
Motion planning: basic concepts

Vojtěch Vonásek

Department of Cybernetics
Faculty of Electrical Engineering

Czech Technical University in Prague

1 / 30

Motion planning: introduction

Informal definition: Motion planning is about
automatic finding of ways how to move an object
(robot) while avoiding obstacles (and considering
other constraints).

• “Piano mover’s problem”
• Classical problem of robotics
• Relation to other fields

• Mathematics: graph theory & topology
• Computational geometry: collision detection
• Computer graphics: visualizations
• Control theory: feedback controllers

required to navigate along paths

• Motion planning finds application in many
practical tasks

2 / 30

References

* S. M. LaValle, Planning algorithms, Cambridge, 2006, online: planning.cs.uiuc.edu

* H. Choset, K. M. Lynch et al., Principles of Robot Motion: Theory, Algorithms, and
Implementations (Intelligent Robotics and Autonomous Agents series), Bradford Book,
2005

* M. de Berg, Computational Geometry: Algorithms and Applications, 1997

* C. Ericson. Real-time collision detection. CRC Press, 2004.

3 / 30

Lectures overview

Introduction & motivation

↓

Formal definition, configuration space
Why we need discretization of configuration space

↓ ↓

Combinatorial planning
(Low-dimensional cases)
Visibility graphs, Voronoi

diagrams, . . .

Sampling-based planning
(High-dimensional cases)

RRT, PRM, EST, . . .

Technical details
benchmarking

sampling, collision-detection, metrics,
planning under constraints, physical simulations, tips & tricks, . . .

4 / 30

Motion planning: definitions
WorldW
• is space where the robot operates
• W is usuallyW ⊆ R2 orW ⊆ R3

• O ⊆ W are obstacles

Robot A
• A is the geometry of the robot
• A ⊆ R2 (or A ⊆ R3)
• or set of links A1, . . .An for n−body robot

Configuration q

• Specifies position of every point of A inW
• Usually a vector of Degrees of freedom (DOF)

q = (q1,q2, . . . ,qn)

Configuration space C (aka C-Space or C-space)

• C is a set of all possible configurations

3D Bugtrap benchmark

W ⊆ R3, A ⊆ R3

O ⊆ R3

(x , y , z) is 3D position
(rx , ry , rz) is 3D rotation

q = (x , y , z, rx , ry , rz)

C-space is 6D

5 / 30

Configuration space

• A configuration is a point in C
• A(q) is set of all points of the robot determined by configuration q ∈ C
• Therefore, point q ∈ C fully describes how the robot looks inW
• C has as many dimensions as robot’s DOFs
• C is considered “high-dimensional” if number of DOFS > 4

Example: a robotic arm with two revolute joints; q = (ϕ1, ϕ1)→ 2D C-space
Robot geometry has two rigid shapes: A1 and A2

y

x

ϕ
1

ϕ
2

6 / 30

Configuration space
Obstacles in the configuration space: Cobs

Cobs = {q ∈ C |A(q) ∩ O 6= ∅}, Cobs ⊆ C

• Cobs contains robot-obstacle collisions and self-collisions
• Self-collisions: e.g. in the case of robotic arms
• q is feasible, if it is collision free→ q ∈ Cfree

Cfree = C\Cobs

7 / 30

Path & trajectory

• A path in C is a continuous curve connecting two configurations qinit and
qgoal:

τ : s ∈ [0,1]→ τ(s) ∈ C; τ(0) = qinit and τ(1) = qgoal

• A trajectory is a path parameterized by time
τ : t ∈ [0,T]→ τ(t) ∈ C

• Trajectory/path defines motion in workspace

C-space -spaceW

Path in C Workspace motion

8 / 30

Path/motion planning problem
Given
• model of the worldW and robot A
• start qinit ∈ Cfree

• goal region Cgoal ⊆ Cfree

Path planning

• To find a collision-free path τ(s) from qinit to Cgoal

• i.e., q(s) ∈ Cfree for all s ∈ [0,1], s(0) = qinit,
s(1) ∈ Cgoal

Motion planning

• To find a collision-free trajectory τ(t) from qinit to Cgoal

• i.e., q(t) ∈ Cfree for all t ∈ [0,T], s(0) = qinit,
s(T) ∈ Cgoal

q
init

C-space

goalC

qgoal

Notes
• The above definition is considered as feasible path/motion planning
• Using Cgoal instead of single qgoal ∈ Cfree is more practical
• No optimality criteria is considered

