How to fuse almost anything:

1D/2D robot’s localization as Maximum Aposteriori Estimate,
measurement probability and motion model.

Karel Zimmermann



Prerequisites: Law of total probability
Specific population:
B p(M)=0.8 ... 80% male
B o) =0.2 .. 20% female

p(M) = 0.8

Gender-conditional probabilities to have a disease:

By(D|M)=0.01 .. 1% of males is ill
By(D|F)=0.5 .. 50% of females is ill

p( 0.2

p(D|M)=0.01 p(D|F)=0.5
What is probability that a random sample has a disease”

p(D) = p(D|M)p(M) + p(D|F)p(F) ...it is mean of red values under blue distribution
=0.01-084+05-0.2=0.108



| have your

test results.
A ... have disease [ ((\\f% i

Did | pass? Haha

uf@g
¥

B ... positive test [

oA

p(B|A)p(A) 'f( “’ < You will soon.

p(B) \
O\ A

p(A|B) =

| disease 0.1%

“hea\thy 99.9%
‘,,/.’

- _///se tests always positive

eople, with positive test

‘ +0.001
"‘v"OOO ~ 1.9 %

. +0.999 #0.05

-

Only 18% of doctors+students from Harvard Medical school answered correctly.
Reason: think about people who tests positive (only 1.9% of them are actualy ill)
=> more likely to come from the healthy population



Prerequisites: Multivariate gaussian
eXp( —(x—p)' 27 (x —ﬂ))

\/ 2r)det(X)

x € R" ... real n-dimensional

fg'égg random column vector

px) = N(X;p,2) =

0.050 | |
Eo.oz5 e R" ... real n-dimensional

0.000 mean
£-0.025
£-0.050 x . . .
o075 2 € R"L. symmetric positive definite
~0.100 covariance matrix

10

eigenvalues and eigenvectors of X
determine ellipse axes




Prerequisites: Multivariate gaussian
eXp( — S(x— ) E7(x —ﬂ))
\/ 2r)"det(X)

x € R" ... real n-dimensional

fg'égg random column vector

px) =N (X p, %) =

0.050 | |
[0,025 e R" ... real n-dimensional

0.000 mean
#0.025
#0.050 X . " -
[ 007s 2 € R symmetric positive definite
=—0.100 covariance matrix

10

8 Logarithm of Gaussian is quadratic form:

6
1
“xp log(Him D) = - Sx— ) E =)+ C



Motivation example: Absolute position measurements in wct
Measurement probability: p(z;| u) = N (z; u, %)

/m

zy robots position measurements in wef

Where is the robot???

d
P2y, 20, 23 | ) - DAL,
u* = arg max p(u | z;, 20, 23) = arg max 1> <25 <3 = arg max (HP(&'W)) —
Il,t ;
l

u u Juve—s =)
= arg max H/’/(Zi;//t, 6°) | = arg max HK exp | — 2 'MH% = arg min Z |z — ﬂH%
i po c? weo =

U
what is this function?”



Motivation example: Absolute position measurements in wct
Measurement probability: p(z;| u) = N (z; u, %)

surements in wcef

Where is the robot???

e
(21,20, 23 | ) k] "
p* =argmax p(u|zy,2,23) = argmaxp ol le = arg max HP(Zi\
7 H M H I

2
Z; — .
= arg max ( I I N (zZ;; u, 02)> = arg max I I K - exp (— 12 mlz) = arg min Z lz; —ﬂH%
i weoo N

H =) iform prior
2. Independence
3. (Gaussian noise

What kind of assumptions have we used???



Motivation example: Absolute position measurements in wct

Measurement probability: p(z;|w) = N (z; u, 6%)
4m

/1N

2 3m X

Z 2 7z, robots position meggurements in wcf

E ol
@ @
% p(219229z3‘/’t)'
p* = argmax p(p |z, 2, 23) = arg max — dig Ilax HP(Zi\
u 7 P es23). Z .
2 HZi — |3 _ . ,
= arg maX H/V(Zp//t» ) | = arg max HK exp > — al'g min Z |z, — ull5
o o =
Za |
= 4m

N



Motivation example: Absolute position measurements in wct
Measurement probability: p(z;| u) = N (z; u, %)

an

z, robots position measurements in wef

{1 <2

T

MAP MLE LS

— : . &
= argmax (129 = argmax ([l ) = angmin 3, s ul = 207
: M ;

U

H N

_— N\

maximizing product of gaussians <=> minimizing the sum of L2 ditferences.



