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Summary of sampling-based planning

3 Robots of arbitrary shapes
• Robot shape is considered in collision detection
• Collision detection is used as a “black-box”
• Single-body or multi-body robots are allowed

3 Robots with many-DOFs
• Because the search is realized directly in C-space
• Dimension of C is determined by the DOFs

3 Kinematic, dynamic and task constraints can be considered
• It depends on the employed local planner
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Considering differential constraints
• Let assume the transition equation

ẋ = f (x ,u)

where x ∈ X is a state vector and u ∈ U is an action
vector from action space U

x(0)

x(t)

u

• X is a state space, which may be X = C or a phase space
• Phase space is derived from C if dynamics is considered
• Similarly to C, X has Xfree and Xobs

• f (x ,u) is also called forward motion model
• Let ũ : [0,∞]→ U is the action trajectory
• Action at time t is ũ(t) ∈ U
• State trajectory is derived form ũ(t) as

x(t) = x(0) +

∫ t

0
f (x(t ′), ũ(t ′))dt ′

where x(0) is the initial state at t = 0



Planning under differential constraints

• Assume we have: worldW, robot A, configuration space C, state-space
X and action space U , start and goal states xinit, xgoal ∈ Xfree

• A system specified by ẋ = f (x ,u)

Motion planning under differnetial constraints:

• The task is to compute the action trajectory ũ : [0,∞]→ U such that:
• x(0) = xinit,
• x(t) = xgoal for some t > 0,
• x(t) ∈ Xfree, x(t) is given by

x(t) = x(0) +

∫ t

0
f (x(t ′), ũ(t ′)dt ′



Planning under differential constraints
Types of differential constraints
• Kinematics, usually given by motion model ẋ = f (x ,u)

• Dynamics, e.g. |ẋ6| < x6,max (e.g. to limit speed/acceleration)
• Task constraints, e.g. π − ε ≤ xeff ≤ π + ε, where xeff is the rotation of

robotic arm effector

Example: robot measures an object using a sensor
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• How end-effector moves depending on ϕ1, ϕ2, ϕ3 (transformation
matrices)→ kinematics constraints

• The sensor cannot move faster than vy — dynamic constraint
• The sensor must be at distance d from the object — task constraint



Basic kinematic motion models

• Differential drive: control inputs are speeds of
left/right wheel (ul and ur )

ẋ =
r
2

(ul + ur ) cosϕ

ẏ =
r
2

(ul + ur ) sinϕ

ϕ̇ =
r
L

(ur − ul )

• Car-like: control inputs are forward velocity us
and steering angle uφ

ẋ = us cosϕ

ẏ = us sinϕ

ϕ̇ =
us

L
tan uφ
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RRT for planning under diff. constr
• Similar to basic RRT
• Expansion of the tree using the motion model

and discretized input set U

1 initialize tree T with xinit
2 for i = 1, . . . , Imax do
3 xrand = generate randomly in X
4 xnear = find nearest node in T towards xrand
5 best =∞
6 xnew = ∅
7 foreach u ∈ U do
8 x = integrate f (x , u) from xnear over time ∆t
9 if x is feasible and x is collision-free and

%(x , xrand) < best then
10 xnew = x
11 best = %(x , xrand)

12 if xnew 6= ∅ then
13 T .addNode(xnew)
14 T .addEdge(xnear, xnew)
15 if %(xnew, xgoal) < dgoal then
16 return path from xinit to xgoal
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RRT: example with the car-like robot



RRT: example with a “wheelchair” model



RRT: example with the car-like robot

Car-like, forward only Car-like forward+backward motion

Enabling/disabling backward motion of car-like

• Either by assuming us ≥ 0 (for forward motion only)

• Or explicit validation of results from local planner

line 9: if x is feasible



Example of RRT under diff. constraints
• We have a car-like robot with broken steering mechanisms
• The robot can go either forward-only, or forward-and-left only
• Since robot is 2D and translation+rotation is required: C is 3D
• State space: X = C

(1,1)

(1,0)

x

(1,−1)

ẋ = us cosϕ ẏ = us sinϕ ϕ̇ = us
L tan uφ

ϕ̇ ≥ 0

Practical implementation

• Determine action variables:

us,min ≤ us ≤ us,max

uφ,min ≤ uφ ≤ uφ,max

• Discretize each range, e.g. to m values→ m2 combinations of us × uφ
• For example: U = {(−1,−1), (−1,0), (−1,1), (0,−1), (0,1), . . . , (1,1)}
• Apply all u ∈ U during tree expansion, cut off infeasible states
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Motion planning of robotic manipulators

• q = (ϕ1, . . . , ϕn), n joints
• x = position of the link/end-effector
• x can contain also rotation if needed
• Forward kinematics: x = FK (q)

• Inverse kinematics: q = IK (x)

• IK can have singularities!

