Localization: MAP in SE(3)

Karel Zimmermann




Problem definition

Complete states: xg, X1,...,Xs € R"” Algorithm: U1 = T(Z1.4, Uy:t)

Actions: uj,...,U; € R™ Rewards: ry = T(Xt_l, U, Xt) cR

Measurements: Z1,...,2¢t €R Criterion:  J, = E,.,{ Z Vird € R
T+ T

Goal: 7 = argmax J,

. (X,
Algorithm: Zp, 1,21, ... => estimate p(x:|Z1.¢, uy.¢) =>"decide following action u¢y1
perception (local, SLAM, object detection) control (planning, RL, opt.control
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Problem definition

States: X0, X1,...,Xt €ER" .... 6DOF robot’s poses (no map for now)
Actions: up,...,u € R™ .... generated by external source
Measurements: Z1.....2; € RF .... comes from variety of sensors

Goal: o estimate most probable X,...X,
© Or just X,
o or full d|str|but|on p(X,) or even p(X,...

© 9 9 S
© ©090%¢



Sensors for localisation (odometry)

Motor encoders (wheel/joint position/velocity)

Accelerometer (linear acceleration)

Gyroscope (angular velocity)

Magnetometer (angle to magnetic north)

IMU: Accelerometer+Gyroscope+Magnetometer (9DOF measurements




Sensors for localisation (exteroceptive)

Camera (RGB images - spectral responses projected on image plane)

Stereo camera

Lidar

Satelite navigation (GPS/GNSS)

SONARDYNE beacons




Sensor measurements

o Noise characteristic (GPS vs camera tor localisation)
o Operates in its own coordinate frame

o Spatiotemporal (and spectral) resolution
(I.e. number of pixels/channels in image, number of measurements per second)

o Absolute/relative measurements wrt a reference coordinate frame
(e.g. GPS/IMU) and integrating the relative measurements does not work!

Consequence: Need a reasonable probabillistic approach that fuses all
measurements in order to estimate the most probable pose(s)



Localisation problem definition
Previous lecture only 1D/2D translations (no rotations)

States: X0, X1, ... X; € R" .... BD@E. robot’s poses (no map for now)
Actions: ug,...,u; € R™ .... generated by external source
Measurements: Z1,...,2Z4 € Rk .... comes from Variety of sensors
Unknown 1. Construct p(x|z)
. >x< _ —_— . .
MAP: x* = arg mSXp(X |z,u) = arg Q?ti-lﬁl...zt, @2 Optimize poses

Given this




Localisation problem definition
Today only 2D translations + 1D rotation

States: X0, X1, ... X; € R" .... BD@E. robot’s poses (no map for now)
Actions: ug,...,u; € R™ .... generated by external source
Measurements: Z1,...,2Z4 € Rk .... comes from Variety of sensors
Unknown 1. Construct p(x|z)
MAP: x* = arg mSXp(X |z,u) = arg gl.?;é-,@lmzt’ @2 Optimize poses
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Given this




World coordinate frame (wct)




Robot coordinate frame (rct)
.e. pose of robot In wct

World coordinate frame (wct)




Robot coordinate frame (rct)
.e. pose of robot In wct

World coordinate frame (wct)



Robot sees (measures) house inrct , —
.e. pose of house In rct

Robot coordinate frame (rcf) X,
.e. pose of robot In wct

World coordinate frame (wct)



Pose of house In wct:

Zx COS Ht — Sin Ht O Zx xt

W .
2" = |2y | = |sing, cosO Of ||+ |V
29 0 0 1] |z 0,

Robot sees (measures) house inrct , —
.e. pose of house In rcft

Robot coordinate frame (rcf) X,
.e. pose of robot In wct

World coordinate frame (wcf)



Pose of the house transformed from rcf to wct:

r

S e I N RO :
Z° = |% | = |smf cosd O [&] + i | = 0T 1 z' +x, =1(z',Xx)
Zy 0 0 1] |z 0,

Pose of the house transformed from wct to rcf:

.
. [R(é’t) 0

] (2" —x) = T-(z", X,)
0" 1



Localization of robot in wct from known position of the house

Assume that house pose in wct is known m




Localization of robot in wct from known position of the house

Assume that marker pose in wcf is known m

Ay

We assume that robot pose in wef X, = |
Ht




Localization of robot in wct from known position of the house

Assume that marker pose in wcf is known m

Xy
We assume that robot pose in wef X, = |
Ht

Robot measures the house inrct  z

|
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Localization of robot in wct from known position of the house

Assume that marker pose in wcf is known m

Xy
We assume that robot pose in wef X, = |
Ht

Robot measures the house inrct  z

|
C@‘\ ‘<N\ RN\

Marker pose inrcf Z=T"'(m,x,)

Since pose is incorrect z #

Find the correct pose

X, = argmin [|77"(m, x,) — z||?

