Localization: MAP in SE(3)

Karel Zimmermann

Problem definition

Complete states: $\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_t \in \mathcal{R}^n$ Algorithm: $\mathbf{u}_{t+1} = \pi(\mathbf{z}_{1:t}, \mathbf{u}_{1:t})$

Actions: $\mathbf{u}_1, \dots, \mathbf{u}_t \in \mathcal{R}^m$ Rewards: $r_t = r(\mathbf{x}_{t-1}, \mathbf{u}_t, \mathbf{x}_t) \in \mathcal{R}$

Measurements: $\mathbf{z}_1,\dots,\mathbf{z}_t\in\mathcal{R}^k$ Criterion: $J_\pi=\mathbb{E}_{\tau\sim\pi}\{\sum_{r_t\geq t}\gamma^t r_t\}\in\mathcal{R}$

Goal: $\pi^* = \arg \max_{\pi} J_{\pi}$

Algorithm: $\mathbf{z}_0, \mathbf{u}_1, \mathbf{z}_1, \dots = \mathbf{z}_0$ estimate $p(\mathbf{x}_t | \mathbf{z}_{1:t}, \mathbf{u}_{1:t}) = \mathbf{z}_0$ decide following action \mathbf{u}_{t+1} perception (local, SLAM, object detection) control (planning, RL, opt.control known \mathbf{u}_t (\mathbf{z}_{t-1}) \mathbf{z}_t \mathbf{Z}_1

Problem definition

States: $\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_t \in \mathcal{R}^n$

.... 6DOF robot's poses (no map for now)

Actions: $\mathbf{u}_1, \dots, \mathbf{u}_t \in \mathcal{R}^m$

.... generated by external source

Measurements: $\mathbf{z}_1, \dots, \mathbf{z}_t \in \mathcal{R}^k$

.... comes from variety of sensors

Goal: \circ estimate most probable $\mathbf{x}_0...\mathbf{x}_t$

 \circ or just \mathbf{X}_t

or full distribution $p(\mathbf{x}_t)$ or even $p(\mathbf{x}_0...\mathbf{x}_t)$

Motor encoders (wheel/joint position/velocity)

Accelerometer (linear acceleration)

Gyroscope (angular velocity)

Magnetometer (angle to magnetic north)

IMU: Accelerometer+Gyroscope+Magnetometer (9DOF measurements)

Camera (RGB images - spectral responses projected on image plane)

Stereo camera

RGBD camera (kinect, real sense, ...)

Lidar

Sonar

Radar

Satelite navigation (GPS/GNSS)

SONARDYNE beacons

UWB

Sensor measurements

- Noise characteristic (GPS vs camera for localisation)
- o Operates in its own coordinate frame
- Spatiotemporal (and spectral) resolution
 (i.e. number of pixels/channels in image, number of measurements per second)
- Absolute/relative measurements wrt a reference coordinate frame
 (e.g. GPS/IMU) and integrating the relative measurements does not work!

Consequence: Need a reasonable probabilistic approach that fuses all measurements in order to estimate the most probable pose(s)

Localisation problem definition

Previous lecture only 1D/2D translations (no rotations)

States: $\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_t \in \mathcal{R}^n$

.... 6DOE robot's poses (no map for now)

Actions: $\mathbf{u}_1, \dots, \mathbf{u}_t \in \mathcal{R}^m$

.... generated by external source

Measurements: $\mathbf{z}_1, \dots, \mathbf{z}_t \in \mathcal{R}^k$

.... comes from variety of sensors

MAP: $\mathbf{x}^* = \arg \max_{\mathbf{x}} p(\mathbf{x} | \mathbf{z}, \mathbf{u}) = \arg \max_{\mathbf{x}_0 \dots \mathbf{x}_t} p(\mathbf{x}_0 \dots \mathbf{x}_t, \mathbf{u}_1 \dots \mathbf{u}_t)$

Unknown 1. Construct p(x|z) 2. Optimize poses

Estimate this Given this \mathbf{u}_t \mathbf{u}_1 (\mathbf{z}_{t-1}) \mathbf{z}_t \mathbf{Z}_1

Localisation problem definition

Today only 2D translations + 1D rotation

States: $\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_t \in \mathcal{R}^n$

