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https://www.youtube.com/watch?v=P3uT4gHEFHw

Finding precious metals, water sources, etc.


https://www.youtube.com/watch?v=P3uT4gHEFHw

Motivation scenarios

Finding and rescuing people in debris
Source: robohub.org
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Radiation

Locations ~

Mapping radioactive zones

@ Groves, K.; Hernandez, E.; West, A.; Wright, T.; Lennox, B. Robotic Exploration of an Unknown
Nuclear Environment Using Radiation Informed Autonomous Navigation. Robotics 2021, 10, 78.
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www.youtube.com/watch?v=Hj7xt7isOWc

Mapping radioactive zones

& Groves, K.; Hernandez, E.; West, A.; Wright, T.; Lennox, B. Robotic Exploration of an Unknown
Nuclear Environment Using Radiation Informed Autonomous Navigation. Robotics 2021, 10, 78.



Terminology

Exploration
e the activity of searching and finding out about something (Cambridge

English dictionary)

e ...is atrip, but it's more than just a vacation — it's going somewhere to
examine and discover new things (vocabulary.com)

Robotic exploration
® use a robot to maximize knowledge over a particular area

® [s there a precious metal? Where are the victims? Is there a
radioactivity?
e Fundamental problem of robotics
¢ Single robot vs. multi-robot exploration
¢ Practical problem needed in many applications
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Reactive

® measure, evaluate, act, measure, evaluate, . ..
* not optimal (e.g., time/energy consuming)
e can lead to cycles

Decision-based

¢ build a model of the environment

e make decision using the model

e more efficient, can be optimized

e extra effort to make the model of the
environment

How to represent/model environment?

e Many approaches

¢ Model should always be selected according
given application
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Low-level data

* Raw sensor data (e.g. LIDAR values, images)

* Neural network models (weights+topologies),
learned policies (Reinforcement learning), rosbag

¢ File formats: (txt,bin,SQL,HDF,...)

* They are specific to given task/environment

e Hard to interpret by humans

[ )

Poor generalization
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Low-level data

* Raw sensor data (e.g. LIDAR values, images)

* Neural network models (weights+topologies),
learned policies (Reinforcement learning), rosbag

¢ File formats: (txt,bin,SQL,HDF,...)

* They are specific to given task/environment

e Hard to interpret by humans

[ )

Poor generalization

Database Structure = Browse Data Edit Pragmas Execute SQL

Table: [=] runs - 8 B % Lév = B 2 4 & > |Filterin any colu...
id erime anneriate t_sc¢ soluticiph_motic graph_states memory »n_clez n_diff ution_len(n_se¢on_smoot solve ™
Fi... |Filter [Filter|F... |F... |Filter |Filter Filter Filter Filter |Filter |Filter Fil... |Filter Filter

1 1 1 1 0 1 1 3155 3156 29.8047 0.0 0.0 24.0663 240 25934.3

2 2 1 1 0 1 1 3224 3225 30.9531 0.0 0.0 26.4969 265 29009.0

3 3 1 1 0 1 1 3380 3381 31.7266 0.0 0.0 249994 250 259975

4 4 1 1 0 1 1 2912 2913 325 0.0 0.0 26.6361 267 29869.0

5 5 1 1 0 1 1 2164 2165 33.0156 0.0 0.0 17.6915 178 16955.1

6 6 1 1 0 1 1 3802 3803 34.0469 0.0 0.0 26.1314 262 29102.3

7 7 1 1 0 1 1 2527 2528 35.0781 0.0 0.0 25.2687 253 29115.4

8 8 1 1 0 1 1 4053 4054 35.5938 0.0 0.0 18.2766 183 18188.8

9 9 1 10 1 1 2476 2477 36.8828 0.0 0.0 17.0454 171 17560.3

10 10 1 1, 0 1 1 3034 3035 36.8828 0.0 0.0 18.4882 185 199386

11 1 1 2, 0 1 1 7441 7442 38.6836 0.0 0.0 29.6971 14 13.4658

12 12 1 2 0 1 1 11815 11816 41.0039 0.0 0.0 225842 11 15.7426
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Low-level data

Raw sensor data (e.g. LIDAR values, images)
Neural network models (weights+topologies),
learned policies (Reinforcement learning), rosbag
File formats: (txt,bin,SQL,HDF....)

