Motion planning: sampling-based planners I

Vojtěch Vonásek

Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

Summary of the last lecture

Motion/path planning

- Finding of collision-free trajectory/path for a robot
- Formulation using the configuration space $\ensuremath{\mathcal{C}}$
- C is continuous → conversion to a discrete representation (graph) → graph search
- Combinatorial path planning
 - Require an explicit representation of \mathcal{C}_{obs}
 - For point/disc robots (if C is sames as W)
 - Visibility graphs, Voronoi diagrams, ...

Dijkstra, A*, D*, ...

Configuration space

- Configuration space ${\mathcal C}$ has as many dimensions as DOFs of the robot
- Obstacles Cobs are given implicitly!

$$\mathcal{C}_{\mathrm{obs}} = \{ oldsymbol{q} \in \mathcal{C} \mid \mathcal{A}(oldsymbol{q}) \cap \mathcal{O}
eq \emptyset \}$$

• C_{obs} depends both on robot and obstacles!

- Generally, explicit geometry/shape of \mathcal{C}_{obs} is not available
- Problem of enumerating configurations in Cobs
- Problem of enumerating "surface" configurations of \mathcal{C}_{obs}

Problem of enumerating "surface" configurations of \mathcal{C}_{obs}

- We cannot generally/easy/fast say what are surface/boundary configurations of $\mathcal{C}_{\rm obs}$
- This precludes combinatorial path planners (e.g., Visibility Graphs, Voronoi diagrams, Cell-decompositions, ...) to be used for high-dimensional *C*-space
 - they require surface/boundary of \mathcal{C}_{obs}

Configuration space: example I

FACULTY OF ELECTRICAL ENGINEERING CTU IN PRAGUE

- Map: 1000×700 units
- Robot: rectangle 20 × a units
- $q = (x, y, \varphi)$
- \mathcal{C} visualized for $\mathbf{0} \leq \varphi < \mathbf{2}\pi$
- $\varphi = \mathbf{0} \rightarrow$

a = 1

a = 100

Configuration space: example II

ACTION OF ELECTRICAL OF ELECTRICAL OF ELECTRICAL SUSTEMS CTU IN PRAGUE

- Map: 2000 × 1600 units
- $q = (x, y, \varphi)$
- \mathcal{C} visualized for $\mathbf{0} \leq \varphi < \mathbf{2}\pi$
- $\varphi = \mathbf{0} \rightarrow \mathbf{m} \leftarrow \varphi = \mathbf{2}\pi$

 $\mathcal{A}:$ rectangle 20 \times 100 units

equilateral triangle, side 100

 \mathcal{A} : equilateral triangle, side 100 units (right-bottom "hole" caused by rendering clip)

Configuration space: example III

- Map: 5000 × 3000 units
- $q = (x, y, \varphi)$
- C visualized for $0 \le \varphi < 2\pi$
- $\varphi = \mathbf{0} \rightarrow \mathbf{m} \leftarrow \varphi = \mathbf{2}\pi$

- C-space is usually high-dimensional in practical applications
 - Discretization not reasonable due to memory/time limits
- Non-trivial mapping between the shape of robot ${\mathcal A}$ and obstacles ${\mathcal O}$
 - Simple obstacles in ${\mathcal W}$ may be quite complex in ${\mathcal C}$
- Narrow passages (we will discuss later)

Early methods (combinatorial path planners)

- Designed for 2D/3D workspaces for point robots, complete, optimal (some), deterministic
- Limited only to special cases
- In late 1980s, these methods have became impractical

But general path/planning requires search in C-space!

• If you are desperate, flip a coin \rightarrow randomization!

- Dijkstra's algorithm, 1959
- A*, 1968
- Configuration space, 1983
- Era of combinatorial planning, 1980s–1990s
- First planners using randomization, early 1990s
- Probabilistic roadmaps (PRM), 1995
- Rapidly-exploring Random Tree (RRT), 1998

Dijkstra, E. W. "A Note on Two Problems in Connexion with Graphs", Numerische Mathematik
 1, no. 1 (December 1959): 269–71.

