Motion planning: sampling-based planners |

Vojtéch Vonasek

Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague

Planning for “car-like” vehicle

5 Q0
Summary of the last lecture el e | %S s
Motion/path planning Motion planning
¢ Finding of collision-free trajectory/path for a robot Continuous problem
. . . . C-space specification,
¢ Formulation using the configuration space C G, o
e Cis continuous — conversion to a discrete Discretization of C
representation (graph) — graph search faxnr;;i;'n;jf’e"tg;f:iggc
e Combinatorial path planning bk L
. . . Graph search
° Requw_e an explicit repres_entatlon of Cops Dijks?ra,A‘, o l

® For point/disc robots (if C is sames as W)
* Visibility graphs, Voronoi diagrams, ...

[3

o 0]

3 y‘\/
l‘ X

Configuration space p it

G
IN PRAGUE

¢ Configuration space C has as many dimensions as DOFs of the robot
Obstacles Cops are given implicitly!

Cobs ={q €C [A(Q)N O # 0}

Cobs depends both on robot and obstacles!

Cobs

V4
+ — Cobs
\
Cobs

Generally, explicit geometry/shape of Cqs is not available
Problem of enumerating configurations in Cyps
Problem of enumerating “surface” configurations of Cyps

, FACULTY

Configuration space Fo s,

Problem of enumerating “surface” configurations of C,,
* We cannot generally/easy/fast say what are surface/boundary
configurations of Cyps

¢ This precludes combinatorial path planners (e.g., Visibility Graphs,
Voronoi diagrams, Cell-decompositions, .. .) to be used for
high-dimensional C-space

® they require surface/boundary of Cps

Configuration space: example |

Map: 1000 x 700 units

Robot: rectangle 20 x a units
°*g=(xy,9) I I

C visualized for 0 < ¢ < 27
* p=0—->EE =27

a=1 a=100

FACULTY

Configuration space: example || Fo i

* Map: 2000 x 1600 units
° q:(X)ya(p))
e Cvisualized for 0 < p < 27 ‘

c o=0—>mm < p=27 «

L

A: rectangle 20 x 100 units A: equilateral triangle, side 100 units
(right-bottom “hole” caused by rendering clip)

Configuration space: example |

Map: 5000 x 3000 units

q:(xv}’aSO)
C visualized for 0 < ¢ < 27
* p=0->mm < =27

m

A: rectangle 20 x 100 units A: “u”-robot

|

Why is search in C-space challenging o e

G
CTU IN PRAGUE

e (C-space is usually high-dimensional in practical applications
e Discretization not reasonable due to memory/time limits

¢ Non-trivial mapping between the shape of robot A and obstacles O
e Simple obstacles in YW may be quite complex in C

¢ Narrow passages (we will discuss later)

Early methods (combinatorial path planners)

¢ Designed for 2D/3D workspaces for point robots, complete, optimal
(some), deterministic

¢ Limited only to special cases
¢ In late 1980s, these methods have became impractical

But general path/planning requires search in C-space!

¢ If you are desperate, flip a coin — randomization!

Milestones in motion planning PR Eimen | S e

CTU IN PRAGUE GROUP

¢ Dijkstra’s algorithm, 1959

e A*, 1968

e Configuration space, 1983

¢ Era of combinatorial planning, 1980s—1990s

* First planners using randomization, early 1990s
¢ Probabilistic roadmaps (PRM), 1995

¢ Rapidly-exploring Random Tree (RRT), 1998

@ Dijkstra, E. W. “A Note on Two Problems in Connexion with Graphs”, Numerische Mathematik
1, no. 1 (December 1959): 269—71.

@ P. E. Hart, N. J. Nilsson and B. Raphael, “A Formal Basis for the Heuristic Determination of
Minimum Cost Paths,” in IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2,
pp. 100-107, July 1968,

@ |ozano-Perez, “Spatial Planning: A Configuration Space Approach,” in IEEE Transactions on

Computers, vol. C-32, no. 2, pp. 108-120, Feb. 1983,

MULTI-ROBOT

QU &

OF ELECTRICAL
ENGINEERING
CTU IN PRAGUE

FACULTY

e

Milestones in motion planning

Publications with "sampling-based [path|motion] planning"

500
450
400
350
300
250
200
150
100

50

Early randomized planners | ¥ e

¢ Randomized path planner (RPP), 1991

® Discrete workspace

Several potential fields for different control points of the robot
Gradient descent (GD) is performed for a selected point

If the goal is reached, the algorithm terminates

Otherwise, a different control point is selected and GD continues
there

The escape from a local minimum is performed by a random walk

@ J. Barraguand and J.-C. Latombe. Robot motion planning: a distributed representation
approach. International Journal on Robotics Research, 10(6):628-649, 1991.