.... 6DOE robot's poses (no map for now)

Actions: $\mathbf{u}_1, \dots, \mathbf{u}_t \in \mathcal{R}^m$

.... generated by external source

Measurements: $\mathbf{z}_1, \dots, \mathbf{z}_t \in \mathcal{R}^k$

.... comes from variety of sensors

MAP: $\mathbf{x}^* = \arg \max_{\mathbf{x}} p(\mathbf{x} \mid \mathbf{z}, \mathbf{u}) = \arg \max_{\mathbf{x}_0 \dots \mathbf{x}_t} p(\mathbf{x}_0 \dots \mathbf{x}_t, \mathbf{u}_1 \dots \mathbf{u}_t)$

Unknown 1. Construct p(x|z) 2. Optimize poses

Estimate this \mathbf{x}_t \mathbf{x}_1 Given this \mathbf{u}_t \mathbf{u}_1 (\mathbf{z}_{t-1}) \mathbf{z}_t \mathbf{Z}_1

World coordinate frame (wcf)

Robot sees (measures) house in rcf $\mathbf{z} =$ i.e. pose of house in rcf

$$\mathbf{z} = \begin{bmatrix} z_x \\ z_y^r \\ z_{\theta}^r \end{bmatrix}$$

Robot coordinate frame (rcf) i.e. pose of robot in wcf

$$\mathbf{x}_t = \begin{bmatrix} x_t \\ y_t \\ \theta_t \end{bmatrix}$$

World coordinate frame (wcf)

Pose of house in wcf:

$$\mathbf{z}^{w} = \begin{bmatrix} z_{x}^{w} \\ z_{y}^{w} \\ z_{\theta}^{w} \end{bmatrix} = \begin{bmatrix} \cos \theta_{t} & -\sin \theta_{t} & 0 \\ \sin \theta_{t} & \cos \theta_{t} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} z_{x}^{r} \\ z_{y}^{r} \\ z_{\theta}^{r} \end{bmatrix} + \begin{bmatrix} x_{t} \\ y_{t} \\ \theta_{t} \end{bmatrix}$$

Robot sees (measures) house in rcf $\mathbf{z} =$ i.e. pose of house in rcf

$$\mathbf{z} = \begin{bmatrix} z_y^r \\ z_{\theta}^r \end{bmatrix}$$

Robot coordinate frame (rcf) i.e. pose of robot in wcf

$$\mathbf{x}_t = \begin{vmatrix} y_t \\ \theta_t \end{vmatrix}$$

World coordinate frame (wcf)

Pose of the house transformed from rcf to wcf:

$$\mathbf{z}^{w} = \begin{bmatrix} z_{x}^{w} \\ z_{y}^{w} \\ z_{\theta}^{w} \end{bmatrix} = \begin{bmatrix} \cos \theta_{t} & -\sin \theta_{t} & 0 \\ \sin \theta_{t} & \cos \theta_{t} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} z_{x}^{r} \\ z_{y}^{r} \\ z_{\theta}^{r} \end{bmatrix} + \begin{bmatrix} x_{t} \\ y_{t} \\ \theta_{t} \end{bmatrix} = \begin{bmatrix} R(\theta_{t}) & \mathbf{0} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \mathbf{z}^{r} + \mathbf{x}_{t} = T(\mathbf{z}^{r}, \mathbf{x}_{t})$$

Pose of the house transformed from wcf to rcf:

$$\mathbf{z}^r = \begin{bmatrix} R(\theta_t)^\top & \mathbf{0} \\ \mathbf{0}^\top & 1 \end{bmatrix} (\mathbf{z}^w - \mathbf{x}_t) = T^{-1}(\mathbf{z}^w, \mathbf{x}_t)$$

Assume that house pose in wcf is known m

Assume that marker pose in wcf is known m

We assume that robot pose in wcf $\mathbf{x}_t = \begin{bmatrix} y_t \\ \theta_t \end{bmatrix}$

Assume that marker pose in wcf is known m

We assume that robot pose in wcf $\mathbf{x}_t = \begin{bmatrix} y_t \\ \theta_t \end{bmatrix}$

