0
e Volume of Cg.. depends both on the robot and obstacles
* What happens if the robot is a point?

16/30

, FACULTY

Configuration space: 2D robot | o £

CTU IN PRAGUE

e 2D robot, only translation, g = (x,y) = 2D C

800 = — :
Minkowski sum
Robot s
W-Obstacle ===<=3
600
400
NN
NN\
200 \\\\\\§§:
N
N
AN
. ‘ N
-200 L

0 200 400 600 800

17/30

Configuration space: 2D robot |l M i | S
e 2D robot, translation + rotation, g = (x, y,») = 3D C
° Requires to compute Mlnkowskl sum for each rotatlon

Minkowski sum Minkowski sum Minkowski sum
Robot mess Robot mess Robot s
W-Obstacle =553 W-Obstacle ====3 W-Obstacle =553
600 600 600
400 400 400
200 200 200 -
ol ‘ R o= _
-200 L -200 L L -200 L L
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
=0 p =45 © =90
gor | Minkowskisum ©
—
W-Obstacle ====3
600
400
) &
0 ‘
-200

18/30

Configuration space: 2D robot || M e | 1S s

CTU IN PRAGUE houp

e 2D robot, translation + rotation, g = (x, y,») = 3D C
° Requires to compute Mlnkowskl sum for each rotatlon

Minkowski sum Minkowski sum Minkowski sum
Robot mess Robot mess Robot s
W-Obstacle =553 W-Obstacle ====3 W-Obstacle =553
600 600 600
400 400 400

200 200 200
ot ‘ 0 o™
-200 L -200 L L -200 L L
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
=0 p =45 © =90

18/30

Configuration space: 2D rotating robot Il & g | & s

CTU IN PRAGUE

e 2D robot, translation + rotation, g = (x, y,») = 3D C
° Requires to compute Mlnkowskl sum for each rotatlon

Minkowski sum Minkowski sum Minkowski sum
obot m— Robot mess Robot s
W-Obstacle =553 W-Obstacle ====3 W-Obstacle =553
600 600 600
400 400 400

200

200 o
v 0 f
200 . -200 . . 200 L— | I
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
=0 800 [‘P :Migwsm i) © =90
W-Obsl:cle rs?m
600
400
200 §§§§§:
J 4 [

-200

=)
N
=1
S
a
=]
S
-
S

0 800

19/30

Configuration space: 2D rotating robot Il & g | & s

CTU IN PRAGUE

e 2D robot, translation + rotation, g = (x, y,») = 3D C
° Requires to compute Mlnkowskl sum for each rotatlon

Minkowski sum Minkowski sum Minkowski sum
Robot mess Robot mess Robot s
W-Obstacle =553 W-Obstacle ====3 W-Obstacle =553
600 600 600
400 400 400

200 200 - 200
0r ‘ 0 0r ’
-200 L -200 L L -200 L L L
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
=0 © =150 © =90

19/30

Explicit construction of C oY s

CTU IN PRAGUE

Minkowski sum of two objects of n and m complexity

2D polygons 3D polyhedrons
e convex @ convex, O(m+ n) e convex @ convex, O(mn)
* convex @ arbitrary, (mn) * arbitrary @ arbitrary, (m®n®)

arbitrary @ arbitrary, (m?n?)

Construction of C Minkowski sums is straightforward, but .. .
We have only 2D/3D models of robots and obstacles
directly we can construct C only for “translation only” systems

Other DOFS need to be discretized and Minkowski sum computed for
each combination (!)

Explicit construction of C is computationally demanding!
Not practical for high-dimensional systems

Explicit construction of C.ps using Minkowski sum is (generally) too
difficult, and it is not practically used.

20/30

Motion restrictions

Robots (usually) cannot move arbitrarily

¢ Kinematic constraints (e.g. ‘car-like’ vehicle)
e Dynamic constraints (e.g. maximal acceleration)
Task constraints (e.g ‘do not spill the beer’)

e These are considered as additional constraints that must be satisfied in
path/motion planning

Motion model

e describes how the robot’s state changes when input u € U is applied at
geC
® U/ is a set of all possible inputs

q = f(q7 U)
® Discrete version is often used:
Qk+1 = f(qk,), k1,9 EC,UEU

21/30

Discrete feasible planning p it

G
IN PRAGUE

Given

* model of the world WV and robot A, configurations G, Geoal € Crree
* motion model g’ = f(q, u) with inputs &/

Discrete feasible planning

¢ Find a finite sequence of actions mx = (up, . .., Ux—1), U € U such that

Q1 = F(Qk, Uk) q=q.. q,=q
0o = Gini 0 init k= 1goal
gk = qgoal uO
6 C ree
Ak i Uy
® The sequence of states (g, ..., gx) can be derived from the motion

model starting from qo and applying gx.+1 = f(qx, ux) subsequently
® |s this plan optimal?