Early randomized planners |l

e 777 planner (1990)

® Uses two planners: global and local
® Global planner randomly places random goals in Cyee
® |ocal planner uses potential field to connect these goals

@ B. Glavina. Solving findpath by combination of goal-directed and randomized search. In IEEE
International Conference on Robotics and Automation (ICRA), 1718-1723, 1990.

Early randomized planners lll

¢ Ariadne’s clew algorithm (1998)

Two phase tree-based planner
Exploration phase: adds new configuration to tree rooted at g
Search phase: attempts to connect known (tree) configuration to

qgoal
Both phases are solved using a genetic algorithm

@ E. Mazer and J. M. Ahuactzin and P. Bessiere; The Ariadne’s Clew Algorithm, Journal of
Artificial Intelligence Research, vol 9, 1998, 295-316

Early randomized planners IV

e Horsch planner (1994)

® The first roadmap-based approach: generate random samples in
Cfree

® Connect samples by straight-line if possible

e [f the roadmap is disconnected, a random ray is shoot from one of
its vertices

® A contact configuration is added to the roadmap and connected
with its nearest neighbors

@ Horsch, T. and Schwarz, F. and Tolle, H.; Motion planning with many degrees of
freedom-random reflections at C-space obstacles; IEEE International Conference on Robotics
and Automation (ICRA), 1994

Sampling-based motion planning | F e

CTU IN PRAGU

Main idea: . Wespace q
* Cis randomly sampled . - &
e Each sample is a configuration g € C g;n
® The samples are classified as free (q € Ciee) OF -

non-free (g € Cops) Using collision detection

* Free samples are stored and connected, if possible, by a “local planner”
* Result of sampling-based planning is a “roadmap” — graph

e The roadmap is the discretized image of Cee

¢ Graph-search in the roadmap

Qinit . Qinit g
. u . goal goal
[]
L — —
° []
® °
° °

Sampling Roadmap Path

G
CTU IN PRAGUE

Sampling-based motion planning Il Fo 8B

e Sampling-based planning can solve any problem formulated using
C-space
v/ Robots of arbitrary shapes

® Robot shape is considered in collision detection
¢ Collision detection is used as a “black-box”
e Single-body or multi-body robots allowed

v/ Robots with many-DOFs

® Because the search is realized directly in C-space
® Dimension of C is determined by the DOFs

v Kinematic, dynamic and task constraints can be considered
* |t depends on the employed local planner

Local planner

e Given configurations g € Cgee and gp € Crree, the local q
planner attempts to find a path 7 f‘ b
7 [0, 1] = Ciree v

such that 7(0) = gs and 7(1) = g»

7 must be collision free!

Control-theory approach: special cases

e We can assume that g, and g, are “near” without obstacles
® Two-point boundary value problem (BVP)

e Local planner is designed as a controller

e But problems are with obstacles!

Generally:

¢ The definition of “local planning” is same as motion planning
— same complexity as motion planning!

Local planners

Exact local planners

® For certain systems, BVP can be solved analytically T q,
e Example: car-like without backward motions — Dubins v
car da
Approximate local planners Exact local planner

* Path 7 connects g, with g, that is near-enough fromq, (hqne\:qb

e Computation e.g. using forward motion model and
integration over time At da

Straight-line local planners Approximate

e Connects g, and gp by line-segment q&ew ,.-".qb
* Check the collisions of the line-segment M
e Connect g, with the first contact configuration gy or da

with gp if no collision occurs Straight-line

e Suitable for systems without kinematic/dynamic
constraints

o, FACULTY
OF ELECTRI

Single query vs. multi-query planning ol B

G
CTU IN PRAGUE

Multi-query methods
e Can find paths between multi start/goal queries U e

® Requires to build a roadmap covering whole Cye.
¢ Probabilistic Roadmaps (PRM) + many derivates m

v good for frequent planning and replanning

X sometimes slower construction Multi-query
. roadmap
Single-query methods
* The roadmap is built only to answer a single start/goal
query 9init
® The sampling of C terminates if the query can be
answered
¢ Tree-based planners: Rapidly-exploring Random Trees Fgou
(RRT), Expansive-space Tree (EST) + their variants Single-query
v Practically faster for single-query roadmap