Robot measures the house in rcf $\mathbf{z} = \begin{bmatrix} z_y^r \\ r \end{bmatrix}$

Assume that marker pose in wcf is known m

We assume that robot pose in wcf $\mathbf{x}_t = \mathbf{y}_t$

Robot measures the house in rcf $\mathbf{z} = \begin{bmatrix} z_y^r \\ z_0^r \end{bmatrix}$

Marker pose in rcf $\hat{\mathbf{z}} = T^{-1}(\mathbf{m}, \mathbf{x}_t)$

Since pose is incorrect $\mathbf{z} \neq \hat{\mathbf{z}}$

$$\mathbf{x}_t^{\star} = \arg\min_{\mathbf{x}_t} ||T^{-1}(\mathbf{m}, \mathbf{x}_t) - \mathbf{z}||^2$$

Assume that marker pose in wcf is known m

We assume that robot pose in wcf
$$\mathbf{x}_t = \begin{bmatrix} y_t \\ \theta_t \end{bmatrix}$$

Robot measures the house in rcf $\mathbf{z} = \begin{bmatrix} z_y^r \\ r \end{bmatrix}$

Marker pose in rcf
$$\hat{\mathbf{z}} = T^{-1}(\mathbf{m}, \mathbf{x}_t)$$

Since pose is incorrect $\mathbf{z} \neq \hat{\mathbf{z}}$

$$\mathbf{x}_t^{\star} = \arg\min_{\mathbf{x}_t} ||T^{-1}(\mathbf{m}, \mathbf{x}_t) - \mathbf{z}||^2$$

Assume that marker pose in wcf is known m

We assume that robot pose in wcf
$$\mathbf{x}_t = \begin{bmatrix} y_t \\ \theta_t \end{bmatrix}$$

Robot measures the house in rcf $\mathbf{z} = \begin{bmatrix} z_y^r \\ r \end{bmatrix}$

Marker pose in rcf
$$\hat{\mathbf{z}} = T^{-1}(\mathbf{m}, \mathbf{x}_t)$$

Since pose is incorrect $\mathbf{z} \neq \hat{\mathbf{z}}$

$$\mathbf{x}_{t}^{\star} = \arg \max_{\mathbf{x}_{t}} \mathcal{N}(\mathbf{z}; T^{-1}(\mathbf{m}, \mathbf{x}_{t}), \Sigma)$$

$$= \arg \min_{\mathbf{x}_{t}} ||T^{-1}(\mathbf{m}, \mathbf{x}_{t}) - \mathbf{z}||_{\Sigma}^{2}$$

Assume that marker pose in wcf is known m

We assume that robot pose in wcf
$$\mathbf{x}_t = \begin{bmatrix} y_t \\ \theta_t \end{bmatrix}$$

Robot measures the house in rcf $\mathbf{z} = \begin{bmatrix} z_y^r \\ -r \end{bmatrix}$

Marker pose in rcf
$$\hat{\mathbf{z}} = T^{-1}(\mathbf{m}, \mathbf{x}_t)$$

Since pose is incorrect $\mathbf{z} \neq \hat{\mathbf{z}}$

$$\mathbf{x}_{t}^{\star} = \arg \max_{\mathbf{x}_{t}} \mathcal{N}(\mathbf{z}; T^{-1}(\mathbf{m}, \mathbf{x}_{t}), \Sigma)$$

$$= \arg \min_{\mathbf{x}_{t}} ||T^{-1}(\mathbf{m}, \mathbf{x}_{t}) - \mathbf{z}||_{\Sigma}^{2}$$

Marker pose in rcf $\hat{\mathbf{z}} = T^{-1}(\mathbf{m}, \mathbf{x}_t)$

Since pose is incorrect $\mathbf{z} \neq \hat{\mathbf{z}}$

$$\mathbf{x}_{t}^{\star} = \arg\min_{\mathbf{x}_{t}} \|T^{-1}(\mathbf{m}, \mathbf{x}_{t}) - \mathbf{z}\|_{\Sigma}^{2}$$