X;




Localization of robot in wct from known position of the house

Assume that marker pose in wcf is known m

Xy
We assume that robot pose in wef X, = |
Ht

Robot measures the house inrct  z

|
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Marker pose inrcf Z=T"'(m,x,)

Since pose is incorrect z #

Find the correct pose

X, = argmin [|77"(m, x,) — z||?

X;




Localization of robot in wct from known position of the house

Assume that marker pose in wcf is known m

Xy
We assume that robot pose in wef X, = |
Ht

Robot measures the house inrct  z

|
Cgl\ ‘<N\ RN\

Marker pose inrcf Z=T"'(m,x,)

Since pose is incorrect z #

Find the correct pose

x* = argmax ./ (z; T~'(m,x), X)

f
arg min || 7~ (m, x,) — z||2
Xt
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Localization of robot in wct from known position of the house

Assume that marker pose in wcf is known m

—
70,

Xy
We assume that robot pose in wef X, = |
Ht

Robot measures the house inrct  z

|
C@‘\ ‘<N\ RN\

Marker pose inrcf Z=T"'(m,x,)

Since pose is incorrect z #

Find the correct pose

x* = argmax ./ (z; T~'(m,x), X)

f
arg min || 7~ (m, x,) — z||2
Xt
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alization of robot in wct from known position of the house

Marker pose inrcf Z=T"'(m,x,)

Since pose is incorrect z #

Find the correct pose

X} = argmin [|77'(m,x,) — z||3
Xy

1 1/c 0 0O
f X=—-I=]0 1/c 0
- 0 0 1/c
x* =argmin c - |[(T"'(m,x,) — z)||? rcf
= argminc - || T(z,x,) — m||? wCf

X;

Ra
X
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alization of robot in wct from known position of the house

Marker pose inrcf Z=T"'(m,x,)

Since pose is incorrect z #
Find the correct pose

X, = arg min ||77!(m, x,) — z||}
1 1/ec 0 0O
f 2=—-I=10 1/c O
- 0 0 llc
X =argmin c- |[(T"'(m,x,) — z)||*

argminc - ||7(z,X,) — m||°
XZ‘

rct

Wt



Localization of robot in wct from known odometry

Odometry represented by linear+angular velocity
At Xt+1

Robot poses in wcf: X, = || x4, = [V
0, Ort1




Localization of robot in wct from known odometry

Odometry represented by linear+angular velocity

At Xi+1

Robot poses in wef: X, = |Vi| X, = |V
0, Ort1

Z

Robot measures velocity in X-rct: z¥ = |z}

v

<9




Localization of robot in wct from known odometry

Odometry represented by linear+angular velocity

A X141

Robot poses in wef: X, = |Vi| X, = |V
0, Ot 1

Z

Robot measures velocity in X-rct: z¥ = |z}
2

Next pose X,,  in X,-rcf: 2’ =T (x,,,X,)




Localization of robot in wct from known odometry

Odometry represented by linear+angular velocity

At Xi+1

Robot poses in wef: X, = |Vi| X, = |V
0 011

Zy

Robot measures velocity in X-rct: z¥ = | z;
Z

Next pose X,,  in X,-rcf: 2’ =T (x,,,X,)

Since poses are incorrect z’ # Z"

Find the correct poses

*

~, = argmax J(z"; T‘l(xtH,Xt), 2.")

XpXit1 |
p— arg min HT_ (Xt+1’ Xt) o ZV”‘E}:
X.. X, 1

*
X", X




Localization of robot in wct from known odometry

Odometry represented by linear+angular velocity

At X+1

Robot poses in wef: X, = |Vi| X, = |V
0 011

Zy

Robot measures velocity in X-rct: z¥ = | z;
Z

Next pose X, ¢ in X,rct: 2’ =T (x,,,X,)

Since poses are incorrect z’ # Z"

Find the correct poses

*

~, = argmax J(z"; T‘l(xtﬂ,xt), 2.")

XpXii |
p— arg min HT_ (Xt+1’ Xt) o ZVH‘E}:
X.. X, 1

*
X", X




Localization of robot in wct from known marker pose, odometry and GPS

GPS odometry marker

= arg max H p(Z”|x) H p(z;|X,X,_) - H p(z;" | x,, m)

X0s-

= arg max H N (z8%; X,, TE) - H V(@ T N(x,,,,X,), ZV) - H N (@™ T~'(m,x), ="

X0

= arg min Z 1%, =213+ D IT ' X)) =Zl3, + QI 'mx) — 2”3,

X0 -



Straightforward extensions

GPS odometry marker

= arg min Z |x, — zfpsl\%}gps + Z 1771 (x,, 1, X,) — Z}’H%}; + Z |7~ (m, x,) — Zm”%;n
X7
[ [ [

X0 -



Straightforward extensions

GPS odometry marker(s)
= arg min 2 1%, — 28|30 + Z 1T (% x) = 2113, + ZZ |7 (v, x,) 22,
oriors motion model \oop -closures