• P. E. Hart, N. J. Nilsson and B. Raphael, "A Formal Basis for the Heuristic Determination of Minimum Cost Paths," in IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, July 1968,

 Lozano-Perez, "Spatial Planning: A Configuration Space Approach," in IEEE Transactions on Computers, vol. C-32, no. 2, pp. 108-120, Feb. 1983,

Publications with "sampling-based [path|motion] planning"

- Randomized path planner (RPP), 1991
 - Discrete workspace
 - · Several potential fields for different control points of the robot
 - Gradient descent (GD) is performed for a selected point
 - If the goal is reached, the algorithm terminates
 - Otherwise, a different control point is selected and GD continues there
 - The escape from a local minimum is performed by a random walk

 J. Barraquand and J.-C. Latombe. Robot motion planning: a distributed representation approach. International Journal on Robotics Research, 10(6):628-649, 1991.

- ZZZ planner (1990)
 - Uses two planners: global and local
 - Global planner randomly places random goals in \mathcal{C}_{free}
 - Local planner uses potential field to connect these goals

• B. Glavina. Solving findpath by combination of goal-directed and randomized search. In IEEE International Conference on Robotics and Automation (ICRA), 1718-1723, 1990.

- Ariadne's clew algorithm (1998)
 - Two phase tree-based planner
 - Exploration phase: adds new configuration to tree rooted at q_{init}
 - Search phase: attempts to connect known (tree) configuration to $q_{\rm goal}$
 - Both phases are solved using a genetic algorithm

 E. Mazer and J. M. Ahuactzin and P. Bessiere; The Ariadne's Clew Algorithm, Journal of Artificial Intelligence Research, vol 9, 1998, 295-316

- Horsch planner (1994)
 - The first roadmap-based approach: generate random samples in $\mathcal{C}_{\text{free}}$
 - Connect samples by straight-line if possible
 - If the roadmap is disconnected, a random ray is shoot from one of its vertices
 - A contact configuration is added to the roadmap and connected with its nearest neighbors

 Horsch, T. and Schwarz, F. and Tolle, H.; Motion planning with many degrees of freedom-random reflections at C-space obstacles; IEEE International Conference on Robotics and Automation (ICRA), 1994

Sampling-based motion planning I

Main idea:

- C is randomly sampled
- Each sample is a configuration $q \in C$
- The samples are classified as free ($q \in C_{\text{free}}$) or non-free ($q \in C_{obs}$) using collision detection
- Free samples are stored and connected, if possible, by a "local planner"
- Result of sampling-based planning is a "roadmap" graph
- The roadmap is the discretized image of C_{free}
- Graph-search in the roadmap

q_{init} q_{init} q_{goal} Hgoal Roadmap Path Sampling

- Sampling-based planning can solve any problem formulated using *C*-space
- Robots of arbitrary shapes
 - Robot shape is considered in collision detection
 - Collision detection is used as a "black-box"
 - Single-body or multi-body robots allowed
- ✓ Robots with many-DOFs
 - Because the search is realized directly in C-space
 - Dimension of $\ensuremath{\mathcal{C}}$ is determined by the DOFs
- ✓ Kinematic, dynamic and task constraints can be considered
 - It depends on the employed local planner

Local planner

Given configurations *q_a* ∈ C_{free} and *q_b* ∈ C_{free}, the local planner attempts to find a path *τ*:

 $\tau: [\mathbf{0}, \mathbf{1}] \to \mathcal{C}_{\text{free}}$

such that $\tau(0) = q_a$ and $\tau(1) = q_b$

 τ must be collision free!

Control-theory approach: special cases

- We can assume that q_a and q_b are "near" without obstacles
- Two-point boundary value problem (BVP)
- Local planner is designed as a controller
- But problems are with obstacles!