If
$$\Sigma = \frac{1}{c} \cdot \mathbf{I} = \begin{bmatrix} 1/c & 0 & 0 \\ 0 & 1/c & 0 \\ 0 & 0 & 1/c \end{bmatrix}$$

$$\mathbf{x}_{t}^{\star} = \arg\min_{\mathbf{x}_{t}} c \cdot \| (T^{-1}(\mathbf{m}, \mathbf{x}_{t}) - \mathbf{z}) \|^{2} \quad \text{rcf}$$

$$= \arg\min_{\mathbf{x}_{t}} c \cdot \| T(\mathbf{z}, \mathbf{x}_{t}) - \mathbf{m} \|^{2} \quad \text{wcf}$$

Marker pose in rcf $\hat{\mathbf{z}} = T^{-1}(\mathbf{m}, \mathbf{x}_t)$

Since pose is incorrect $\mathbf{z} \neq \hat{\mathbf{z}}$

$$\mathbf{x}_{t}^{\star} = \arg\min_{\mathbf{x}_{t}} \|T^{-1}(\mathbf{m}, \mathbf{x}_{t}) - \mathbf{z}\|_{\Sigma}^{2}$$

If
$$\Sigma = \frac{1}{c} \cdot \mathbf{I} = \begin{bmatrix} 1/c & 0 & 0 \\ 0 & 1/c & 0 \\ 0 & 0 & 1/c \end{bmatrix}$$

$$\mathbf{x}_{t}^{\star} = \underset{\mathbf{x}_{t}}{\text{arg min }} c \cdot \| (T^{-1}(\mathbf{m}, \mathbf{x}_{t}) - \mathbf{z}) \|^{2} \quad \text{rcf}$$

$$= \underset{\mathbf{x}_{t}}{\text{arg min }} c \cdot \| T(\mathbf{z}, \mathbf{x}_{t}) - \mathbf{m} \|^{2} \quad \text{wcf}$$

Odometry represented by linear+angular velocity

Robot poses in wcf:
$$\mathbf{x}_t = \begin{bmatrix} x_t \\ y_t \\ \theta_t \end{bmatrix} \quad \mathbf{x}_{t+1} = \begin{bmatrix} x_{t+1} \\ y_{t+1} \\ \theta_{t+1} \end{bmatrix}$$

Odometry represented by linear+angular velocity

Robot poses in wcf:
$$\mathbf{x}_{t} = \begin{bmatrix} x_{t} \\ y_{t} \\ \theta_{t} \end{bmatrix}$$
 $\mathbf{x}_{t+1} = \begin{bmatrix} x_{t+1} \\ y_{t+1} \\ \theta_{t+1} \end{bmatrix}$

Robot measures velocity in
$$\mathbf{X}_t$$
-rcf: $\mathbf{z}^v = \begin{bmatrix} z_x^v \\ z_y^v \\ z_\theta^v \end{bmatrix}$

Robot poses in wcf:
$$\mathbf{x}_{t} = \begin{bmatrix} x_{t} \\ y_{t} \\ \theta_{t} \end{bmatrix}$$
 $\mathbf{x}_{t+1} = \begin{bmatrix} x_{t+1} \\ y_{t+1} \\ \theta_{t+1} \end{bmatrix}$

Robot measures velocity in
$$\mathbf{X}_t$$
-rcf: $\mathbf{z}^v = \begin{bmatrix} z_y^v \\ z_\theta^v \end{bmatrix}$

Next pose
$$\mathbf{X}_{t+1}$$
 in \mathbf{X}_{t} -rcf: $\hat{\mathbf{z}}^{v} = T^{-1}(\mathbf{X}_{t+1}, \mathbf{X}_{t})$

Odometry represented by linear+angular velocity

Robot poses in wcf:
$$\mathbf{x}_{t} = \begin{bmatrix} x_{t} \\ y_{t} \\ \theta_{t} \end{bmatrix}$$
 $\mathbf{x}_{t+1} = \begin{bmatrix} x_{t+1} \\ y_{t+1} \\ \theta_{t+1} \end{bmatrix}$

Robot measures velocity in \mathbf{X}_t -rcf: $\mathbf{z}^v = \begin{bmatrix} z_y^v \\ z_\theta^v \end{bmatrix}$

Next pose
$$\mathbf{X}_{t+1}$$
 in \mathbf{X}_{t} -rcf: $\hat{\mathbf{z}}^{v} = T^{-1}(\mathbf{X}_{t+1}, \mathbf{X}_{t})$