Motivation example: Relative position measurements in rcft
Measurement probability: p(z;| ) = N (z;; m — p, 6°)

wall
wall In rcft

5 position measurements in rcf

Where is the robot??? What is the measurement prob?

Z p P resa)

y
m— p) — z;
= arg max (H/V(Z,-;m — U, 02)) = arg max HK exp (— I /42) ”2)
i oo o

H
=argmin Y [lm—z—pl} = Zi";v_ T Z (9-4) + (9-5) + (9-9)) /3 = 3
12 .

P(Z4, 20, 23 | 1) - D)
pu* = argmax p(u |z, 2, 23) = arg max S = arg max ( I IP(ZiW)> i
u .
l




Motivation examp\e Outher rejection

Measurement probability: p(z;|p) =
4m

21 2, | 4 zz robots position measurements in wef

_ . Z;
= arg max p(i\| 21, 2, 3) = are max Hp(zi |;) | = argmin Z Iz — ull5 = 2%
H U ; oo N

How can | justify rejecting 7m as outlier and placing the robot between 2-3m?

By different measurement model



Motivation examp\e Outher rejection
Measurement probability: p(z;|p) = N Zemsa?)

What is the value (high/low)
of the criterion function

| at this point y/?

. "

u z, robots position meagurements in wcf

{1 <2

= arg max p(i\| 21, 2, 3) = are max (Hp(zi \//i)> = arg min Z — log p(z; | 1)

# u wo =

How can | justify rejecting 7m as outlier and placing the robot between 2-3m?

By different measurement model



Motivation examp\e Outher rejection
Measurement probability: p(z;|p) = N Zemsa?)

. What is the value (high/low)
of the criterion function
at this point y/?

21 Zqu  zy robots position meagurements in wef

= arg max p(i\| 21, 2, 3) = are max (Hp(zi \//i)> = arg min Z — log p(z; | 1)

# u wo =

How can | justify rejecting 7m as outlier and placing the robot between 2-3m?

By different measurement model



Motivation examp\e Outher rejection
Measurement probability: p(z;|p) = N Zemsa?)

What is the value (high/low)
of the criterion function
' at this point (/?

|

| B 2, robot’s position meagurements in wef

= arg max p(i\| 21, 2, 3) = are max (Hp(zi \//i)) = arg min Z — log p(z; | 1)

s u wo =

How can | justify rejecting 7m as outlier and placing the robot between 2-3m?

By different measurement model



Motivation examp\e Outher rejection
Measurement probability: p(z;|p) = N Zemsa?)

How can | find 1™ that
minimizes the blue function?

Tt

| B 2 robot’s position measurements in wcf

= arg max p(i\| 21, 2, 3) = are max (Hp(zi \//i)) = arg min Z — log p(z; | 1)

s u wo =

How can | justify rejecting 7m as outlier and placing the robot between 2-3m?

By different measurement model



Motivation example: discrete probability distribution

Measurement probability: Pzl 1) = |......I Z

H

71 z, 7y robots position measurements in wef

p* = argmax p(p |21 2, 23) = are max (Hp(zi \u)) = arg min 2 — log p(z; | 1)

: u wo



Motivation example: discrete probability distribution

Measurement probability: Pzl 1) = |......I Z

H

7 71 z, 7y robots position measurements in wef

- robot
& @ What is the most probable ;1?

p* = argmax p(p |21 2, 23) = are max (Hp(zi \ﬂ)) = arg min 2 — log p(z; | 1)

s u wo =



Motivation example: discrete probability distribution

Measurement probability: Pzl 1) = |......I Z

H

z, robots position measurements in wef

— ??? p— ???

p* = argmax p(p |21 2, 23) = are max (Hp(zi \ﬂ)) = arg min 2 — log p(z; | 1)

# u wo =



Motivation example: discrete probability distribution

Measurement probability: Pzl 1) = |......I Z

OO H

z, robots position measurements in wef

— () = 0

p* = argmax p(p |21 2, 23) = are max (Hp(zi \ﬂ)) = arg min 2 — log p(z; | 1)

# u wo =



Motivation example: discrete probability distribution

Measurement probability: Pzl 1) = |......I Z

OO H

robot’s position measurements in wcf

— () = 0

p* = argmax p(p |21 2, 23) = are max (Hp(zi \ﬂ)) = arg min 2 — log p(z; | 1)