Generally:

- The definition of "local planning" is same as motion planning
- \rightarrow same complexity as motion planning!

Local planners

Exact local planners

- For certain systems, BVP can be solved analytically
- Example: car-like without backward motions \rightarrow Dubins car

Approximate local planners

- Path τ connects q_a with q_{new} that is near-enough from q_b
- Computation e.g. using forward motion model and integration over time Δt

Straight-line local planners

- Connects q_a and q_b by line-segment
- Check the collisions of the line-segment
- Connect q_a with the first contact configuration q_{new} or with q_b if no collision occurs
- Suitable for systems without kinematic/dynamic constraints

Exact local planner

Straight-line

Multi-query methods

- Can find paths between multi start/goal queries
- Requires to build a roadmap covering whole C_{free}
- Probabilistic Roadmaps (PRM) + many derivates
- ø good for frequent planning and replanning
- × sometimes slower construction

Single-query methods

- The roadmap is built only to answer a single start/goal query
- The sampling of $\ensuremath{\mathcal{C}}$ terminates if the query can be answered
- Tree-based planners: Rapidly-exploring Random Trees (RRT), Expansive-space Tree (EST) + their variants
- Practically faster for single-query
- $\pmb{\mathsf{X}}$ Any subsequent planning requires novel search of $\mathcal C$
- X Slow for multi-query planning

Single-query roadmap

q init

Probabilistic Roadmaps (PRM)

• Two-phase method: learning phase and query phase

Learning phase

- Random samples are generated in $\ensuremath{\mathcal{C}}$
- Samples are classified as free/non-free; free samples are stored
- Each sample is connected to its near neighbors by a local planner
- Final roadmap may contain cycles

Query phase:

- Answers path/motion planning from $q_{\text{init}} \in C_{\text{free}}$ to $q_{\text{goal}} \in C_{\text{free}}$
- *q*_{init} and *q*_{goal} are connected to their nearest neighbors in the roadmap (using local planner)
- Graph-search of the roadmap

 L. E. Kavraki, P. Svestka, et al., "Probabilistic roadmaps for path planning in high-dimensional configuration spaces,". IEEE Trans. on Robotics and Automation, 12(4), 1996.

Original PRM

- Simultaneous sampling + roadmap expansion
- *q*_{rand} is connected to each graph component only once
- Roadmap is a tree structure

```
V = \emptyset; E = \emptyset
                                                 // vertices and edges
  G = (V, E)
                                                         // empty roadmap
  while |V| < n do
3
        q_{\rm rand} = generate random sample in C
4
        if q<sub>rand</sub> is collision-free then
5
             G.addVertex(q_{rand})
6
             foreach q \in V.neighborhood*(q_{rand}) do
7
                  if not G.sameComponent(q_{rand}, q) \land connect(q_{rand}, q)
8
                    then
                        G.addEdge(q_{rand}, q)
9
```

neighborhood* returns q by increasing distance from q_{rand}

 L. E. Kavraki, P. Svestka, et al., "Probabilistic roadmaps for path planning in high-dimensional configuration spaces,". IEEE Trans. on Robotics and Automation, 12(4), 1996.

Simplified PRM (sPRM)

- Separate sampling and roadmap connection
- · Each node is connected to its nearest neighbors
- Roadmap can contains cycles

```
1 \overline{V=\emptyset; E=\emptyset}
                                          // vertices and edges
2 while |V| < n do // generating n collision-free</pre>
     samples
        q_{\text{rand}} = generate random sample in C
 3
        if q<sub>rand</sub> is collision-free then
 4
         | V = V \cup \{q_{\text{rand}}\}
 5
   foreach v \in V do // connecting samples to roadmap
6
        V_n = V.neighborhood(v)
 7
        foreach u \in V_n, u \neq v do
 8
             if connect(u, v) then
                                                 // local planner
 9
                  E = E \cup \{(u, v)\}
10
11 G = (V, E)
                                                 // final roadmap
```