Since poses are incorrect $\mathbf{z}^{\nu} \neq \hat{\mathbf{z}}^{\nu}$

$$\mathbf{x}_{t}^{\star}, \mathbf{x}_{t+1}^{\star} = \underset{\mathbf{x}_{t}, \mathbf{x}_{t+1}}{\operatorname{arg max}} \mathcal{N}(\mathbf{z}^{v}; T^{-1}(\mathbf{x}_{t+1}, \mathbf{x}_{t}), \Sigma^{v})$$

$$= \underset{\mathbf{x}_{t}, \mathbf{x}_{t+1}}{\operatorname{arg min}} \|T^{-1}(\mathbf{x}_{t+1}, \mathbf{x}_{t}) - \mathbf{z}^{v}\|_{\Sigma}^{v}$$

Odometry represented by linear+angular velocity

Robot poses in wcf:
$$\mathbf{x}_{t} = \begin{bmatrix} x_{t} \\ y_{t} \\ \theta_{t} \end{bmatrix}$$
 $\mathbf{x}_{t+1} = \begin{bmatrix} x_{t+1} \\ y_{t+1} \\ \theta_{t+1} \end{bmatrix}$

Robot measures velocity in \mathbf{X}_t -rcf: $\mathbf{z}^v = \begin{bmatrix} z_x^v \\ z_y^v \\ z_\theta^v \end{bmatrix}$

Next pose
$$\mathbf{X}_{t+1}$$
 in \mathbf{X}_{t} -rcf: $\hat{\mathbf{z}}^{v} = T^{-1}(\mathbf{X}_{t+1}, \mathbf{X}_{t})$

Since poses are incorrect $\mathbf{z}^{\nu} \neq \hat{\mathbf{z}}^{\nu}$

$$\mathbf{x}_{t}^{\star}, \mathbf{x}_{t+1}^{\star} = \underset{\mathbf{x}_{t}, \mathbf{x}_{t+1}}{\operatorname{arg max}} \mathcal{N}(\mathbf{z}^{v}; T^{-1}(\mathbf{x}_{t+1}, \mathbf{x}_{t}), \Sigma^{v})$$

$$= \underset{\mathbf{x}_{t}, \mathbf{x}_{t+1}}{\operatorname{arg min}} \|T^{-1}(\mathbf{x}_{t+1}, \mathbf{x}_{t}) - \mathbf{z}^{v}\|_{\Sigma}^{v}$$

Localization of robot in wcf from known marker pose, odometry and GPS

GPS odometry marker
$$\mathbf{x}^{\star} = \arg\max_{\mathbf{x}_{0},...\mathbf{x}_{t}} \prod_{t} p(\mathbf{z}_{t}^{gps} | \mathbf{x}_{t}) \cdot \prod_{t} p(\mathbf{z}_{t}^{v} | \mathbf{x}_{t}, \mathbf{x}_{t-1}) \cdot \prod_{t} p(\mathbf{z}_{t}^{m} | \mathbf{x}_{t}, \mathbf{m})$$

$$= \arg\max_{\mathbf{x}_{0},...\mathbf{x}_{t}} \prod_{t} \mathcal{N}(\mathbf{z}^{gps}; \mathbf{x}_{t}, \boldsymbol{\Sigma}_{t}^{gps}) \cdot \prod_{t} \mathcal{N}(\mathbf{z}^{v}; T^{-1}(\mathbf{x}_{t+1}, \mathbf{x}_{t}), \boldsymbol{\Sigma}_{t}^{v}) \cdot \prod_{t} \mathcal{N}(\mathbf{z}^{m}; T^{-1}(\mathbf{m}, \mathbf{x}_{t}), \boldsymbol{\Sigma}_{t}^{m})$$

$$= \arg\min_{\mathbf{x}_{0},...\mathbf{x}_{T}} \sum_{t} ||\mathbf{x}_{t} - \mathbf{z}_{t}^{gps}||_{\boldsymbol{\Sigma}_{t}^{gps}}^{2} + \sum_{t} ||T^{-1}(\mathbf{x}_{t+1}, \mathbf{x}_{t}) - \mathbf{z}_{t}^{v}||_{\boldsymbol{\Sigma}_{t}^{v}}^{2} + \sum_{t} ||T^{-1}(\mathbf{m}, \mathbf{x}_{t}) - \mathbf{z}^{m}||_{\boldsymbol{\Sigma}_{t}^{m}}^{2}$$