9 / 30

Completeness and optimality

Completeness
• Algorithm is complete, if for any input it correctly reports in finite time if

there is a solution or no
• If a solution exists, it must return one in a finite time
• Computationally very hard (P-Space complete)
• Complete methods exist only for low-dimensional problems

Probabilistic completeness
• Algorithm is prob. complete if for scenarios with an existing solution the

probability of finding that solution converges to one
• If solution does not exist, the method can run forever

Optimal vs. non-optimal
• Optimal planning: algorithm ensures finding of the optimal solution

(according to a criterion)
• Non-optimal: any feasible solution is returned

Asymptotically optimal
• With increasing runtime, a solution provided by the algorithm converges

to the optimal solution
10 / 30

Complexity of motion planning

Configuration space

• “Converts” planning tasks to a search of path for a
point in C

• Once we can search C, we can solve any planning
problem

• Motion planning is P-Space complete!

Why is planning so difficult?

• Because we have to explicitly know C, Cobs and Cfree

• The most important are obstacles Cobs, but they are given implicitly:

Cobs = {q ∈ C |A(q) ∩ O 6= ∅}, Cobs ⊆ C

• Implicit definition does not allow to enumerate points in Cobs

• Difficult to determine the nearest colliding configuration

* J. Canny. The complexity of robot motion planning. MIT press, 1988.

11 / 30

Implicit functions

f (x , y) = x3 − 2xy + y3

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2 -2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-25

-20

-15

-10

-5

 0

 5

 10

 15

x

y

f(x,y)

f (x , y)
12 / 30

Implicit functions

f (x , y) = x3 − 2xy + y3

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2 -2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-25

-20

-15

-10

-5

 0

 5

 10

 15

x

y

f(x,y)

f (x , y) = −0.1
12 / 30

Implicit functions

f (x , y) = x3 − 2xy + y3

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2 -2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-25

-20

-15

-10

-5

 0

 5

 10

 15

x

y

f(x,y)

f (x , y) = 0
12 / 30

Implicit functions

f (x , y) = x3 − 2xy + y3

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2 -2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-25

-20

-15

-10

-5

 0

 5

 10

 15

x

y

f(x,y)

f (x , y) = 0.1
12 / 30

Explicit construction of C-space

• How to get explicit list of obstacles from the implicit obstacles

Cobs = {q ∈ C |A(q) ∩ O 6= ∅}, Cobs ⊆ C

• i.e., how to enumerate points on the border of the obstacles?

Explicit construction of Cobs

• A(0) is the robot at origin

• −A(0) is achieved by replacing all x ∈ A(0) by −x

• Obstacles in C are determined by the Minkowski sum

Cobs = O ⊕−A(0)

• Theoretical principle, not used in practise (you will see why)

13 / 30

Minkowski sum

Minkowski sum ⊕ of two sets X ,Y ⊂ Rn is

X ⊕ Y = {x + y ∈ Rn|x ∈ X and y ∈ Y}

1D example: X = [−2,1], Y = [3,5]
X ⊕ Y = [1,6]

6543210-1-2

Y+X

X Y

2D example: X = [0,1]× [0,1], Y = [2,4]× [0,1]
X ⊕ Y = [2,5]× [0,2]

x21 3 4 5

1

2

y

X Y

X Y+

14 / 30

Configuration space: 1D case

Example: 1D robot A = [−2,1] and obstacle O = [2,4]:

Cobs = O ⊕−A(0)

76543210-1-2-3

OA(0)

-A(0)

C obst

Cobs = [1,6]

15 / 30

Configuration space: 2D disc robot
• 2D workspaceW ⊆ R2

• 2D disc robot A ⊆ R2, reference point in the disc’s center
• We assume only translation
• Therefore, configuration q = (x , y) and C is 2D

free
C

Cobs

Workspace Configuration space

• All q ∈ Cfree are collision-free→ A(q) ∩ O = ∅
• Volume of Cfree depends both on the robot and obstacles
• What happens if the robot is a point?