 S. Karaman, and E. Frazzoli. "Sampling-based algorithms for optimal motion planning." The international journal of robotics research 30.7 (2011): 846-894.

sPRM: variants and properties

- FACULTY OF ELECTRICAL ENGINEERING CTU IN PRAGUE
- Behavior of sPRM is mostly influenced by V.neighborhood function
- Several variants were proposed an analyzed

k-nearest sPRM (aka k-sPRM)

- V.neighborhood provides k nearest neighbors from q_{rand}
- Probabilistically complete if $k \neq 1$
- Is not asymptotically optimal
- Usually k = 15

Variable radius sPRM

- *V*.*neighborhood* returns nearest neighbors of *q*_{rand} within a radius *r*
- The choice of *r* influences completeness and optimality of sPRM
- Most important PRM* planner

sPRM example 2D ${\cal W}$

sPRM example 3D \mathcal{W}

The wall contains one window, but no path found with 50k samples

sPRM example 3D ${\cal W}$

Rapidly-exploring Random Tree (RRT)

- Incremental search of ${\mathcal C}$
- Collision-free configurations are stored in tree \mathcal{T}
- *T* is rooted at *q*_{init}
- Tree is expanded towards random samples *q*_{rand}
- The search terminates if tree is close enough to q_{goal}, or after *I_{max}* iterations

 $\begin{array}{l} \mbox{initialize tree \mathcal{T} with $q_{\rm init}$} \\ \mbox{for $i=1,\ldots,I_{max}$ do$} \\ \mbox{$q_{\rm rand}$} = \mbox{generate randomly in \mathcal{C}} \\ \mbox{$q_{\rm near}$} = \mbox{find nearest node in \mathcal{T} towards} \\ \mbox{$q_{\rm rand}$} \\ \mbox{$q_{\rm rand}$} \\ \mbox{$q_{\rm rand}$} \\ \mbox{ficanConnect}(\mbox{$q_{\rm near}$},\mbox{$q_{\rm new}$})$ \mbox{then}$ \\ \mbox{\mathcal{T}-addNode}(\mbox{$q_{\rm new}$})$ \\ \mbox{\mathcal{T}-addEdge}(\mbox{$q_{\rm new}$})$ \\ \mbox{\mathcal{T}-addEdge}(\mbox{$q_{\rm new}$})$ \\ \mbox{moxif $\varrho(\mbox{$q_{\rm new}$},\mbox{$q_{\rm new}$})$ \\ \mbox{moxif $p_{\rm class}$ does $d_{\rm clas$

2

3

5

6

7

8

a

10

 LaValle:, S. M. Rapidly-exploring random trees: a new tool for path planning". Technical report, Iowa State University, 1998

- 2D robot, rotation allowed \rightarrow 3D ${\cal C}$
- Why the tree does not "touch" the obstacles?

RRT example in 3D \mathcal{W}

• 3D Bugtrap benchmark

parasol.tamu.edu/groups/amatogroup/benchmarks/

• 3D robot in 3D space \rightarrow 6D ${\cal C}$

RRT example in 3D \mathcal{W}

• 3D Flange benchmark

parasol.tamu.edu/groups/amatogroup/benchmarks/

• 3D robot in 3D space \rightarrow 6D ${\cal C}$

RRT: tree expansion types

Straight-line expansion: make the line-segment *S* from q_{near} to q_{rand}

Variants:

A If S is collision-free, expand the tree only by

 $q_{\rm new} = q_{\rm rand}$

- Creates long segments, fast exploration of $\ensuremath{\mathcal{C}}$
- Requires nearest-neighbor search to consider point-segment distance
- Requires connection in the middle of line-segment
- B If *S* is collision-free, discretize *S* and expand the tree by all points on *S*
 - · Most used, enables fast nearest-neighbor search
- C Find configuration $q_{\text{new}} \in S$ at the distance ε from q_{near} . Expand tree by q_{new} if it's collision-free
 - Basic RRT, slower growth than B
 - Enables fast nearest-neighbor search