Straightforward extensions

GPS odometry marker
$$= \arg\min_{\mathbf{x}_0, \dots \mathbf{x}_T} \sum_t \|\mathbf{x}_t - \mathbf{z}_t^{gps}\|_{\Sigma_t^{gps}}^2 + \sum_t \|T^{-1}(\mathbf{x}_{t+1}, \mathbf{x}_t) - \mathbf{z}_t^{v}\|_{\Sigma_t^{v}}^2 + \sum_t \|T^{-1}(\mathbf{m}, \mathbf{x}_t) - \mathbf{z}^{m}\|_{\Sigma_t^{m}}^2$$

Straightforward extensions

$$\begin{aligned} &\text{GPS} & \text{odometry} & \text{marker(s)} \\ &= \underset{\mathbf{x}_0, \dots, \mathbf{x}_T}{\min} \sum_{t} \|\mathbf{x}_t - \mathbf{z}_t^{gps}\|_{\Sigma_t^{gps}}^2 + \sum_{t} \|T^{-1}(\mathbf{x}_{t+1}, \mathbf{x}_t) - \mathbf{z}^v\|_{\Sigma_t^v}^2 + \sum_{j} \sum_{t} \|T^{-1}(\mathbf{m}^j, \mathbf{x}_t) - \mathbf{z}\|_{\Sigma_t^{gps}}^2 \\ &\text{priors} & \text{motion model} & \text{loop-closures} \\ &+ \sum_{t} \|\mathbf{x}_t - \mathbf{x}_t^{prior}\|_{\Sigma_t^{prior}}^2 + \sum_{t} \|g(\mathbf{x}_{t-1}, \mathbf{u}_t) - \mathbf{x}_t\|_{\Sigma_t^g}^2 + \sum_{t} \|T^{-1}(\mathbf{x}_0, \mathbf{x}_T)\|_{\Sigma_t^{lc}}^2 \end{aligned}$$

Replace gaussian by other exponential distribution (i.e. minimize L1-norm, robust loss Huber-norm)

Localization => SLAM

Diagonal covariance

$$\mathsf{GPS} \qquad \mathsf{odometry} \qquad \mathsf{marker(s)}$$

$$= \arg\min_{\substack{\mathbf{x}_0, \dots \mathbf{x}_T \\ \mathbf{m}^1 \dots \mathbf{m}^J}} \sum_t \|\mathbf{x}_t - \mathbf{z}_t^{gps}\|_{\Sigma_t^{gps}}^2 \quad + \quad \sum_t \|T^{-1}(\mathbf{x}_{t+1}, \mathbf{x}_t) - \mathbf{z}^v\|_{\Sigma_t^v}^2 \quad + \quad \sum_j \sum_t \|T^{-1}(\mathbf{m}^j, \mathbf{x}_t) - \mathbf{z}\|_{\Sigma_t^{m-1}}^2$$

If
$$\Sigma_t = \frac{1}{c_t} \cdot \mathbf{I} = \begin{bmatrix} 1/c_t & 0 & 0 \\ 0 & 1/c_t & 0 \\ 0 & 0 & 1/c_t \end{bmatrix}$$
 then:

GPS odometry marker(s)
$$= \underset{\mathbf{x}_0, \dots \mathbf{x}_T}{\min} \sum_{t} c_t^{gps} ||\mathbf{x}_t - \mathbf{z}_t^{gps}||^2 + \sum_{t} c_t^{v} ||T(\mathbf{z}^v, \mathbf{x}_t) - \mathbf{x}_{t+1}||^2 + \sum_{j} \sum_{t} c_t^{m^j} ||T(\mathbf{z}^{m^j}, \mathbf{x}_t) - \mathbf{m}^{j}||^2$$