16 / 30

Configuration space: 2D robot I
• 2D robot, only translation, q = (x , y)→ 2D C

-200

 0

 200

 400

 600

 800

 0 200 400 600 800

Minkowski sum
Robot

W-Obstacle

17 / 30

Configuration space: 2D robot II
• 2D robot, translation + rotation, q = (x , y , ϕ)→ 3D C
• Requires to compute Minkowski sum for each rotation

-200

 0

 200

 400

 600

 800

 0 200 400 600 800

Minkowski sum
Robot

W-Obstacle

-200

 0

 200

 400

 600

 800

 0 200 400 600 800

Minkowski sum
Robot

W-Obstacle

-200

 0

 200

 400

 600

 800

 0 200 400 600 800

Minkowski sum
Robot

W-Obstacle

ϕ = 0 ϕ = 45 ϕ = 90

18 / 30

Configuration space: 2D robot II
• 2D robot, translation + rotation, q = (x , y , ϕ)→ 3D C
• Requires to compute Minkowski sum for each rotation

-200

 0

 200

 400

 600

 800

 0 200 400 600 800

Minkowski sum
Robot

W-Obstacle

-200

 0

 200

 400

 600

 800

 0 200 400 600 800

Minkowski sum
Robot

W-Obstacle

-200

 0

 200

 400

 600

 800

 0 200 400 600 800

Minkowski sum
Robot

W-Obstacle

ϕ = 0 ϕ = 45 ϕ = 90

18 / 30

Configuration space: 2D rotating robot III
• 2D robot, translation + rotation, q = (x , y , ϕ)→ 3D C
• Requires to compute Minkowski sum for each rotation

-200

 0

 200

 400

 600

 800

 0 200 400 600 800

Minkowski sum
Robot

W-Obstacle

-200

 0

 200

 400

 600

 800

 0 200 400 600 800

Minkowski sum
Robot

W-Obstacle

-200

 0

 200

 400

 600

 800

 0 200 400 600 800

Minkowski sum
Robot

W-Obstacle

ϕ = 0 ϕ = 50 ϕ = 90

19 / 30

Configuration space: 2D rotating robot III
• 2D robot, translation + rotation, q = (x , y , ϕ)→ 3D C
• Requires to compute Minkowski sum for each rotation

-200

 0

 200

 400

 600

 800

 0 200 400 600 800

Minkowski sum
Robot

W-Obstacle

-200

 0

 200

 400

 600

 800

 0 200 400 600 800

Minkowski sum
Robot

W-Obstacle

-200

 0

 200

 400

 600

 800

 0 200 400 600 800

Minkowski sum
Robot

W-Obstacle

ϕ = 0 ϕ = 50 ϕ = 90

19 / 30

Explicit construction of C
Minkowski sum of two objects of n and m complexity
2D polygons

• convex ⊕ convex, O(m + n)
• convex ⊕ arbitrary, (mn)
• arbitrary ⊕ arbitrary, (m2n2)

3D polyhedrons

• convex ⊕ convex, O(mn)
• arbitrary ⊕ arbitrary, (m3n3)

• Construction of C Minkowski sums is straightforward, but . . .
• We have only 2D/3D models of robots and obstacles
→ directly we can construct C only for “translation only” systems
• Other DOFS need to be discretized and Minkowski sum computed for

each combination (!)
• Explicit construction of C is computationally demanding!
• Not practical for high-dimensional systems
• Explicit construction of Cobs using Minkowski sum is (generally) too

difficult, and it is not practically used.

20 / 30

Motion restrictions

Robots (usually) cannot move arbitrarily

• Kinematic constraints (e.g. ‘car-like’ vehicle)
• Dynamic constraints (e.g. maximal acceleration)
• Task constraints (e.g ‘do not spill the beer’)
• These are considered as additional constraints that must be satisfied in

path/motion planning

Motion model

• describes how the robot’s state changes when input u ∈ U is applied at
q ∈ C

• U is a set of all possible inputs

q̇ = f (q,u)

• Discrete version is often used:

qk+1 = f (qk ,u), qk+1,qk ∈ C,u ∈ U

21 / 30

Discrete feasible planning

Given

• model of the worldW and robot A, configurations qinit,qgoal ∈ Cfree

• motion model q′ = f (q,u) with inputs U

Discrete feasible planning

• Find a finite sequence of actions πk = (u0, . . . ,uk−1),u ∈ U such that

qk+1 = f (qk ,uk)
q0 = qinit
qk = qgoal
qk ∈ Cfree

free
C

q
0
= goal

q
init

q =q
k

uk-1

u0

• The sequence of states (q1, . . . ,qk) can be derived from the motion
model starting from q0 and applying qk+1 = f (qk ,uk) subsequently

• Is this plan optimal?

