
Motion planning: sampling-based planners III
basic modifications

Vojtěch Vonásek

Department of Cybernetics
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture outline

• Issues of sampling-based planning
• Implementation details for sampling-based motion planning

• Fast nearest-neighbor search
• Fast collision detection
• Metrics

• Physical simulations for motion planning
• Trajectory generation

Known issues of sampling-based planning
• One may consider sampling-based planning as a “magic” tool

. . . but that’s not true at all!

Sampling-based planners have many issues

• Narrow passage problem
• Difficulty of sampling small region in Cfree surrounded by Cobs
• Problematic if (all) solutions have to pass that region

• Sensitivity to metric & parameters
• How to measure distance in C ?
• Selecting a good metric is as difficult as motion planning!
• Many methods have “too many” parameters
• Some parameters are hidden (or not well described)
• How to tune the parameters?

• Supporting functions
• Collision detection & nearest-neighbor search
• Fast and reliable implementation

How do we recognize the issue? → performance measurement!

Narrow passage problem
Narrow passage (NP)

• A region R ⊆ Cfree with a small volume
vol(R) < vol(C)

• Probability that a random sample falls to R is
∼ vol(R)/vol(C)

• NP are problematic if their removal changes
connectivity of Cfree

• NP are regions in C → they are given implicitly
• Location/size/volume/shape of NPs is not known!

Consequences of having NP

• PRM builds unconnected roadmaps→ no solution
• RRT/EST cannot enter NP→ no solution
• Number of samples must be significantly increased
• Runtime is increased

qgoal

q
init

narrow passage (NP)

PRM & NP

RRT/EST & NP

Narrow passage & PRM

Narrow passage & RRT

Narrow passage

• Narrow passages are in C
• Sometimes, we cannot (easily) see/estimate them from workspace!
• What makes the narrow passage in the Alpha-puzzle benchmark?

How does Cobs appears?

• Can we guess shape of Cobs based on workspace?
• vol(A)� vol(O)

A

Workspace Configuration space

• vol(A) < vol(O)

A

Workspace Configuration space

• When obstacles O dominate, they mostly influence the shape of Cobs

How does Cobs appear?

• Let X ,Y ⊂ Rn, X and Y are nonempty

• Brunn-Minkowski theorem:

vol(X ⊕ Y) ≥ (vol(X)
1
n + vol(Y)

1
n)

n

• vol(Cobs) is larger than min(vol(A), vol(O))

• vol(Cobs) can be much larger!

Example: vol(A) = vol(O)

A

Workspace Configuration space

Improvements

Why improvements of PRM/RRT/EST?
• To cope with the narrow passage problem, improve path quality,

speed-up planning, to enable planning in specific cases

Main tricks

• Control distribution of random
samples

• Dedicated metrics
• Improved nearest-neighbor

search
• Use suitable local planners
• Improve collision-detection

1 initialize tree T with qinit
2 for i = 1, . . . , Imax do
3 qrand = generate randomly in C
4 qnear = find nearest node in T towards

qrand
5 qnew = localPlanner from qnear towards

qrand
6 if canConnect(qnear, qnew) then
7 T .addNode(qnew)
8 T .addEdge(qnear, qnew)
9 if %(qnew, qgoal) < dgoal then

10 return path from qinit to qnew

• Many existing modifications, look at survey by Elbanhawi
• Next slides present the basic principle of improvements

*Elbanhawi, M., & Simic, M. (2014). Sampling-based robot motion planning: A review. IEEE
access, 2, 56-77.

RRT improvement I: goal bias
Observation

• RRT tree grows towards random samples
• If we samples some region more dense, the tree is “attracted” to grow

there

Goal-bias

• Random sample qrand is generated in C with probability (1− pgoal),
otherwise it is set to qrand = qgoal

• The rest of RRT algorithm is the same
• Improves the performance if the tree can directly reach the goal
• Decreases the performance if the tree is hindered by obstacles

pgoal = 0 pgoal = 0.1 pgoal = 0.7

RRT improvement I: goal bias
Observation

• RRT tree grows towards random samples
• If we samples some region more dense, the tree is “attracted” to grow

there

Goal-bias

• Random sample qrand is generated in C with probability (1− pgoal),
otherwise it is set to qrand = qgoal

• The rest of RRT algorithm is the same
• Improves the performance if the tree can directly reach the goal
• Decreases the performance if the tree is hindered by obstacles

pgoal = 0 pgoal = 0.1 pgoal = 0.7

RRT improvement I: goal bias

• Goal-bias may improve or even worse the performance!