RRT: properties

- RRT builds a tree \mathcal{T} of collision-free configurations
- T is rooted at q_{init}
- T is without cycles
- Path from q_{init} to q_{goal}:
 - Find nearest node $q_{ ext{goal}}' \in \mathcal{T}$ towards $q_{ ext{goal}}$
 - Start at q'_{goal} and follow predecessors to q_{init}
- Existing ${\mathcal T}$ can answer queries starting at q_{init}
 - if goal is not in/near current $\mathcal{T},\,\mathcal{T}$ is further grown
- Non-optimal
- Probabilistically complete
- Why the tree does not grow to itself?
- Why does it "rapidly" explore the C-space? ... because of Voronoi bias!

RRT: Voronoi bias I

- RRT prefers to expand ${\mathcal T}$ towards unexplored areas of ${\mathcal C}$
- This is caused by Voronoi bias:
 - q_{rand} is generated **uniformly** in C
 - T is expanded from **nearest** node in T towards q_{rand}
 - The probability that a node $q \in T$ is selected for the expansion is proportional to the area/volume of it's Voronoi cell
- Voronoi bias is implicit (caused by the nearest-rule selection)

RRT: Voronoi bias I

- RRT prefers to expand ${\mathcal T}$ towards unexplored areas of ${\mathcal C}$
- This is caused by Voronoi bias:
 - q_{rand} is generated **uniformly** in C
 - T is expanded from **nearest** node in T towards q_{rand}
 - The probability that a node $q \in T$ is selected for the expansion is proportional to the area/volume of it's Voronoi cell
- Voronoi bias is implicit (caused by the nearest-rule selection)

RRT: Voronoi bias I

- RRT prefers to expand ${\mathcal T}$ towards unexplored areas of ${\mathcal C}$
- This is caused by Voronoi bias:
 - q_{rand} is generated **uniformly** in C
 - T is expanded from **nearest** node in T towards q_{rand}
 - The probability that a node $q \in T$ is selected for the expansion is proportional to the area/volume of it's Voronoi cell
- Voronoi bias is implicit (caused by the nearest-rule selection)

RRT: Voronoi bias II

- FACULTY OF ELECTRICAL ENGINEERING CTU IN PRACUE
- Nearest-neighbors/Voronoi bias do not respect obstacles!
- If a node having large Voronoi cells is near an obstacle \rightarrow tree expansion is blocked at this node

- Tree grows well until iteration 70
- Yellow: areas with high prob. of being selected for expansion
- Green: areas that show be selected for expansion so the tree can escape the obstacle
- The tree does not expand much until iteration 300!

RRT: Voronoi bias II

- FACULTY OF ELECTRICAL ENGINEERING CTU IN PRACUE
- Nearest-neighbors/Voronoi bias do not respect obstacles!
- If a node having large Voronoi cells is near an obstacle \rightarrow tree expansion is blocked at this node

- Tree grows well until iteration 70
- Yellow: areas with high prob. of being selected for expansion
- Green: areas that show be selected for expansion so the tree can escape the obstacle
- The tree does not expand much until iteration 300!

