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The art of motion planning

@ Continuous space

Robot+map ) o
Discretization
Point/disc robot, 2D/3D map Arbitrary robots/maps
No contraints/dynamics/kinematics constraints/kinematics/dynamics

Combinatorial Sampling—based

motion planning

motion planning

Complete Probabilistic complete
Graph

Dijkstra, A*, BFS, ...
Graph—search methods

Solution (path/trajectory)
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Combinatorial (geometric) path planning & &

T IN PRACUE

* Assume point/disc robots
e Use geometric (usually polygonal) representation of W

* In these cases, representation of W is also
representation of C

* The representation is explicit — enumeration of
obstacles is easy

e Voronoi diagram, Visibility map, Decomposition-based
methods

Point robot in 2D or 3D W

* The map of W is also representation of C
® Polygons/polyhedrons are suitable

Disc/sphere robot in 2D or 3D W

* The obstacles are “enlarged” by radius of the robot
(Minkowski sum)

¢ Then, representation of W is also representation of C
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Visibility graph PR B | SRS e

CTU IN PRAGUE GROUP

* Two points v;, v; are visible <= (sv; + (1 — 5)V}) € Cee, S € (0,1)

e Visibility graph (V, E), V are vertices of polygons, E are edges
between visible points

e Start/goal are connected in same manner to visible vertices

Visibility graph After connecting start/goal + path

* No clearance
e Suitable only for 2D



Visibil Ity graph (VG) RS shezmen 8“8

CTU IN PRAGUE GROUP

e Straightforward, naive implementation O(n®)

Input: polygonal obstacle
Output: visibility graph G = (V, E)

1V = all vertices of polygonal obstacles o pairs of vertices

2 foreach u,v € V do . .

3 foreach obstacle edge e do e Complexity of checking
4 if segment u, v intersects e then one intersection is O(n)
5 | continue;

— Total complexity O(n®)
6 add edge u,vto E

Fast methods

e Lee’s algorithm O(n? log n)
e Overmars/Welz method O(n?)
® Ghosh/Mount method O(|E|nlog n)

@ | ee, Der-Tsai, Proximity and reachability in the plane, 1978
@ D. Coleman, Lee’s O(n2 log n) Visibility Graph Algorithm Implementation and Analysis, 2012.

@ M. H. Overmars, E. Welzl, New methods for Computing Visibility Graphs, Proc. of 4th Annual
Symposium on Comp. Geometry, 1998

@ S. Ghosh and D. M. Mount, An output-sensitive algorithm for computing visibility graphs, SIAM
Journal on Computing, 1991
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® Let P=v4,...,Vv,are ndistinct points (“input sites”) in a d—dimensional
space

* Voronoi Diagram (VD) divides P into ncells V(p;)

V(p) = {x € R?: ||lx — pil| < |lx = pjl| Vj < n}

e Cells are convex
e Used in point location (1-nn search), closest-pair search, spatial analysis
e Construction using Fortune’s method in O(nlog n)

@ S. Fortune. A sweepline algorithm for Voronoi diagrams. Proc. of the 2nd annual composium
on Computational geometry. pages 313-322. 1986.
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CTU IN PRAGUE

® Let P=v4,...,Vv,are ndistinct points (“input sites”) in a d—dimensional
space
* Voronoi Diagram (VD) divides P into ncells V(p;)

V(p) = {x € R?: ||lx — pil| < |lx = pjl| Vj < n}

¢ Note, that other metrics can be considered
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Voronoi diagram in robotics o8 Edime

CTU IN PRAGUE

¢ (Basic) Voronoi diagram: computed on points

¢ Generalized Voronoi Diagram: computed on e.g., points
+ weights, segments, spheres, ...

Segment Voronoi Diagram (SVD)

e computed on line-segments describing obstacles Classic VD
e requires polygonal map or line/segment map
v/ Maximal clearance

® |argest distance between a path and the nearest

obstacle :
e [s it optimal? Is it complete? Weighted VD
Q0

Segment VD




Segment Voronoi diagram: complexity /& &z |86 s

T IN PRACUE

L RoBoT

houp

Algorithms for computing Segment Voronoi diagram of n segments

* Lee & Drysdale: O(nlog? n), no intersections
e Karavelas: O((n+ m)log® n), mintersections between segments

Karavelas 2004

@ Karavelas, M. |. "A robust and efficient implementation for the segment Voronoi diagram."
International symposium on Voronoi diagrams in science and engineering. 2004