X Any subsequent planning requires novel search of C
X Slow for multi-query planning

Probabilistic Roadmaps (PRM) &

¢ Two-phase method: learning phase and query phase

Learning phase

* Random samples are generated in C
e Samples are classified as free/non-free; free samples

7]

are stored Learning phase
e Each sample is connected to its near neighbors by a it 70l
local planner
¢ Final roadmap may contain cycles
Query phase: o o
. . Query phase
* Answers path/motion planning from G € Cpree tO @ y p
init gOﬂl
qgoal S Cfree }

® Qi and ggoal are connected to their nearest neighbors in
the roadmap (using local planner)

o o °
[]
e Graph-search of the roadmap MR
Path
@ L. E. Kavraki, P. Svestka, et al., "Probabilistic roadmaps for path planning in high-dimensional

configuration spaces,". IEEE Trans. on Robotics and Automation, 12(4), 1996.

O S

Original PRM o e

ENGINEERING
CTU IN PRAGUE

¢ Simultaneous sampling + roadmap expansion

® Qung IS CcONNnected to each graph component only once
* Roadmap is a tree structure

V=0,;E=0
G=(V,E)
while |V| < ndo
Grand = generate random sample in C
if Qrana is collision-free then
G.addVertex(Qgrand)
foreach g € V.neighborhood* (Grana) do

if not G.sameComponent(Qiana, q) A connect(Qand,q)
then

| G.addEdge(grand; G)

// vertices and edges
// empty roadmap

© N O G AWM =

©

® neighborhood* returns q by increasing distance from Qg

@ L. E. Kavraki, P. Svestka, et al., "Probabilistic roadmaps for path planning

in high-dimensional configuration spaces,". IEEE Trans. on Robotics and
Automation, 12(4), 1996.

O S

Simplified PRM (sPRM) FoS Eitmen

CTU IN PRAGUE

e Separate sampling and roadmap connection

[] [] [] °

[] []

e Each node is connected to its nearest neighbors g e,

[]

¢ Roadmap can contains cycles o @
[] .. [] []

1 V=0E=0 // vertices and edges
2 while |V| < ndo // generating n collision-free ® e’ o
samples ° e g
3 Grana = generate random sample in C ié ° . S o
4 if Qrana IS collision-free then 7 v @
5 L V=Vu {qmnd}
- []
6 forecachv e Vdo // connecting samples to roadmap e o .
7 Vi, = V.neighborhood(v) A
8 foreach u € Vp, u # v do ® 9 o. %
9 if connect(u, v) then // local planner @ v
10 | E=Eu{(uv)}
L e %% o o
1 G=(V,E) // final roadmap

@ S. Karaman, and E. Frazzoli. "Sampling-based algorithms for optimal @
motion planning." The international journal of robotics research 30.7 (2011):

846-894.

sPRM: variants and properties ok

G
CTU IN PRAGUE

e Behavior of sPRM is mostly influenced by V.neighborhood function
® Several variants were proposed an analyzed

k-nearest sPRM (aka k-sPRM)

e V.neighborhood provides k nearest neighbors from Qg
* Probabilistically complete if k # 1

¢ |s not asymptotically optimal

e Usually k =15

Variable radius sPRM

® V.neighborhood returns nearest neighbors of .., within a radius r
e The choice of r influences completeness and optimality of sSPRM
® Most important — PRM* planner

MULTI-ROBOT
SYSTEMS.
GROUP

Q0
)

OF ELECTRICAL
ENGINEERING
CTU IN PRAGUE

FACULTY

sPRM example 2D W

FacuLTY Q

sPRM example 3 s

CTU IN PRAGUE

{

start/goal - /n =100

n = 1500 n = 8000 = 50000

The wall contains one window, but no path found with 50k samples

FACULTY

sPRM example 3 e | oS

CTU IN PRAGUE GROUP

start/goal

n=4100 solution

Rapidly-exploring Random Tree (RRT) P Eimen |)