# u wo =



Motivation example: discrete probability distribution

Measurement probability: Pzl 1) = |......I Z
l ll |
2

1 u robot’s position measurements in wef

B
$

T=r

— ??? p— ???

p* = argmax p(p |21 2, 23) = are max (Hp(zi \ﬂ)) = arg min 2 — log p(z; | 1)

s u u

l



Motivation example: discrete probability distribution

Measurement probability: Pzl 1) = |......I Z
l ll |
2

1 u robot’s position measurements in wef

B
$

T=r

> () < 00

p* = argmax p(p |21 2, 23) = are max (Hp(zi \ﬂ)) = arg min 2 — log p(z; | 1)

s u u

l



Motivation example: discrete probability distribution

Measurement probability: Pzl 1) = |......I Z
<]

pbot's position measurements in wef

R

> () < 00

= argmax p(¢ |21, 2,23) = are max (Hp(zi \//i)) = arg min Z — log p(z; | 1)

# u u

l



Motivation example: discrete probability distribution

Measurement probability: Pzl 1) = |......I Z
<]

ots position measurements in wcf

Only two robot poses with
on-infinite criterion values

<k

= () = OO

= argmax p(¢ |21, 2,23) = are max (Hp(zi \//i)) = arg min Z — log p(z; | 1)

g y y

l

/eros In measurement probability means "never ever’ => very restrictive



L esson learned from motivation examples

o Robot’s localization = MAP estimate of its pose given measurements

o Measurements probability binds robot's poses, map and measurements
continuous continuous discrete

o Criterion optimization friendly vs optimization unfriendly

o Assumptions ' L) =N 02) + I1id reduces the MAP
estimmmj;@
o h(u,m) transfers the state (e.g. pose) iInto measurement space

o h(u,m) linear vs non-linear => linear / non-linear LS

o two optimisation approches: filters (KF, EKF, UKF), GraphSLAM
o zero In p(z;| ) means that given the pose the measurement Is Impossible




o What sensors can we use for the localization?
Sensors for localisation (odometry)

Motor encoders (wheel/joint position/velocity)

Accelerometer (linear acceleration)

Gyroscope (angular velocity)

Magnetometer (angle to magnetic north)

IMU: Accelerometer+Gyroscope+Magnetometer (9DOF measurements




Sensors for localisation (exteroceptive)

Camera (RGB images - spectral responses projected on image plane)




Localisation problem definition
Today only 1D/2D translations (no rotations)

States: X0, X1, ..., X; € R" .... GD@E robot’s poses (no map for now)
Actions: up,...,u € R™ .... generated by external source
Measurements: Z1,....7; € RF .... comes from variety of sensors
Unknown
MAP: x* = arg mSXp(X |z, u) = arg )I(nax p-@l...zt, @
0 X, i

Given this




Localisation problem definition
Today only 1D/2D translations (no rotations)

States: X0, X1, ... X; € R" .... BD@E. robot’s poses (no map for now)
Actions: ug,...,u; € R™ .... generated by external source
Measurements: Z1,...,2Z4 € Rk .... comes from Variety of sensors
Unknown 1. Construct p(x|z)
MAP: x* = = | e
X* = arg max p(x|z,u) = arg g)}é;g-/@ Z,, @z. Optimize poses

=]

Given this




ocalisation from GPS measurements only in single time instance

Assume only gps measurement in time t is known
Aposterior pdf

1. Construct p(x|z) MAP: X = arg maXp@ = arg max p(x,|z;”"")

[ [

Satelite navigation (GPS/GNSS)

Assumption:  p&™|x,) = A (z°"; x,, ZE)



ocalisation from GPS measurements only in single time instance

Assume only gps measurement in time t is known
Aposterior pdf

MAP: X = arg max p@&|[z)) = arg max p(x,|z9")
Xt [

Bayes theorem Uniform prior

Il hkegpsood prior }

2877 x) p(x
= arg max P& 1%) pX) - arg max p(z°° | x.)
X, p(zy"™) X,
normalization

p(x,)

Assumption:  p&™|x,) = A (z°"; x,, ZE)




ocalisation from GPS measurements only in single time instance

Assume only gps measurement in time t is known
Aposterior pdf

MAP: X = arg max p@&|[z)) = arg max p(x,|z9")
Xt [

Bayes theorem. Unitorm prior Normal measurement prob. (likelihood)
! Ikelihood prior } }