@ Lee, D. T, R. L. Drysdale, Ill. "Generalization of Voronoi diagrams in the plane." SIAM
Journal on Computing 10.1 (1981): 73-87.
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Voronoi diagrams in bioinformatics M i | S

Proteins are modeled using hard-sphere model

Weighted Voronoi diagram of the spheres (weight is the atom radii —
Van der Waals radii)

Path in the Voronoi diagram reveals “void space” and “tunnels”

Tunnel properties (e.g. bottleneck) estimate possibility of interaction
between protein and a ligand

E,
Tunnels* Voronoi diagram *

Tunnels on 1BL8

* @ A. Pavelka, E. Sebestova, B. Kozlikova, J. Brezovsky, J. Sochor, J. Damborsky, CAVER:
Algorithms for Analyzing Dynamics of Tunnels in Macromolecules, IEEE/ACM Trans. on compt.
biology and bioinformatics, 13(3), 2016.



www.youtube.com/watch?v=YH1BD7kKgKw




@ Zhou, Dingjiang, Zijian Wang, Saptarshi Bandyopadhyay, and Mac Schwager. Fast, On-Line

Collision Avoidance for Dynamic Vehicles Using Buffered Voronoi Cells. IEEE Robotics and
Automation Letters, (2), 2017.
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CTU IN PRAGUE GROUP

* One of first analysis was Cholera epidemic in London
e Often used in criminology

@ Melo, S. N. D., Frank, R., Braﬁtingham, P. (2017). Voronoi diagrams and spatial analysis of
crime. The Professional Geographer, 69(4), 579-590.




Voronoi diagram in computer graphics Fo B
e Used in many low-level routines (e.g., point location)
* Modeling fractures
® Object is filled with some random points
* VD is computed to provide set of convex cells
* |nteraction between cells can be modeled e.g. using rigid body
dynamics

www.youtube.com/watch?v=FIPu9_OGFgc



Decomposition-based methods

* The free space is partitioned into a finite set of cell
® Determination of cell containing a point should be trivial
® Computing paths inside the cells should be trivial

* The relations between the cells is described by a graph

Vertical cell decomposition
* Make vertical line from each vertex, stop at obstacles
e Determine centroids of the cells, centers of each segments
e Graph connects the neighbor centroids through the centers
Connect start/goal to centroid of their cells
Can be built in O(nlog n) time

"’
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¢ Variant of decomposition-based methods

® Cree is triangulated

e Can be computed in O(nloglog n) time

® Polygons can be triangulated in many ways
® Crec iS represented by graph G = (V, E)

® V are centroids of the triangles
* E = (&) if Ajis neighbor of A;

Or

e V are vertices of the triangulation
® E are edges of the triangulation

* Planning: start/goal are connected to graph, then
graph search



Decomposition via triangulation

® Finer triangulation via Constrained Delaunay Triangulation (CDT)
e if a triangle does not meet a criteria, it is further triangulated

e criteria: triangle area or the largest angle
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Decomposition via triangulation 1| itmen | S

® Finer triangulation via Constrained Delaunay Triangulation (CDT)

e if a triangle does not meet a criteria, it is further triangulated
e criteria: triangle area or the largest angle
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CDT in civil engineering Fep B |l oo

e Structural analysis: modeling behavior of a structure under load, wind,
pressure, ...
¢ Finite element method




Navigation functions ¥ e
e |et’'s assume a forward motion model
q=1(q,u)

where q € C and u € U; U is the action space
* The navigation function F(q) tells which action to take at q to reach the
goal

Example: robot moving on grid, actions & = {—,+,1,], e}

'

Discrete planning problem Navigation function

¢ In discrete space, navigation f. is a by-product of graph-search methods
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Wavefront planner Fog Eitimen

¢ Simple way to compute navigation function on discrete space X
Explores X in “waves” starting from goal until all states are explored

1 open = {goal}
: ‘l,,,h"?e open # 0 do * N(x) are neighbors of x
4 wave =0  // new wave ® 4-/8-point connectivity
5 foreach x € open do . .
6 value(x) = i ® The increase of the wave value i
7 foreach y € N(x) do should reflect the distance
8 "t}r" is not explored between x and its neighbors
en
9 | addy to wave e Path is retrieved by gradient
descend from start
10 f=i+1 ® O(n) time for nreachable states
1 | open= wave
7776555
6 666544
55 3
2 2(%2| (4 4]es|2 2|82
111 111 2)(43)®1/1/1[2
0 101 2101 2[|4321012
111 20111 2|[43 21112
goal state i=1 =2 i=7