CTU IN PRAGUE GROUP

1 initialize tree T with G
¢ Incremental search of C it

2 fori=1,..., Inax do
e Collision-free configurations 3 | Guna = f?’egerate ratndog"Y Ir']TCt ’
. = TINd nearest noae In owards
are stored in tree 7 * q“;“ ;
ran

e T is rooted at gini, 5 Ghew = localPlanner from grear towards

. qrand
* Tree is expanded towards 6 if canConnect(gnear, Ghew) then
random samples Qg 7 T .addNode(Ghew)
. . 8 T .addEdge(gnear; Gnew)
(] .
The search terminates if tree | if 0(Ghew, Qgoal) < dgoas then

is close enough 0 Qgoa1, OF 10 | return path from Ginic t0 Ggoal
after Inax iterations

init init Srand | [Gipie dpew— Jrand
9goal 9goal e 9 goal
L] L] L]
q near q near
Tree Sampling Tree extension

@ LaValle:, S. M. Rapidly-exploring random trees: a new tool for path planning". Technical
report, lowa State University, 1998

RRT example in 2D W o

CTU IN PRAGUE

e 2D robot, rotation allowed — 3D C
e Why the tree does not “touch” the obstacles?

RRT example in 2D W o

CTU IN PRAGUE

RRT example in 2D W

RRT example in 2D W

RRT example in 2D W

RRT example in 3D W FoS Eitmen

CTU IN PRAGUE

¢ 3D Bugtrap benchmark

parasol.tamu.edu/groups/amatogroup/benchmarks/
e 3D robot in 3D space — 6D C

parasol.tamu.edu/groups/amatogroup/benchmarks/

RRT example in 3D W e

G
CTU IN PRAGUE

¢ 3D Flange benchmark
parasol.tamu.edu/groups/amatogroup/benchmarks/

¢ 3D robot in 3D space — 6D C

parasol.tamu.edu/groups/amatogroup/benchmarks/

RRT example in 3D W o

CTU IN PRAGU

parasol.tamu.edu/groups/amatogroup/benchmarks/

RRT example in 3D W FoS Eitmen

CTU IN PRAGUE

RRT: tree expansion types

Straight-line expansion: make the line-segment S from
Ghear to Qrand

Variants:

A If Sis collision-free, expand the tree only by
Ghew = Qrand
® Creates long segments, fast exploration of C
® Requires nearest-neighbor search to consider
point-segment distance
® Requires connection in the middle of
line-segment

B If Sis collision-free, discretize S and expand the tree
by all points on S

* Most used, enables fast nearest-neighbor search

C Find configuration gn.w € S at the distance ¢ from
Ghear- EXpand tree by qu.y if it's collision-free

® Basic RRT, slower growth than B
® Enables fast nearest-neighbor search

MULTI-ROBOT
SYSTEMS.
GROUP

init
9near q goal
. L]
- .q rand
Byt A
9ear q goal
L]
Arand =Y new
Qinit B
9pear (3 goal
/!
q neﬁx Jrand ,L
Qinit C
9near q goal
L]
new b'-.qrand —

RRT: properties

RRT builds a tree T of collision-free configurations
T is rooted at gy,

T is without cycles

Path from Ginit 10 Qgour:

* Find nearest node g, € 7 towards Qo
* Start at g, and follow predecessors to Gii

Existing 7 can answer queries starting at Qi

e if goal is not in/near current 7, 7T is further grown
Non-optimal
Probabilistically complete

Why the tree does not grow to itself?
Why does it “rapidly” explore the C-space?
...because of Voronoi bias!

FACULTY

RRT: Voronoi bias | Jo s

¢ RRT prefers to expand 7 towards unexplored areas of C
e This is caused by Voronoi bias:

® Qg IS generated uniformly in C

® T is expanded from nearest node in 7 towards
Qrand

* The probability that a node g € T is selected for the
expansion is proportional to the area/volume of it’s
Voronoi cell

e Voronoi bias is implicit (caused by the nearest-rule selection)

FACULTY

RRT: Voronoi bias | Jo s

¢ RRT prefers to expand 7 towards unexplored areas of C
e This is caused by Voronoi bias:

® Qg IS generated uniformly in C

® T is expanded from nearest node in 7 towards
Qrand

* The probability that a node g € T is selected for the
expansion is proportional to the area/volume of it’s
Voronoi cell

e Voronoi bias is implicit (caused by the nearest-rule selection)

FACULTY

RRT: Voronoi bias | Jo s

¢ RRT prefers to expand 7 towards unexplored areas of C
e This is caused by Voronoi bias:

® Qg IS generated uniformly in C

® T is expanded from nearest node in 7 towards
Qrand

* The probability that a node g € T is selected for the
expansion is proportional to the area/volume of it’s
Voronoi cell

e Voronoi bias is implicit (caused by the nearest-rule selection)

RRT: Voronoi bias Il o

CTU IN PRAGUE

¢ Nearest-neighbors/Voronoi bias do not respect obstacles!