Expansive-space tree (EST)

- Builds two trees \mathcal{T}_i and \mathcal{T}_g (from q_{init} and q_{goal})
- Weight *w*(*q*) is computed for each configuration *q*
- Nodes are selected for expansion with probability $w(q)^{-1}$
- Expansion of one tree \mathcal{T} :

```
1q' = select node from \mathcal{T} with probability w(q)^{-1}2Q = k random points aroundq' : Q = \{q \in C_{\text{free}} | \varrho(q, q') < d\}3foreach q \in Q do4w(q) = compute weight of the sample q5if rand() < w(q)^{-1} and connect(q, q') then6\mathcal{T}.addNode(q)7\mathcal{T}.addEdge(q', q)
```

- w(q) is the number of nodes in \mathcal{T} around q
- Both T_i and T_g grow until they approach each other
- Trees are connected using local planner between their nearest nodes

 D. Hsu, J.-C. Latomber et al. Path planning in expansive configuration spaces. Int. Journal of Comp. Geometry and Applications, 9(4-5), 1999

 \mathcal{T}_i and \mathcal{T}_g

q', samples Q

connected, ignored

pairs for tree connection

Asymptotically optimal RRT*and PRM*

- ACULTY OF ELECTRICAL ENGINEERING CTU IN PRAGUE
- PRM/RRT/EST do not consider any optimality criteria
- Only sPRM is asymptotically optimal
- PRM* and RRT* are new planners for which asymptotic optimality was proven

RRT

 S. Karaman, and E. Frazzoli. "Sampling-based algorithms for optimal motion planning." The international journal of robotics research 30.7 (2011): 846-894.

ACULTY OF ELECTRICAL ENGINEERING CTU IN PRAGUE SYSTEMS GROUP

PRM* is an improved version of sPRM

PRM*: overview

• PRM* uses "optimal" radius *r*(*n*) for searching the nearest neighbors depending on the actual number of nodes *n*:

$$\begin{split} r(n) &= \gamma_{PRM} \left(\frac{\log(n)}{n}\right)^{\frac{1}{d}} \\ \gamma_{PRM} &> \gamma_{PRM}^* = 2 \left(1 + \frac{1}{d}\right)^{\frac{1}{d}} \left(\frac{\mu(\mathcal{C}_{\text{free}})}{\zeta_d}\right)^{\frac{1}{d}} \end{split}$$

- *d* is the dimension of *C*
- $\mu(\mathcal{C}_{\text{free}})$ is the volume of $\mathcal{C}_{\text{free}}$
- ζ_d is the volume of the unit ball in the *d*-dimensional Euclidean space
- r decays with n
- r depends also on the problem instance! why?

PRM* algorithm

• Same as for sPRM, just the line 7 is changed to: $V_n = V.neighborhood(v, r(n))$, where n = |V|

Variant of PRM* that uses k-nearest neighbors definitions

$$k = k_{PRM} \log(n)$$

$$k_{PRM} > k_{PRM}^* = e\left(1 + \frac{1}{d}\right)$$

- The constant k_{PRM}^* depends only on *d* and not on the problem instance (compare it to γ_{PRM}^*)
- $k_{PRM} = 2e$ is a valid choice for all problem instances

k-nearest PRM* algorithm (aka k-PRM*)

• Same as for sPRM, just the line 7 is changed to:

 $V_n = k$ -nearest neighbors from $V, k = k_{PRM} \log(n)$

- Optimal version of RRT
- For each node, a cost of the path from *q*_{init} to that node is established
- RRT* has improved tree expansion and nearest-neighbor search
- Tree expansion by node $q_{
 m new}$
 - Parent of q_{new} is optimized to minimize cost at q_{new}
 - After *q*_{new} is connected to tree, node it its vicinity are "rewired" via *q*_{new} if it improves their cost
- Nearest-neighbor search
 - Number of nearest-neighbors varies similarly to PRM*

• S. Karaman, and E. Frazzoli. "Sampling-based algorithms for optimal motion planning." The international journal of robotics research 30.7 (2011): 846-894.