22/30

Discrete optimal planning Folp Biimen

e Let L(wg) is the cost of the sequence 7y = (up, ..., Uk—1)

k—1

L(mk) = l(q) + Y I(ai, uy)

i=0

e the final term /¢(qx) = 0 if gk = Qeou; it iS 0o Otherwise

Discrete optimal planning

m(inimize) L(mk)
Tk=(Ug,-.-, Uk —1
95 Dinit e 9 goal
subjectto Qkr1 = f(Qk. Uk) u
Qo = Qinit 0
Qk = qgoal uk_l

Qk € Cfree
® [(mx) = oo means infeasible solution
® [(mx) < oo means a feasible solution with the cost L(7)

23/30

UU SYSTEMS

GROUP

Discrete optimal control e)
e Optimal control for a discrete-time (and finite horizon)
e initial state is x;, goal state x, may be given (or not)

minimize <¢(x,,, N) + NZ1 Ly (xk, uk)>
P

Ujyee o UN—1,(Xi)5e-5Xn —i
subject to X1 = T (Xk, Uk)
Up < Uk < Uyp
Xip < Xk < Xub

Discrete optimal control (generally)

minimize J(x,u)
x€RAN=1) ye RmM(N—i)
subject to g(x,u)=0
h(x,u) <0

equations by Z. Hurak: Discrete-time optimal control — direct approach (lectures notes of ORR)

24/30

Motion planning vs control Feks Hite

G
CTU IN PRAGUE

* Optimal control and optimal (path/motion) planning are (generally) the
same

e Both can find path/trajectory from start to goal
e What is the practical difference?

Path planning

e Solution is achieved by searching C-space

e Can work with explicit (combinatorial planning) or implicit obstacles
(sampling-based planning)

¢ Difficult to react on changes (robot control error, dynamic obstacles) —
replanning

¢ Replanning requires to solve the problem from scratch — slow

25/30

Motion planning vs control b Eimea | s s

e Optimal control and optimal (path/motion) planning are (generally) the
same

e Both can find path/trajectory from start to goal
e What is the practical difference?

Control
e Trajectory is achieved via mathematical optimization

* we (typically) need “a gradient” —, e.g. ‘distance to the nearest
obstacle’, its derivative etc.
* this requires an explicit representation of C resp. Cops
¢ Difficult to find first (feasible) solution — large search space

¢ Suitable for following reference, e.g. reference trajectory from motion
planning

25/30

A , FACULTY OO0
Planning + control R Bl | S s
Task Motion planning Control

start goal start goal start goal
9 . Q ’ 9 -
. o o A
- ~ - L]
- - A/

O] 0 |srD

SEensors
change in environment

reference path

controller

N
actuat

Global plan delivered by motion planning
Sensing (actual position, speed, etc.) controlled along planned path
® j.e., errors in actuation are handled by control

Replanning when global change occurs (e.g. new obstacle that cannot
be handled by control)

Does not make sense to solve motion plan by control-theory methods

Does not make sense to control via planning!

26/30

Confusion in terminology o e

CTU IN PRAGUE

e Path/motion planning are studied in several disciplines

* Robotics, computation geometry, mathematics, biology
e _..since 1950’s !

e Each field uses different meaning for “path” and “trajectory”
... and different meaning for path/motion planning
e this continues up to now
What is a “trajectory”?
¢ Robotics (including this lecture): path + time
e Control-oriented part of robotics: path + time + control inputs
e Computational biology: 3D path of atom(s) (with or without time)

Before you start to solve a planning problem, define (or agree on) the
basic terms first!

27/30

The art of motion planning

C-space

Continuous space

Discretization

\

Search

28/30

The art of motion planning

@ Continuous space

Robot+map) o
Discretization
Point/disc robot, 2D/3D map Arbitrary robots/maps
No contraints/dynamics/kinematics constraints/kinematics/dynamics

Combinatorial
motion planning

Sampling-based
motion planning

Complete Probabilistic complete
Graph

Dijkstra, A*, BFS, ...
Graph-search methods

Solution (path/trajectory)

29/30

Summary of the lecture

Motion planning: how to move objects and avoid obstacles
Configuration space C

Generally, planning leads to search in continuous C

But we (generally) don’t have explicit representation of C
We have to first create a discrete representation of C

e and search it by graph-search methods

30/30

