Motion planning: sampling-based planners III basic modifications

Vojtěch Vonásek

Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

Lecture outline

- Issues of sampling-based planning
- Implementation details for sampling-based motion planning
 - Fast nearest-neighbor search
 - Fast collision detection
 - Metrics
- Physical simulations for motion planning
- Trajectory generation

Known issues of sampling-based planning M Structure Constraints (Constraints of sampling-based planning Constraints of sampling-based planning Constraints of sampling-based planning (Constraints of sampling-based planning))))

• One may consider sampling-based planning as a "magic" tool ... but that's not true at all!

Sampling-based planners have many issues

- Narrow passage problem
 - Difficulty of sampling small region in \mathcal{C}_{free} surrounded by \mathcal{C}_{obs}
 - Problematic if (all) solutions have to pass that region
- Sensitivity to metric & parameters
 - How to measure distance in C?
 - Selecting a good metric is as difficult as motion planning!
 - Many methods have "too many" parameters
 - Some parameters are hidden (or not well described)
 - How to tune the parameters?
- Supporting functions
 - · Collision detection & nearest-neighbor search
 - · Fast and reliable implementation

How do we recognize the issue? \rightarrow performance measurement!

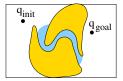
FACULTY OF ELECTRICAL ENCINEERING CTU IN PRAGUE

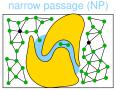
Narrow passage (NP)

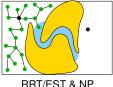
- A region $\mathcal{R} \subseteq \mathcal{C}_{free}$ with a small volume $\textit{vol}(\mathcal{R}) < \textit{vol}(\mathcal{C})$
- Probability that a random sample falls to $\mathcal R$ is $\sim \textit{vol}(\mathcal R)/\textit{vol}(\mathcal C)$
- NP are problematic if their removal changes connectivity of $\mathcal{C}_{\text{free}}$
- NP are regions in $\mathcal{C} \to$ they are given implicitly
- Location/size/volume/shape of NPs is not known!

Consequences of having NP

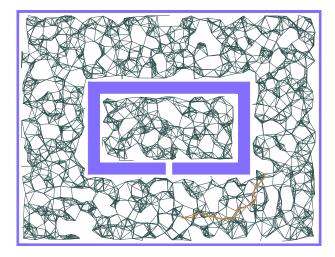
- PRM builds unconnected roadmaps \rightarrow no solution
- RRT/EST cannot enter NP \rightarrow no solution
- Number of samples must be significantly increased
- Runtime is increased



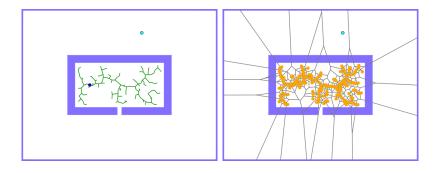




Narrow passage & PRM



Narrow passage & RRT



- Narrow passages are in C
- Sometimes, we cannot (easily) see/estimate them from workspace!
- What makes the narrow passage in the Alpha-puzzle benchmark?

- Can we guess shape of Cobs based on workspace?
- $vol(\mathcal{A}) \ll vol(\mathcal{O})$

Configuration space

• $vol(\mathcal{A}) < vol(\mathcal{O})$

Workspace	Configuration space

• When obstacles $\mathcal O$ dominate, they mostly influence the shape of $\mathcal C_{obs}$

How does C_{obs} appear?

- Let $X, Y \subset \mathbb{R}^n$, X and Y are nonempty
- Brunn-Minkowski theorem:

$$\mathsf{vol}(X\oplus Y) \geq (\mathsf{vol}(X)^{rac{1}{n}} + \mathsf{vol}(Y)^{rac{1}{n}})^n$$

- $vol(C_{obs})$ is larger than min(vol(A), vol(O))
- vol(C_{obs}) can be much larger!

Example: vol(A) = vol(O)

Workspace Co

Configuration space

Why improvements of PRM/RRT/EST?

 To cope with the narrow passage problem, improve path quality, speed-up planning, to enable planning in specific cases

2

3

Δ

5

6

a

Main tricks

- Control distribution of random samples
- Dedicated metrics
- Improved nearest-neighbor search
- Use suitable local planners
- Improve collision-detection

```
initialize tree \mathcal{T} with q_{init}
    for i = 1, ..., I_{max} do
             q_{\rm rand} = generate randomly in C
             q_{\text{near}} = \text{find nearest node in } \mathcal{T} \text{ towards}
               q<sub>rand</sub>
             q_{\text{new}} = \text{localPlanner from } q_{\text{near}} towards
               q_{\rm rand}
            if canConnect(q_{near}, q_{new}) then
                     \mathcal{T}.addNode(q_{new})
 7
                     \mathcal{T}.addEdge(q_{\text{near}}, q_{\text{new}})
 8
                     if \rho(q_{\text{new}}, q_{\text{goal}}) < d_{qoal} then
                             return path from q_{\text{init}} to q_{\text{new}}
10
```

- Many existing modifications, look at survey by Elbanhawi
- Next slides present the basic principle of improvements

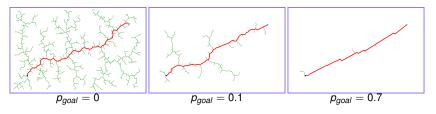
Elbanhawi, M., & Simic, M. (2014). Sampling-based robot motion planning: A review. IEEE access, 2, 56-77.