Optimization

GPS odometry marker(s)
$$= \underset{\mathbf{x}_{0}, \dots \mathbf{x}_{T} \\ \mathbf{m}^{1} \dots \mathbf{m}^{j}}{\min} \sum_{t} c_{t}^{gps} \|\mathbf{x}_{t} - \mathbf{z}_{t}^{gps}\|^{2} + \sum_{t} c_{t}^{v} \|T(\mathbf{z}^{v}, \mathbf{x}_{t}) - \mathbf{x}_{t+1}\|^{2} + \sum_{j} \sum_{t} c_{t}^{m^{j}} \|(T(\mathbf{z}^{m^{j}}, \mathbf{x}_{t}) - \mathbf{m}^{j})\|^{2}$$

$$= \arg\min_{\mathbf{x}} \sum_{i} \|f_{i}(\mathbf{x})\|^{2} = \arg\min_{\mathbf{x}} \left\| f_{1}(\mathbf{x}) \right\|^{2} = \arg\min_{\mathbf{x}} \left\| f(\mathbf{x}) \right\|^{2} \quad \text{where } f(\mathbf{x}) : \mathbb{R}^{n} \to \mathbb{R}^{m}$$

$$f'(\mathbf{x}) : \mathbb{R}^{n} \to \mathbb{R}^{m \times n}$$

Alternative formulation: $\underset{\Delta \mathbf{x}}{\arg\min} \|f(\mathbf{x}_k + \Delta \mathbf{x})\|^2$ where \mathbf{x}_k is an initial solution

$$\approx \arg\min_{\Delta \mathbf{x}} \|f(\mathbf{x}_k) + f'(\mathbf{x}_k)\Delta \mathbf{x})\|^2 = -[f'(\mathbf{x}_k)]^+ f(\mathbf{x}_k) \qquad \text{GN: } \mathbf{x}_{k+1} = \mathbf{x}_k - [f'(\mathbf{x}_k)]^+ f(\mathbf{x}_k)$$

$$\approx \arg\min_{\Delta \mathbf{x}} \|f(\mathbf{x}_k) + f'(\mathbf{x}_k)\Delta \mathbf{x})\|^2 = -[f'(\mathbf{x}_k) + \lambda \mathbf{I}]^+ f(\mathbf{x}_k) \qquad \text{LM:} \quad \mathbf{x}_{k+1} = \mathbf{x}_k - [f'(\mathbf{x}_k) + \lambda \mathbf{I}]^+ f(\mathbf{x}_k)$$
subject to $\|\Delta \mathbf{x}\|^2 \le c$

scipy.optimize.least_squares(fun, x0, jac, method='lm')

Optimization in SE(2) manifold trajectory length 21

Optimization in SE(2) manifold trajectory length 21

Optimization in SE(2) manifold trajectory length 21

What will break it????

noise 0


```
c_odom=0
c_ma=1
c_mr=1
```

noise 0.7

noise 0.5

 $c_odom=0.2$

 $c_ma=1$

 $c_mr=1$

adversarial ini

odom/marker ini

Optimization in SE(2) manifold trajectory length 401 successive optimization with incoming measurements noise_markers = 0.5 noise_odom = 0.1

Optimization

Optimization

scipy.optimize.least_squares(fun, x0, jac, method='lm')

Solution time grows fast with:

- problem dimensionality (e.g. DOFxT+M)
- o number of residual terms (e.g. number of measurements)

In practise you introduce simplifications:

- jacobian is extremely sparse => use sparse matrix to represent it
- when new measurement comes only a sub-graph is optimized
- o pre-integrate some factor (e.g. sum up odometry measurements over 0.5s)
- sparsification of old factor graph
- to tackle the real-time requirements frontend and backend optimizers used
- limited temporal horizon considered
- o if factor graph is tree, efficient solution via dynamic programming (Kalman filter)

Summary

- Understand SLAM problem in SE(2)
- Write down optimisation criterion in negative log-space for gaussian prob. distr.
- Solve underlying opt. problem using non-linear least squares
- o Issues:
 - covariance delivered by sensors is really bad
 - measurements are strongly correlated
 - gradient optimization converges to a local minimum
 - noise often non-gaussian => if modeled optimization issues
 - factor graph keep growing to infinity vs realtime requirements
- o Next lecture: Adds lidar's measurement probability