¢ |f a node having large Voronoi cells is near an obstacle — tree
expansion is blocked at this node

iteration 10, tree size 10 iteration 70, tree size ~ 60

e Tree grows well until iteration 70
Yellow: areas with high prob. of being selected for expansion

e Green: areas that show be selected for expansion so the tree can
escape the obstacle

e The tree does not expand much until iteration 300!

RRT: Voronoi bias Il o

CTU IN PRAGUE

¢ Nearest-neighbors/Voronoi bias do not respect obstacles!

¢ |f a node having large Voronoi cells is near an obstacle — tree
expansion is blocked at this node

fa I

Y
iteration 70, tree size ~ 60 iteration 300, tree size ~ 100

e Tree grows well until iteration 70
Yellow: areas with high prob. of being selected for expansion

e Green: areas that show be selected for expansion so the tree can
escape the obstacle

e The tree does not expand much until iteration 300!

Expansive-space tree (EST)

¢ Builds two trees 7; and Ty (from Ginic and Qgoa1)

¢ Weight w(q) is computed for each configuration g

* Nodes are selected for expansion with probability w(qg)~"
e Expansion of one tree T

q’ = select node from 7~ with probability w(q)~"
Q = k random points around
q : Q={q € Cec|o(g,q') < d}
foreach g € Q do
w(qg) = compute weight of the sample g
if rand() < w(q)~" and connect(q, ') then
T .addNode(q)
T .addEdge(q’, q)

[

~ o o & w

w(q) is the number of nodes in 7 around q
Both 7; and 74 grow until they approach each other

* Trees are connected using local planner between their
nearest nodes

@ D. Hsu, J.-C. Latomber et al. Path planning in expansive configuration
spaces. Int. Journal of Comp. Geometrv and Applications. 9(4-5). 1999

pairs for tree
connection

5, FACULTY

Asymptotically optimal RRT*and PRM* Fo B

e PRM/RRT/EST do not consider any optimality criteria

e Only sPRM is asymptotically optimal

e PRM* and RRT* are new planners for which asymptotic optimality was
proven

RRT RRT*

@ S. Karaman, and E. Frazzoli. "Sampling-based algorithms for optimal motion planning.” The
international journal of robotics research 30.7 (2011): 846-894.

PRM*: overview Feks Hite

G
CTU IN PRAGUE

e PRM* is an improved version of sSPRM

e PRM* uses “optimal” radius r(n) for searching the nearest neighbors
depending on the actual number of nodes n:

r(n) = ’YPFIM(M> :

n

1 1
1 I Cree a
YPRM > VPRM = 2<1 + —) <M>
d Ca

d is the dimension of C

1(Criee) is the volume of Cyree

(g is the volume of the unit ball in the d—dimensional Euclidean space
r decays with n

r depends also on the problem instance! — why?

PRM* algorithm

e Same as for sPRM, just the line 7 is changed to:
Vi, = V.neighborhood(v, r(n)), where n = | V]|

k-nearest PRM* § B

G
IN PRAGUE

e Variant of PRM* that uses k-nearest neighbors definitions
k = kpru |0g(n)
. 1
keam > Kppy = € <1 + c_1>

® The constant kjg,, depends only on d and not on the problem instance
(compare it to vpg,)

® kpgy = 2eis a valid choice for all problem instances
k-nearest PRM* algorithm (aka k-PRM*)

e Same as for sSPRM, just the line 7 is changed to:
V,, = k—nearest neighbors from V, k = Kpgy log(n)

RRT*: overview o e | s

T IN PRACUE

e Optimal version of RRT @:‘}@w
o i [l

houp

For each node, a cost of the path from g, to that node is o) rand
established init =
e RRT* has improved tree expansion and ’@:ﬁmw
nearest-neighbor search " g
Yinit

* Tree expansion by node Gew 7
® Parent of Qe is Optimized to minimize cost at Quew @'qnew
* After qu.w is connected to tree, node it its vicinity are ; S
“rewired” via g,y if it improves their cost Yinic

e Nearest-neighbor search @/‘inew

* Number of nearest-neighbors varies similarly to)
PRM* init

@ S. Karaman, and E. Frazzoli. "Sampling-based algorithms for optimal motion planning." The
international journal of robotics research 30.7 (2011): 846-894.