Observation

- RRT tree grows towards random samples
- If we samples some region more dense, the tree is "attracted" to grow there

Goal-bias

- Random sample q_{rand} is generated in C with probability (1 p_{goal}), otherwise it is set to q_{rand} = q_{goal}
- The rest of RRT algorithm is the same
- Improves the performance if the tree can directly reach the goal
- Decreases the performance if the tree is hindered by obstacles

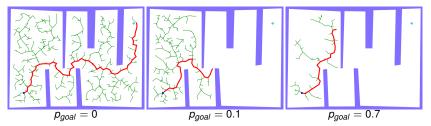


Observation

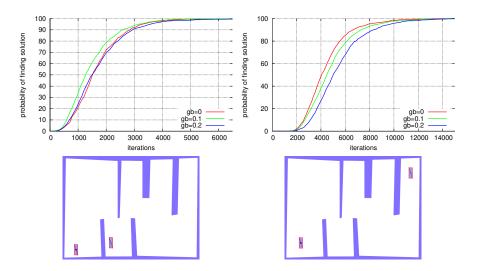
- RRT tree grows towards random samples
- If we samples some region more dense, the tree is "attracted" to grow there

Goal-bias

- Random sample q_{rand} is generated in C with probability (1 p_{goal}), otherwise it is set to q_{rand} = q_{goal}
- The rest of RRT algorithm is the same
- Improves the performance if the tree can directly reach the goal
- Decreases the performance if the tree is hindered by obstacles



Goal-bias may improve or even worse the performance!



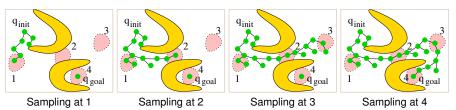
RRT improvement II: guided sampling

Observation

- Goal-bias attracts the tree towards q_{goal} , but the tree may be blocked by obstacles
- Generalization: we can attract the tree toward any region $\mathcal{R}\subseteq \mathcal{C}$ if we sample \mathcal{R} densely

Guided-based sampling

- Estimate a path that can "guide" the tree in the $\mathcal{C}\text{-space}$
- Generate *q*_{rand} around the path-waypoints (starting from first waypoint) until the tree reaches the waypoint
- Then generate q_{rand} around the next waypoint



Guiding path

Guided sampling

How to compute the guiding path?

- Generally, the guiding path has to be located in $\mathcal{C} \mathrel{!\!!}$
- Finding a good guiding path has the same complexity as the original planning problem!
- (i.e., guiding sampling is 'planning solved by planning')
- Practically, we have two options

Guiding path in $\ensuremath{\mathcal{W}}$

- Path is computed in workspace geometric planning (Voronoi diagram, Visibility graph, etc.)
- Suitable for low-dimensional problems
- The remaining dimensions are sampled uniformly

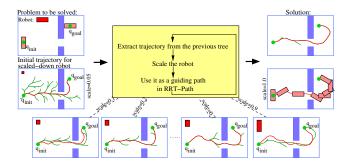
Guiding path in $\ensuremath{\mathcal{C}}$

• Path is computed in \mathcal{C} by a simplified search

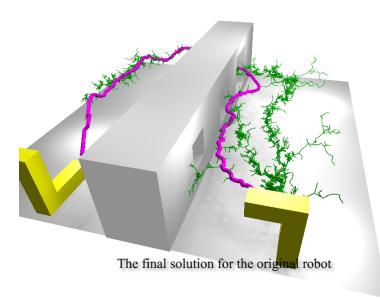
Guiding path in \mathcal{W} $q = (x, y, \varphi)$ (x, y) from the path φ randomly

Guiding path in $\ensuremath{\mathcal{C}}$

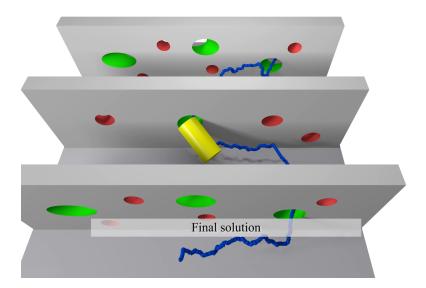
- Problem is simplified relaxation of constraints
- For example, robot is scaled-down
- Solve simplified planning problem
- Use the solution to generate random samples along it
- The process can be iterative