Collision detection

• Collision detection needs joint coordinates
• We need Ai (q) (position of link i at q)
• Collision detection is between Ai (q) and O
• Collision detection for end-effector pose x :

• Compute q = IK (x)
• Derive Ai (q)

y

x

1

2
ϕ

ϕ

(x,y)

Two arms
links A1 and A2



Motion planning of robotic manipulators
Spaces:

• Workspace / Cartesian space / Operation space

• We construct path for the end-effector→ inW !
• Joint coordinates are obtained via IK
• Collision detection is checked at the joint coordinates
• Potential problem?

• Joint-space

• The path is constructed in joint-space (!), i.e. in C
• Collisions are checked using the joint coordinates
• No IK involved



Singularities

www.youtube.com/watch?v=BJnZvwAE0PY



RRT for manipulators I
Planning via inverse kinematics

• We plan path of end-effector in workspace
• Naïve usage of RRT for manipulators
• Sampling, tree growth, nearest-neighbor s. inW
• xrand is generated randomly fromW
→ xrand is the position of end-effector!
• xnear nearest in tree towards xrand

• Make straigh-line from xnear to xrand with resolution ε
• For each waypoint x on the line:

• q = IK (x), check collisions at q

7 Problem with singularities

• line from xnear to xrand may contain singularity
• it may result in unwanted reconfiguration

7 Requires (fast) inverse kinematics
7 Task/dynamic constraints difficult to evaluate
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RRT for manipulators II
Planning via forward kinematics

• We plan path in joint-space (=C)
• Sampling, tree growth and nearest-neighbor s. in C
• Assume that joint i can change by ±∆i

• U is set of possible changes of the joints, e.g.:
U = {(−∆1,0), (∆1,0), (0,−∆2), (0,∆2), . . .}

• qrand is generated randomly in C
• qnear is its nearest neighbor in T
• Tree expansion: for each u ∈ U :

• Apply u to qnear: q′ = qnear + u
• Check collision of Ai (q′)
• add to tree such q′ that is collision-free and

minimizes distance to qrand

7 Goal state needs to be defined in C!
3 No issues with singularities
3 Task/dynamics constraints can be easily checked
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RRT for manipulators III
Planning with the task-space bias

• Combination of the two previous approaches
• Sampling inW (task-space), tree growth in C (joint

space)
• Each node in the tree is (q, x), q ∈ C, x ∈ W

• q-part is used for the tree expansion
• x-part is used for the nearest-neighbor search

• xrand is generated randomly fromW,
• xnear is nearest node from T towards xrand measured inW
• Get joint angles: qrand = IK (xrand) and qnear = IK (xnear)

• qnew = straight-line expansion from qnear to qrand (in C)
• add qnew and FK (qnew) to the tree if it’s collision-free
3 Advantages: no problem with singularities, can handle

task/dynamic constraints, the goal can be specified only
in task space
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Local planner: Dubins curves
• Let’s assume a simplified Car-like car moving by a

constant forward speed us = 1:

ẋ = cosϕ

ẏ = sinϕ

ϕ̇ = u

• control input (turning): u = [− tanφmax , tanφmax ]

• Assume a RRT planner
• How to connect qnear to qrand

• Naïve approach

• try several u
• use such u that minimizes distance to qrand

• Or use Dubins vehicle!
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* L. E. Dubins, On curves of minimal length with a constraint on average curvature, and with
prescribed initial and terminal position and tangents, American Journal of Mathematics, 79 (3):
497–516, 1957.



Local planner: Dubins curves
• Let’s assume a simplified Car-like car moving by a

constant forward speed us = 1:

ẋ = cosϕ

ẏ = sinϕ

ϕ̇ = u

• control input (turning): u = [− tanφmax , tanφmax ]

Dubins curves

• Six optimal Dubins curves: LRL, RLR, LSL, LSR, RSL,
RSR; S-straight, L-left, R-right

• Any two configurations can be optimally connected by
these curves

• Useful as optimal “local-planner”
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Performance measurement

Which planner is the best?

• Many planners, many modifications, many parameters
• No free lunch theorem!
• Selection of planner/parameters depends on the instance
• We cannot rely on literature/web
• Time complexity analysis does not always help
• We have to measure performance by ourself

Typical indicators:

• Path quality (length, time-to-travel, smoothness)
• Runtime & memory requirements
• Randomized planners: all above (statistically) + success rate curve

Good practice

• Testing setup should be as similar as possible to real situation
• Don’t trust the test routine!, verify it first!!



Planner analysis: time complexity

• k is the number of collision
detection queries

• mA and mW is the number of
geometric objects describing
A andW

• NN is the complexity of the
nearest-neighbor search

• CD is the complexity of
collision detection

1 initialize tree T with qinit
2 for i = 1, . . . , Imax do
3 qrand = generate randomly in C
4 qnear = nearest node in T towards

qrand
5 qnew = localPlanner qnear → qrand
6 if canConnect(qnear, qnew) then
7 T .addNode(qnew)
8 T .addEdge(qnear, qnew)
9 if %(qnew, qgoal) < dgoal then

10 return path from qinit to
qgoal

• Time complexity of one iteration of RRT with n nodes

O(nearest_neighbor + collision_detection)

• Assuming KD-tree for nearest-neighbor and hierarchical collision
detection:

O(log n + k log(mA + mW))

• General approach, valid for all methods



Planner analysis: cumulative probability

• Cumulative distribution function F (x)

• x is usually number of iterations (or runtime)
→ probability that a plan is found in less than x iterations (or in time < x)
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• For randomized planners only
• Valid only for the tested scenario
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Comparison of algorithms

We have two algorithms to use. How do we select better one?