O S

RRT*: algorithm o

CTU IN PRAGUE

1 initialize tree T with gy

2 fori=1,...,Imax do) new

3 Qrand = generate randomly in C Ypand

4 Qnear = find nearest node in 7 towards Qung Q)

5 Gnew = localPlanner from Guear towards Grang - . -

6 if Quew is collision-free then M

7 Qnear = T .neighborhood(guew, 1) ~ Gy

8 T .addNode(gnew) // new node to tree 5

9 Qbest = Ghear // best parent of Qnew so far) - Qnéar

10 Cpest = COSt(Qnear) + cOSt(line(Qnear, Gnew)) init

1 foreach g € Qnear do line 7

12 ¢ = cost(q) + cost(line(q, Gnew) e

13 if canConnect(q, guew) @and ¢ < Cpest then .@E@w

14 Qest = q // new parent of Gnew is q

15 Chest = C // its cost 9

16 T .addEdge(gbest, Gnew) // tree connected to M
qnew q.

17 foreach g € Qnear do // rewiring @K—?W

18 ¢ = COSt(Gnew) + COSt(/iN€(Gnew, q)) S

19 if canConnect(guew, q) and ¢ < cost(q) then Yinit

20 L change parent of g to Gnew lines 17—20

RRT* with variable neighborhood e i

G
CTU IN PRAGUE

® cost(line(qy, q) is cost of path from gy to g- (path by the local planner)
® cost(q),q € T is cost of the path from g, to g (path in T)

* nearest neighbors Qpesr are searched within radius r depending on the
number of nodes n in the tree:

r = min {vﬁnr(loggn)> ;7’7}

1) u(cﬁee))é
rrr =21+ =
YRRT (d) < Ca

® dis the dimension of C

® 1(Cree) is the volume of Cee

® (4 is the volume unit ball in the d—dimensional Euclidean space
® 7 is constant given by the used local planner

e rdecays with n

e r depends also on the problem instance

RRT*with variable k-nearest neighbors & &z

CTU IN PRAGUE

Alternative k-nearest RRT* (aka k-RRT*)
® k-nearest neighbors are selected for parent search and rewiring

k= kRRT |Og(n)
. 1
kRRT > kFIFlT =e (1 + a)
® nis the number of nodes in 7

* k-RRT* has same implementation as RRT* just line 7 is changed to
Qnear = find k nearest neighbors in 7 towards Guew

FACULTY

RRT*: example in 2 e

Rectangle robot, rotation allowed — 3D C

RRT*: example in 2D W i | 8 s

T IN PRACUE

2D rectangle robot — 3D C. The colormap shows the path length from @,;.-
But is it really good?

RRT*: example in 2D W

2D rectangle robot — 3D C

Depicted path demonstrates the slow convergence of the path quality

RRT*: example in 2D W 88 SiEmen

CTU IN PRAGUE

o, FACULTY
OF ELECTRI

Overview of sampling-based planners Foé S | R

Probabilistic = Asymptotic

Algorithm completeness optimality
RRT Yes No
PRM Yes No
sPRM Yes Yes
k-sPRM No if k = 1 No
PRM* / k-PRM* Yes Yes
RRT* / k-RRT* Yes Yes

¢ |f you don’t need optimal solution, stay with RRT/PRM
¢ RRT is faster than RRT*
¢ RRT is way easier for implementation than RRT* (if we need an efficient
implementation)
e Path quality of RRT can be improved by fast post-processing
e Asymptotic optimality is just asymptotic!
— slow convergence of path quality

CTU IN PRAGUE

Lecture summary p Hiimen

Sampling-based planning randomly samples C

Samples are classified as free/non-free, free samples are stored

Multi-query vs. single-query planners
PRM/RRT/EST and their optimal variants PRM* and RRT*