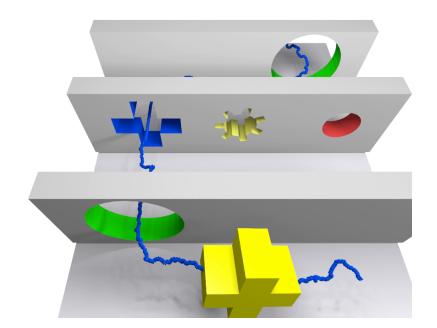
Computing guiding path in $\ensuremath{\mathcal{C}}$



Computing guiding path in $\ensuremath{\mathcal{C}}$



Computing guiding path in $\ensuremath{\mathcal{C}}$



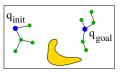
RRT improvement III: bidirectional search

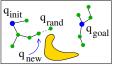
FACULTY OF ELECTRICAL ENCINEERING CTU IN PRAGUE

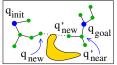
- Use two trees: \mathcal{T}_i rooted at $q_{\text{init}}, \mathcal{T}_g$ rooted q_{goal}
- One tree expands towards *q*_{rand}, second tree expands towards *q*_{new} of the first tree

 \mathcal{T}_i .addNode(q_{init}) \mathcal{T}_q .addNode(q_{goal}) for $i = 1, ..., I_{max}$ do 3 q_{rand} = generate randomly in C4 q_{near} = find nearest node in \mathcal{T}_i towards q_{rand} 5 $q_{\text{new}} = \text{localPlanner from } q_{\text{near}} \text{ towards } q_{\text{rand}}$ 6 if $canConnect(q_{near}, q_{new})$ then 7 T_i .addNode(q_{new}) 8 \mathcal{T}_i .addEdge $(q_{\text{near}}, q_{\text{new}})$ 9 q'_{near} = find nearest node in \mathcal{T}_g towards q_{new} 10 $q'_{\text{new}} = \text{localPlanner from } q_{\text{near}}$ towards q_{rand} 11 if $canConnect(q'_{near}, q'_{new})$ then 12 \mathcal{T}_q .addNode(q_{new}) 13 \mathcal{T}_{g} .addEdge($q_{\text{near}}, q_{\text{new}}$) 14 if $canConnect(q'_{new}, q_{new})$ then 15 joint trees 16 return path from q_{init} to q_{goal} 17

18

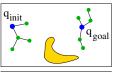


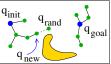


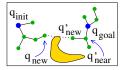


RRT improvement III: bidirectional search

- Use two trees: \mathcal{T}_i rooted at q_{init} , \mathcal{T}_g rooted q_{goal}
- One tree expands towards *q*_{rand}, second tree expands towards *q*_{new} of the first tree
- Helps to enter narrow passages (sometimes)
- Connection of two trees
 - Computationally intensive
 - To speed up, performs only if *ρ*(*q*_{new}, *q*'_{new}) is small enough
 - Difficult if motion model/constraints have to be considered
- Balanced trees: swap trees if $|\mathcal{T}_i| > |\mathcal{T}_g|$







PRM variants I: sampling strategies

Original PRM/sPRM

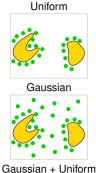
- Uniform sampling $q \sim U(\mathcal{C})$
- Gaussian sampling: two-samples
 - Uniform sample q₁ ~ U(C), then another sample q₂ ~ N(q, Σ) (around q₁ from Gaussian distribution)
 - Ignore if $q_1,q_2\in\mathcal{C}_{\mathrm{free}}$ or $q_1,q_2\in\mathcal{C}_{\mathrm{obs}},$ otherwise
 - add the collision-free one to the roadmap
 - Generates the random samples near \mathcal{C}_{obs} only!

Gaussian + uniform

- Combination of two previous methods
- More dense sampling around \mathcal{C}_{obs} than basic PRM

Bridge test

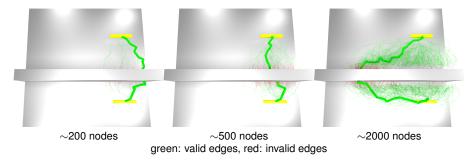
- Generate q₁ and q₂ using the Gaussian method
- Determine the midpoint q' on the line segment |q1, q2|
- Use q' if $q' \in \mathcal{C}_{ ext{free}}$ and $q_1, q_2 \in \mathcal{C}_{ ext{obs}}$



Bridge-Test

PRM variants II: Lazy PRM

- FACULTY OF ELECTRICAL ENGINEERING CTU IN PRAGUE
- Build PRM roadmap, but without collision detection of edges
- After a path is found, edges are checked for collision and the path is recalculated
- If no path is found, extend the roadmap by new samples/edges
- Otherwise, the path is collision-free



- Faster planning in certain scenarios, but not always!
- R. Bohlin and L. E. Kavraki, "Path planning using lazy PRM," IEEE ICRA, 2000.

PRM variants II: Lazy PRM