Theorist

• We decide using complexity analysis O(). . .

Engineer

• We measure average runtime, memory, . . . , and see

Expert and student of ARO

• Not easy question, we need to consider:

• What is the main criteria?
• Range of scenarios/instances to be (typically)

solved
• Computational constraints (runtime limits, memory

limits, . . . )
• Robustness, implementation, dependencies



RRT vs Magic RRT: intro

Basic RRT
1 initialize tree T with qinit
2 for i = 1, . . . , Imax do
3 qrand = generate randomly in C
4

5

6 qnear = nearest node in T towards
qrand

7 qnew = localPlanner qnear → qrand
8 if canConnect(qnear, qnew) then
9 T .addNode(qnew)

10 T .addEdge(qnear, qnew)
11 if %(qnew, qgoal) < dgoal then
12 return path from qinit to

qgoal

Magic RRT
1 initialize tree T with qinit
2 for i = 1, . . . , Imax do
3 qrand = generate randomly in C
4 if i < 3 then
5 qrand = qgoal

6 qnear = nearest node in T towards
qrand

7 qnew = localPlanner qnear → qrand
8 if canConnect(qnear, qnew) then
9 T .addNode(qnew)

10 T .addEdge(qnear, qnew)
11 if %(qnew, qgoal) < dgoal then
12 return path from qinit to

qgoal



RRT vs Magic RRT: intro

Basic RRT
1 initialize tree T with qinit
2 for i = 1, . . . , Imax do
3 qrand = generate randomly in C
4

5

6 qnear = nearest node in T towards
qrand

7 qnew = localPlanner qnear → qrand
8 if canConnect(qnear, qnew) then
9 T .addNode(qnew)

10 T .addEdge(qnear, qnew)
11 if %(qnew, qgoal) < dgoal then
12 return path from qinit to

qgoal

Magic RRT
1 initialize tree T with qinit
2 for i = 1, . . . , Imax do
3 qrand = generate randomly in C
4 if i < 3 then
5 qrand = qgoal

6 qnear = nearest node in T towards
qrand

7 qnew = localPlanner qnear → qrand
8 if canConnect(qnear, qnew) then
9 T .addNode(qnew)

10 T .addEdge(qnear, qnew)
11 if %(qnew, qgoal) < dgoal then
12 return path from qinit to

qgoal

O(log n + k log(mA + mW)) O(log n + k log(mA + mW))

• Both methods have the same time complexity
• . . . but do they behave same?



RRT vs Magic RRT: scenario



RRT vs Magic RRT: sample results
RRT, 8 trials

Magic RRT, 8 trials

• What is obvious difference between these two methods?



RRT vs Magic RRT: cum. probability
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• Can you explain why Magic RRT is better?
• Is it true for all scenarios?
• Can you design a scenario where RRT will be better than Magic RRT?



RRT vs Magic RRT: cum. probability
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RRT vs Magic RRT: conclusion

• In our scenario, RRT is worse than Magic RRT
• Above is true only for parameters used in the comparison!
• There are other scenarios with opposite behavior
• There are other scenarios where RRT is same (statistically) as Magic

RRT
• Other parameters of RRT/Magic RRT, may lead to different results



Sampling with qrand ∈ Cfree

• How does RRT perform if qrand are generated only from Cfree instead of C?

Basic RRT
1 initialize tree T with qinit
2 for i = 1, . . . , Imax do
3 qrand = generate randomly in C
4

5

6 qnear = nearest node in T towards
qrand

7 qnew = localPlanner qnear → qrand
8 if canConnect(qnear, qnew) then
9 T .addNode(qnew)

10 T .addEdge(qnear, qnew)
11 if %(qnew, qgoal) < dgoal then
12 return path from qinit to

qgoal

RRT with qrand ∈ Cfree

1 initialize tree T with qinit
2 for i = 1, . . . , Imax do
3 qrand = generate randomly in C
4 if qrand /∈ Cfree then
5 continue

6 qnear = nearest node in T towards
qrand

7 qnew = localPlanner qnear → qrand
8 if canConnect(qnear, qnew) then
9 T .addNode(qnew)

10 T .addEdge(qnear, qnew)
11 if %(qnew, qgoal) < dgoal then
12 return path from qinit to

qgoal

• Analyze how this can happen in empty/cluttered/narrow spaces?
• How does it changes complexity of the method?



Sampling with qrand ∈ Cfree: results
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Sampling with qrand ∈ Cfree: results
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