22 / 30

Discrete optimal planning
• Let L(πk) is the cost of the sequence πk = (u0, . . . ,uk−1)

L(πk) = lf (qk) +
k−1∑
i=0

l(qi ,ui)

• the final term lf (qk) = 0 if qk = qgoal; it is∞ otherwise

Discrete optimal planning

minimize
πk=(u0,...,uk−1)

L(πk)

subject to qk+1 = f (qk ,uk)
q0 = qinit
qk = qgoal
qk ∈ Cfree

free
C

q
0
= goal

q
init

q =q
k

uk-1

u0

• L(πk) =∞ means infeasible solution
• L(πk) <∞ means a feasible solution with the cost L(πk)

23 / 30

Discrete optimal control
• Optimal control for a discrete-time (and finite horizon)
• initial state is xi , goal state xn may be given (or not)

minimize
ui ,...,uN−1,(xi),...,xn

(
φ(xn,N) +

N−1∑
k=i

Lk (xk ,uk)

)
subject to xk+1 = fk (xk ,uk)

ulb ≤ uk ≤ uub
xlb ≤ xk ≤ xub

Discrete optimal control (generally)

minimize
x∈Rn(N−i),u∈Rm(N−i)

J(x ,u)

subject to g(x ,u) = 0
h(x ,u) ≤ 0

equations by Z. Hurak: Discrete-time optimal control — direct approach (lectures notes of ORR)

24 / 30

Motion planning vs control

• Optimal control and optimal (path/motion) planning are (generally) the
same

• Both can find path/trajectory from start to goal
• What is the practical difference?

Path planning

• Solution is achieved by searching C-space
• Can work with explicit (combinatorial planning) or implicit obstacles

(sampling-based planning)
• Difficult to react on changes (robot control error, dynamic obstacles)→

replanning
• Replanning requires to solve the problem from scratch→ slow

25 / 30

Motion planning vs control

• Optimal control and optimal (path/motion) planning are (generally) the
same

• Both can find path/trajectory from start to goal
• What is the practical difference?

Control

• Trajectory is achieved via mathematical optimization

• we (typically) need “a gradient”→, e.g. ‘distance to the nearest
obstacle’, its derivative etc.

• this requires an explicit representation of C resp. Cobs

• Difficult to find first (feasible) solution→ large search space
• Suitable for following reference, e.g. reference trajectory from motion

planning

25 / 30

Planning + control

goalstartgoalstartgoalstart

ControlTask

re
fe

re
n
ce

 p
at

h

sensors

controller

actuation

change in environment

Motion planning

• Global plan delivered by motion planning
• Sensing (actual position, speed, etc.) controlled along planned path
• i.e., errors in actuation are handled by control
• Replanning when global change occurs (e.g. new obstacle that cannot

be handled by control)

Does not make sense to solve motion plan by control-theory methods

Does not make sense to control via planning!
26 / 30

Confusion in terminology
• Path/motion planning are studied in several disciplines

• Robotics, computation geometry, mathematics, biology
• . . . since 1950’s !

• Each field uses different meaning for “path” and “trajectory”
. . . and different meaning for path/motion planning

• this continues up to now

What is a “trajectory”?

• Robotics (including this lecture): path + time
• Control-oriented part of robotics: path + time + control inputs
• Computational biology: 3D path of atom(s) (with or without time)

Before you start to solve a planning problem, define (or agree on) the
basic terms first!

27 / 30

The art of motion planning

Continuous space

Discretization

Search

C-space

28 / 30

The art of motion planning

Continuous space

Discretization

Graph

Robot+map

No contraints/dynamics/kinematics

Combinatorial
motion planning

Sampling-based
motion planning

Complete Probabilistic complete

Graph-search methods

Solution (path/trajectory)

Input

Point/disc robot, 2D/3D map Arbitrary robots/maps

constraints/kinematics/dynamics

Dijkstra, A*, BFS, ...

29 / 30

Summary of the lecture
• Motion planning: how to move objects and avoid obstacles
• Configuration space C
• Generally, planning leads to search in continuous C
• But we (generally) don’t have explicit representation of C
• We have to first create a discrete representation of C
• and search it by graph-search methods

30 / 30