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000 6000

p
ro

b
a

b
ili

ty
 o

f
fi
n

d
in

g
 s

o
lu

ti
o

n

iterations

gb=0
gb=0.1
gb=0.2

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000 12000 14000

p
ro

b
a

b
ili

ty
 o

f
fi
n

d
in

g
 s

o
lu

ti
o

n

iterations

gb=0
gb=0.1
gb=0.2

RRT improvement II: guided sampling
Observation

• Goal-bias attracts the tree towards qgoal, but the tree may
be blocked by obstacles

• Generalization: we can attract the tree toward any region
R ⊆ C if we sample R densely

Guided-based sampling

• Estimate a path that can “guide” the tree in the C-space
• Generate qrand around the path-waypoints (starting from

first waypoint) until the tree reaches the waypoint
• Then generate qrand around the next waypoint

qinit

q goal

RRT + goal-bias
qinit

q goal1

2

3

4

Guiding path

qinit

q goal1

2

3

4

qinit

q goal1

2

3

4

qinit

q goal1

2

3

4

qinit

q goal1

2

3

4

Sampling at 1 Sampling at 2 Sampling at 3 Sampling at 4

Guided sampling
How to compute the guiding path?

• Generally, the guiding path has to be located in C !!
• Finding a good guiding path has the same complexity as

the original planning problem!
• (i.e., guiding sampling is ’planning solved by planning’)
• Practically, we have two options

Guiding path inW
• Path is computed in workspace — geometric planning

(Voronoi diagram, Visibility graph, etc.)
• Suitable for low-dimensional problems
• The remaining dimensions are sampled uniformly

Guiding path in C
• Path is computed in C by a simplified search

qinit

q goal1

2

3

4

Guiding path inW
q = (x , y , ϕ)
(x , y) from the

path
ϕ randomly

Computing guiding path in C
Guiding path in C
• Problem is simplified — relaxation of constraints
• For example, robot is scaled-down
• Solve simplified planning problem
• Use the solution to generate random samples along it
• The process can be iterative

Solution:

qgoal

q
init

sc
al

e=
1

.0

sc
al

e=
0

.0
5

scale=
0.7sc

al
e=

0.
2qinit

q
goal

qinit

q
goal

qinit

q
goal

qinit

q
goal

qinit

q
goal

scale=0.9sc
ale

=0.1

Extract trajectory from the previous tree

scaled−down robot
Initial trajectory for

Problem to be solved:
Robot:

Scale the robot

Use it as a guiding path

in RRT−Path

Computing guiding path in C

Computing guiding path in C

Computing guiding path in C

RRT improvement III: bidirectional search

• Use two trees: Ti rooted at qinit, Tg rooted qgoal

• One tree expands towards qrand, second tree
expands towards qnew of the first tree

1 Ti .addNode(qinit)
2 Tg .addNode(qgoal)
3 for i = 1, . . . , Imax do
4 qrand = generate randomly in C
5 qnear = find nearest node in Ti towards qrand
6 qnew = localPlanner from qnear towards qrand
7 if canConnect(qnear, qnew) then
8 Ti .addNode(qnew)
9 Ti .addEdge(qnear, qnew)

10 q′
near = find nearest node in Tg towards qnew

11 q′
new = localPlanner from qnear towards qrand

12 if canConnect(q′
near, q′

new) then
13 Tg .addNode(qnew)
14 Tg .addEdge(qnear, qnew)
15 if canConnect(q′

new, qnew) then
16 joint trees
17 return path from qinit to qgoal

18 Ti , Tg = Tg , Ti // swap trees

init
q

goal
q

rand

new

init

goal
q

q
q

q

new ’near

new’
init

goal
q

q

q q

q

RRT improvement III: bidirectional search

• Use two trees: Ti rooted at qinit, Tg rooted qgoal

• One tree expands towards qrand, second tree
expands towards qnew of the first tree

• Helps to enter narrow passages (sometimes)
• Connection of two trees

• Computationally intensive
• To speed up, performs only if %(qnew,q′

new) is
small enough

• Difficult if motion model/constraints have to be
considered

• Balanced trees: swap trees if |Ti | > |Tg |

init
q

goal
q

rand

new

init

goal
q

q
q

q

new ’near

new’
init

goal
q

q

q q

q

PRM variants I: sampling strategies
Original PRM/sPRM

• Uniform sampling q ∼ U(C)

Gaussian sampling: two-samples

• Uniform sample q1 ∼ U(C), then another sample
q2 ∼ N(q,Σ) (around q1 from Gaussian distribution)

• Ignore if q1,q2 ∈ Cfree or q1,q2 ∈ Cobs, otherwise
• add the collision-free one to the roadmap
• Generates the random samples near Cobs only!

Gaussian + uniform

• Combination of two previous methods
• More dense sampling around Cobs than basic PRM

Bridge test

• Generate q1 and q2 using the Gaussian method
• Determine the midpoint q′ on the line segment |q1,q2|
• Use q′ if q′ ∈ Cfree and q1,q2 ∈ Cobs

Uniform

Gaussian

Gaussian + Uniform

discard

use

Bridge-Test

PRM variants II: Lazy PRM

• Build PRM roadmap, but without collision detection of edges
• After a path is found, edges are checked for collision and the path is

recalculated
• If no path is found, extend the roadmap by new samples/edges
• Otherwise, the path is collision-free

∼200 nodes ∼500 nodes ∼2000 nodes
green: valid edges, red: invalid edges

• Faster planning in certain scenarios, but not always!

* R. Bohlin and L. E. Kavraki, "Path planning using lazy PRM," IEEE ICRA, 2000.

PRM variants II: Lazy PRM