RRT*: algorithm

initialize tree \mathcal{T} with q_{init} for $i = 1, \ldots, I_{max}$ do 2 $q_{\rm rand}$ = generate randomly in C 3 q_{near} = find nearest node in \mathcal{T} towards q_{rand} Δ $q_{\text{new}} = \text{localPlanner from } q_{\text{near}} \text{ towards } q_{\text{rand}}$ 5 if q_{new} is collision-free then 6 $Q_{near} = \mathcal{T}.neighborhood(q_{new}, r)$ 7 $\mathcal{T}.addNode(q_{new})$ // new node to tree 8 $q_{\text{best}} = q_{\text{near}}$ // best parent of q_{new} so far 9 $c_{best} = cost(q_{near}) + cost(line(q_{near}, q_{new}))$ 10 foreach $q \in Q_{near}$ do 11 $c = cost(q) + cost(line(q, q_{new}))$ 12 if $canConnect(q, q_{new})$ and $c < c_{best}$ then 13 14 $q_{best} = q$ // new parent of q_{new} is q $c_{best} = c$ // its cost 15 $\mathcal{T}.addEdge(q_{best}, q_{new})$ // tree connected to 16 $q_{\rm new}$ foreach $q \in Q_{near}$ do 17 // rewiring $c = cost(q_{new}) + cost(line(q_{new}, q))$ 18 if $canConnect(q_{new}, q)$ and c < cost(q) then 19 change parent of q to q_{new} 20

lines 17-20

• One set the light factor of a set of factor of the set of a stability of the set of th

RRT* with variable neighborhood

- $cost(line(q_1, q_2))$ is cost of path from q_1 to q_2 (path by the local planner)
- $cost(q), q \in T$ is cost of the path from q_{init} to q (path in T)
- nearest neighbors Q_{near} are searched within radius r depending on the number of nodes n in the tree:

$$r = \min\left\{\gamma_{RRT}^{*}\left(\frac{\log(n)}{n}\right)^{\frac{1}{d}}, \eta\right\}$$
$$\gamma_{RRT}^{*} = 2\left(1 + \frac{1}{d}\right)^{\frac{1}{d}}\left(\frac{\mu(\mathcal{C}_{\text{free}})}{\zeta_{d}}\right)^{\frac{1}{d}}$$

- *d* is the dimension of *C*
- μ(C_{free}) is the volume of C_{free}
- ζ_d is the volume unit ball in the *d*-dimensional Euclidean space
- η is constant given by the used local planner
- r decays with n
- *r* depends also on the problem instance

RRT*with variable *k*-nearest neighbors

Alternative k-nearest RRT* (aka k-RRT*)

• k-nearest neighbors are selected for parent search and rewiring

$$k = k_{RRT} \log(n)$$

$$k_{RRT} > k_{RRT}^* = e\left(1 + \frac{1}{d}\right)$$

- *n* is the number of nodes in \mathcal{T}
- k-RRT* has same implementation as RRT* just line 7 is changed to Q_{near} = find k nearest neighbors in T towards q_{new}

Rectangle robot, rotation allowed \rightarrow 3D ${\cal C}$

RRT*: example in 2D \mathcal{W}

2D rectangle robot \rightarrow 3D C. The colormap shows the path length from q_{init} . But is it really good?

RRT*: example in 2D \mathcal{W}

2D rectangle robot \rightarrow 3D CDepicted path demonstrates the slow convergence of the path quality

Algorithm	Probabilistic completeness	Asymptotic optimality
RRT	Yes	No
PRM	Yes	No
sPRM	Yes	Yes
<i>k-</i> sPRM	No if <i>k</i> = 1	No
PRM* / <i>k</i> -PRM*	Yes	Yes
RRT* / k-RRT*	Yes	Yes

- If you don't need optimal solution, stay with RRT/PRM
- RRT is faster than RRT*
- RRT is way easier for implementation than RRT* (if we need an efficient implementation)
- Path quality of RRT can be improved by fast post-processing
- Asymptotic optimality is just asymptotic!
- → slow convergence of path quality

- Sampling-based planning randomly samples $\ensuremath{\mathcal{C}}$
- Samples are classified as free/non-free, free samples are stored
- Multi-query vs. single-query planners
- PRM/RRT/EST and their optimal variants PRM* and RRT*