Wavefront planner




Potential field: principle

e Potential field U: the robot is repelled by obstacles and
attracted by Ggoa
e Attractive potential Uy, repulsive potential Uyep

e Weights Ka: and Kiep, d is the distance to the nearest ’ oo
obstacle, ¢ is radius of influence L~

{ %K,ep(‘l/d— 1/0)2 ifd<op
0

otherwise

1 .
Uan(q) = éKattd/St(q; qgoal)2 Urep(q) =

e Combined attractive/repulsive potential

U(q) = Uatt(q) + Urep(q)
* Goal is reached by following negative gradient —VU(q)
¢ Gradient-descend method

@ Y. K. Hwang and N. Ahuja, A potential field approach to path planning, IEEE Transaction on
Robotics and Automation, 8(1), 1992.



Potential field: parameters

g » NN

Katt > Krep, NO repulsion

optimal settings



Potential field: local minima problem feé e

¢ Potential field may have more local minima/maxima
e Gradient-descent stucks there

potential field gradient-descent to minimum

e Escape using random walks

¢ Use a better potential function without multiple local minima — harmonic
field
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CTU IN PRAGUE GROUP

e Harmonic field is an ideal potential function: only one extreme

Harmonic field Paths from various Qiit

Images by J. Magak, Multi-robotic cooperative inspection, Master thesis, 2009



Potential field: summary

Usually computed using grid or a triangulation of the W
Suitable for 2D/3D C-space

® memory requirements (in case of grid-based
computation)

® requires to compute distance d to the nearest
obstacle in C!

® Parameters Ka, Krep and o need to be tuned
Problem with local minima — harmonic fields



But how to really find the path? P S

So far we know Continuous space
o C—space

¢ Visibility graphs, Voronoi diagrams,
Decomposition-based planners
¢ Navigation functions & Potential fields

What they do? V

¢ Discretize workspace/C-space by “converting” it Discretization
to a graph structure o .

* The graph is also called roadmap

¢ The roadmap is a “discrete image” of the
continuous C-space

¢ The path is then found as path in the graph

Graph-search

® Breath-first search
¢ Dijkstra
e A*, D* (and their variants)




Graph search: Dijkstra’s algorithm

¢ Finds shortest path from s € V (source) to all nodes
e dist(v) is the distance traveled from the source to the
node s; prev(v) denotes the predecessor of node v

1 Q=90

2 forv e Vdo

3 prev[v] = -1 // predecessor of v
dist[v] = co // distance to v

dist[s] =0
addallve Vio Q
while Q is not empty do
u = vertex from Q with min dist[u]
remove u from Q
foreach neighbor v of u do

dv = dlSl‘[u] + dLI,V

if dv < dist[v] then

L dist[v] = dv

© 0o N o o »n

a a2 oA =
A W N = O

prev[v] =u

e Path fromv — s: v, pred|v], pred[pred|v]],...s
@ Dijkstra, E. W. "A note on two problems in connection with graphs." Numerische mathematik
1.1 (1959): 269-271.



Completeness and optimality

Visibility graph
e Complete and optimal

Voronoi diagram, decomposition-based method
e Complete, non-optimal

Navigation function

e Complete
e Optimal for Wavefront/Dijkstra/-based navigation functions

Potential field
e Complete only if harmonic field is used (one local minimal!)
Consider the limits of these methods!

¢ Point/Disc robots, low-dimensional C-space

@ E. Rimon and D. Koditschek. "Exact robot navigation using artificial potential functions." IEEE
Transactions on Robotics and Automation, 1992.
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Optimality of planning methods fits Stimen

CTU IN PRAGU

Do we always need optimal solution?
* No! in many cases, non-optimal solution is fine

* e.g. for assembly/disassembly studies, computational biology
* generally: if the existence of a solution is enough for subsequent
decisions

¢ inindustry:
® scenarios, where robot waits due to mandatory technological

breaks
® e.g., in robotic welding and painting




Optimality of planning methods W

When to prefer optimal one?

* Repetitive executing of the same plan
e Benchmarking of algorithms

It is necessary to carefully design the criteria!

Shortest path vs. fastest path vs. path for good spraying



Summary of the lecture § e | s) oo

* Motion planning: how to move objects and avoid obstacles
¢ Configuration space C
¢ Generally, planning leads to search in continuous C
* But we (generally) don’t have explicit representation of C
* We have to first create a discrete representation of C
¢ and search it by graph-search methods
e Special cases: point robot and 2D/3D worlds
* Explicit representation of W is also rep. of C
® Geometric planning methods: Visibility graph, Voronoi diagram,

decomposition-based
¢ Also navigation functions + potential field