They are specific to given task/environment

Hard to interpret by humans

Poor generalization

Go Straight

e o(g.,t,)
/

[100] [1.06] [256]

T. Zhao and Y. Wang, "A neural-network based autonomous navigation system using mobile
robots", International Conference on Control Automation Robotics & Vision, 2012
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Processed data

® |nterpreted sensor data (e.g. obstacles, walls,
ground, free-space, ...)

e Good generalization

e Can be easily interpreted by humans

* These models are simply known as maps
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* Map is the model of the world/environment
e Many types (2D/3D, grid, polygonal, ...) ;
e Usually contain geometric features (e.g. walls, ground, ‘.
obstacles) -“
* Necessary for decision making (e.g. planning,
navigation, inspections, ...) A s;\—»];)\
Properties ‘\“‘“Ezl
P e w
e Supported operations (e.g. merging maps, addingnew [~ |

information, deleting obstacles, ...)
e Computational complexity of these procedures
® Memory requirements
® Precision
¢ Robustness (with respect to numerical errors)
e There is no ‘universal’ map

¢ One should always choose a map suitable for the given
application
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Grid maps
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2D or 3D array (grid) of cells
Binary maps: 0/1 (obstacle, free spaces)
Probability: 0—1 (0O=free space, 1=0bstacle)

® occupancy grid

¢ often used for integration of sensor data, SLAM
Metric information (distance/angle/area . ..)
Easy implementation

Efficient search for obstacle cells, nearest obstacle cell, ...

Straightforward update of cells & map merging
Integration of data from different sensors
High memory requirements

® depends on environment size & map resolution
e practical limit to 2D and 3D environments

G
CTU IN PRAGUE
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Source: Robotic Dataset repository (Radish): fr097



Line maps
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2D worlds, suitable for structured indoor scenes
Obstacles are represented by lines

Compact way to store range-sensor measurements
(Xi, ¥i)

2 (X =x)(y = yi)

B S - 1)

r=Xcosy+ ysiny

Can be extended for 3D planes
Memory efficient, easy to process, metric information
Fast tests for collisions, point location

What if data points are generated by multiple linear
structures?

* How many lines are needed?
® How to assign points to individual lines?



Line maps: fitting multiple lines

Split and merge recursive approach

@ Compute line for a given set of points (x1, ¥1) - .. (Xn, ¥n)

@ Find the most distant point / from the line, its distance is
d

© If d is smaller than a threshold, return line

© Otherwise, split points to two groups (x1, y1), - - - (Xi, ¥i)
and (Xi1, Yit1), - - - (Xn, ¥n) @nd proceed recursively on
each group

¢ Easy to implement, fast

e The result is not optimal (does not minimize square
distances of points from lines)

@ D.H. Douglas, T.K. Peucker: Algorithms for the reduction of the number of
points required to represent a line or its caricature, Cdn. Cartogr. 10(2), 1973
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Polygonal maps

2D worlds
Obstacle is represented by polygon

(X1ay1)7 (X2ay2)7 DRI} (Xny}/n)
(xi, yi) are vertices

The map is the collection of obstacles

Simple polygon: does not intersect itself, no holes
Polygons with holes: contour + one or more holes
Memory efficient, easy to process, metric information
Fast tests for collisions, point location

Numerical stability of (some) algorithms

Number of vertices can dramatically grow if map is built
from (unfiltered) sensor data

Map ~ 100 x 5 m, ~1k vertices

Fi
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0,0 3,0
Convex
33
2,1
0,0 3,0
Non-convex

Polygon from Lidar



What kind of maps are using humans? o G

e grid, occupancy grid, polygonal, line-map ... ?
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Topological maps Fo s

e Abstract map, lack of geometric and metric features
* Represented by a graph

* Vertices are (distinguishable) places
® Edges connecting places between the robot can navigate

e Scalable, used for high-level planning




O S

Topological maps M e

* Abstract map, lack of geometric and metric features
* Represented by a graph

® \ertices are (distinguishable) places
* Edges connecting places between the robot can navigate

e Scalable, used for high-level planning
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¢ Abstract map, lack of geometric and metric features
* Represented by a graph

® \ertices are (distinguishable) places
® Edges connecting places between the robot can navigate

e Scalable, used for high-level planning
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e Elevation (2.5D grid map): each cell describes altitude
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e A variant of grid map

e Known cell: value of ¢; > 0 (contains prob. of being
occupied)
e Unknown cell: value of ¢; = —1

¢ Interpretation of known cells:

® Free-space (no obstacle): p(occupied) < T
® Obstacle: p(occupied) > T
e where T is a threshold, e.g. 0.8

* Frontier: the border between known and unknown ] obstacle
regions free-space
e Frontier cell D .
unknown
* is a free-space cell that is incident with an unknown frontier
cell

¢ it may not be reachable e

@ YAMAUCHI, B., et al. Frontier-based exploration using multiple robots. Agents. 1998; 47-53.