2 —1
\ Z ”X o XprlOrHZprmr + Z ”g(XZ‘—laut) T XtHZ}%’ + Z ”T (X()9 XT)HZZC
[

L ocalization => SLAM

Replace gaussian by other exponential distribution
(I.e. minimize L1-norm, robust loss Huber-norm)



Diagonal covariance

GPS odometry marker(s)
= arg min 2 I, =22+ D IT'xpx) =213, + D, ) IT ' x) — 2]
1 /e, 0 0
f >=—-I=]| 0 1/c, 0 [ then:
o 0 0 1/c
GPS odometry marker(s)
=arg min ) c”'||x, — 28| + Z T, x) = X, |17 + 22 (T, x,) — )|
X0, - - - X7

[
m!..m’



Optimization

GPS odometry marker(s)
. J J ;
=arg min 3 eI~z + Y IT@ ) =X [P + ) Y eI, x) —m)|
Nt i 2 j ot

= arg min Z If(X)||* = argmin :

= arg min ||f(x)||> where f(x):R" > R™

fN(‘X) f(x): R" — R™"

Alternative formulation: argmin ||f(x, + Ax)||* where X; is an initial solution

AX

X arg rrAlin 1f(x,) +F (x)AX)||* = — [f (X" f(x) GN: X, =X, — [f(x)]" f(x;)

X arg min X))+ F(X)AX)||? = _ ¢ + . ,
g Ax Hf( k) f( k) )H [f (Xk) +/II] f(Xk) LM X, | =X, — [f (Xk) +/11]+f(xk)
subject to ||AX||* < ¢ IR:
scipy.optimize.least_squares(fun, x0, jac, method=‘Im’)
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Optimization in SE(2) manifold trajectory length 21

absolute marker
relative marker
odometry

some optimised poses

some ground truth poses
(not used In optimisation)

noise:
o odom 0.2m/0.2rad

o markers 0.3m / 0.3rad
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Optimization in SE(2) manifold trajectory length 101

What will break 1t?77?7



noise 0O

Optimization in SE(2) manifold trajectory length 101
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Optimization in SE(2) manifold trajectory length 101

noise O noise 0.7
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noise 0O

Optimization in SE(2) manifold trajectory length 101
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noise 0.7 Optimization in SE(2) manifold trajectory length 101

c odom=0
c ma=1
C mr=1



noise 0.7 Optimization in SE(2) manifold trajectory length 101

c odom=0
c ma=1
C mr=1
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noise 0.7 Optimization in SE(2) manifold trajectory length 101

c odom=0 Cc odom="1
C ma=1 c ma=0
~ mMmr—1 C_mr:1
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noise 0.7 Optimization in SE(2) manifold trajectory length 101
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noise 0.7 Optimization in SE(2) manifold trajectory length 101

c_odom=0 c_odom=1 c odom=1
c_ma=1 c_ma=0 c_ma=1
c_mr=1 c_mr=1 c_mr=0



noise 0.7 Optimization in SE(2) manifold trajectory length 101

c odom=1
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c mr=0
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Optimization in SE(2) manifold trajectory length 101

noise odom=0.1 ¢ odom=1 noise odom=0.1 ¢ odom=5

NnoIse ma=3 c ma=1 NnoiIse ma=3 c ma=1
NnoIse mr=3 c mr=1 NnoiIse mr=3 cC mr=1
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't Is good to know, what you can rely on



Optimization in SE(2) manifold trajectory length 101

odom/marker ini

noise 0.5
c odom=0.2
Cc ma=1

C mr=1 adversarial ini
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Optimization in SE(2) manifold trajectory length 401
successive optimization with iIncoming measurements

noise markers = 0.5 noise odom = 0.1
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Optimization

scipy.optimize.least_squares(fun, x0, jac, method=‘Im’)

Optimization time [S]
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Optimization
scipy.optimize.least_squares(fun, x0, jac, method=‘Im’)

Solution time grows fast with:

o problem dimensionality (e.g. DOFxT+M)
o number of residual terms (e.g. number of measurements)

In practise you introduce simplifications:

o Jacoblan Is extremely sparse => use sparse matrix to represent it

o when new measurement comes only a sub-graph is optimized

o pre-integrate some factor (e.g. sum up odometry measurements over 0.5S)
o sparsification of old factor graph

o to tackle the real-time requirements frontend and backend optimizers used
o limited temporal horizon considered

o If factor graph is tree, efficient solution via dynamic programming (Kalman filter)




summary
Understand SLAM problem in SE(2)

Write down optimisation criterion in negative log-space for gaussian prob. distr.
Solve underlying opt. problem using non-linear least squares

Issues:
o covariance delivered by sensors Is really bad

o measurements are strongly correlated
o gradient optimization converges to a local minimum

o Nnoise often non-gaussian => if modeled optimization iIssues
o factor graph keep growing to infinity vs realtime requirements

Next lecture: Adds lidar's measurement probability