MULTI-ROBOT
SYSTEMS.

Robotic exploration

Robot is gathering (desired) information in an environment

Search & rescue, searching for Barbie, precious metals, etc.

We used model of the environment (map) to do it efficiently

Often used solution: SLAM (Simultaneous localization and mapping)

Challenges

How to represent the map
How to update it

How to localize

How to determine where to go
How to get there

Test |

https://www.youtube.com/watch?v=B-dSyKx4Fsc

GROUP


https://www.youtube.com/watch?v=B-dSyKx4Fsc

Frontier-based exploration

Principle: use a frontier as a temporary goal

@ Identify frontiers in the map

@ Filter out unreachable frontiers (if any)
© Select a frontier and go there

@ Goto 1 until no frontier exists

Notes

¢ Unreachable frontiers detected using path planning
e Consider navigating to the closest frontier

B obstacle
e Consider detecting frontiers during movement of the O free-space
robot [J unknown
B frontier

* Detection of frontiers should be fast

@ YAMAUCHI, B., et al. Frontier-based exploration using multiple robots. Agents. 1998; 47-53.
@ KEIDAR, Matan; KAMINKA, Gal A. Ecient frontier detection for robot exploration. The
International Journal of Robotics Research, 2014, 33.2: 215-236.



Frontiers detection

* |Image-based

e Convert occupancy grid to binary image, run edge
detection

e Wavefront Frontier Detector (WFD) (e Keidar)

® Graph-search method to detect frontiers
® Run BFS from actual position of the robot
® This BFS explores only free cells (i.e., also frontier

cells)
* Run another BFS if frontier cell is visited B obstacle
* The second BFS explores only frontier cells [ free-space
® The goal of second BFS is to extract all cells L) unknown

belonging to the actually detected frontier W frontier

¢ Both BFS share open/close list

« YAMAUCHI, B., et al. Frontier-based exploration using multiple robots. Agents. 1998; 47-53.
@« KEIDAR, Matan; KAMINKA, Gal A. Ecient frontier detection for robot exploration. The
International Journal of Robotics Research, 2014, 33.2: 215-236.



Frontier-based exploration

O = { robot position }
while |O] > 0 do
pos = O.pop() // open list for main BFS
mark pos as known
for c in neighbors(pos) do
if ¢ is explored or c is obstacle then
| continue

if c is frontier cell then
O ={c} // open list for second BFS
while |O¢| > 0 do
poss = O.pop()
mark poss as known
for ¢ in neighbors(pos;y) do
if ¢¢ is not frontier cell or c; is known
then

| continue
Or.push(cy)

else
| O.push(c)




Explanation of variables o B
® pos, poss = coordinates of a cell in grid, e.g. (x,y)
e robot position = actual position of the robot in the grid
e O: open list for main BFS search — free cells

Os: open list for exploration of individual frontiers — frontier cells




Improved Frontier-based exploration ol i
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Several ideas to get better (faster) exploration

e Consider cost of path to the frontier for frontier selection

e Consider how much are is ‘behind’ the frontier (aka 'view’), visit the most
promising frontiers first — next best view approach

e Combination of above

@ Gonzalez-Banos, H. H.,Latombe, J. C. (2002). Navigation strategies for exploring indoor
environments. The International Journal of Robotics Research, 21(10-11), 829-848.
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Frontier-based exploration: resources Fo s | ot

@ YAMAUCHI, Brian, et al. Frontier-based exploration using multiple
robots. In: Agents. 1998. p. 47-53.

@ TOPIWALA, Anirudh; INANI, Pranav; KATHPAL, Abhishek. Frontier
Based Exploration for Autonomous Robot. arXiv preprint
arXiv:1806.03581, 2018

@« USLU, Erkan, et al. Implementation of frontier-based exploration
algorithm for an autonomous robot. In: 2015 International Symposium
on Innovations in Intelligent SysTems and Applications (INISTA). IEEE,
2015. p. 1-7.

e KEIDAR, Matan; KAMINKA, Gal A. Ecient frontier detection for robot
exploration. The International Journal of Robotics Research, 2014, 33.2:
215-236.