GPS
p(z;" | x,) p(x,)
= arg max — t " =argmax p(z®|x)) = arg max A (z°7°; x,, X91)
X; p(zt_GPS). X X
normalization

What is the most probable x*?

p(zZ" | x)

{ )p(xt)




ocalisation from GPS measurements only in single time instance

Assume only gps measurement in time t is known
Aposterior pdf

MAP: X = arg max p@&|[z)) = arg max p(x,|z9")
Xt [

Bayes theorem. . Uniform prior Normal measurement prob. (likelihood)
Il hkegpsood prior § }
p(z;”|x) p(x) * GPS _ GPS. GPS
= arg max Z5P) = argmax p(z,”°|x,) =argmax A (z,"";x, 2 """)
X p Zt_ . Xt Xy
normalization Measurements z2' are normally
What is the most probable x*? distributed around the true position X,

Correct way

p(zZ" | x)

= arg max J/(x,; 2", TOF)

X

i/
Irue positions X, are normally
distributed around measurement ztGPS

Incorrect but visualization friendly way



ocalisation from GPS measurements only in single time instance
Assume only gps measurement in time t is known

MAP: x; = arg max p@(z,)) = argmaxp(x,|z"")
X

[ [

Bayes theorem Normal prior and likelihood
* P( ) P(X,) i
= arg max = arg max p(z
X p(ZtGPS) X

= arg max A (z;">; X, X7) N (X5 X, Zg) = arg min (X, — z0)’ Y GPS + (X = XO)ZZ_
X, t 0

GPS
Y / X
t ‘ zG P | Xt)p (Xt)




Example: 2D Localisation from GPS measurements only in single time instance

x* = arg max A (zCF5; x,, SO N (x,; Xy, Zp) 2075 = 11,217, x,=[3,3]"
= argmin (x, — 27" EFT (x, — 777 + (x, - x) "5 (x, - xp) TS =3 = [3) (1)]
Xt

: PS112 2
arg min th—ztG SH + [|x, — X, ]

The result Is linear least squares
with closed-form solution

(1,0; 0,1; 1,0; 0,1]
[le 2p 39 3]
pinv (A)*b

A
b

X




Example: 2D Localisation from GPS measurements only in single time instance

x* = arg max A (zCF5; x,, SO N (x,; Xy, Zp) 2075 = 11,217, x,=[3,3]"
= argmin (x, — 27" EFT (x, — 777 + (x, - x) "5 (x, - xp) TS =3 = [3) (1)]
Xt

: PS11?2 2
= arg min ||X, — ZtG °||* + 1%, — Xl

Who remembers Hook’s law
of an ideal spring”

contraction

deformation force



Example: 2D Localisation from GPS measurements only in single time instance

x* = arg max A (zCF5; x,, SO N (x,; Xy, Zp) 2075 = 11,217, x,=[3,3]"
= argmin (x, — 27" EFT (x, — 777 + (x, - x) "5 (x, - xp) TS =3 = [3) (1)]
Xt

: PS11?2 2
= arg min ||X, — ZtG °||* + 1%, — Xl

Who remembers Hook’s law
of an ideal spring”

X — X ]F=k-(x—xo)

a

1
conserved energy: E = 5 k- (X —Xp)”

contraction
force

deformation



Example: 2D Localisation from GPS measurements only in single time instance

x* = arg max A (zCF5; x,, SO N (x,; Xy, Zp) 2075 = 11,217, x,=[3,3]"
— argmin (x, — 207 TEPS ™ (x, — 2075 + (x, — X)) 'S5 (x, - xp) EOPS =%, = [(1> (1)]
Xt

: PS11?2 2
= arg min ||X, — ZtG °||* + 1%, — Xl

Least squares solution

S 2

Equilibrium of mechanical machine
(I.e. state with minimum energy)

conserved energy:

1 1
L = 5 - Kk - th o XOH2+5 -k - HXt o ZtGPSH2



Example: 2D Localisation from GPS measurements only in single time instance

x* = arg max A (zCF5; x,, SO N (x,; Xy, Zp) 2075 = 11,217, x,=[3,3]"
— argmin (x, — 207 TEPS ™ (x, — 2075 + (x, — X)) 'S5 (x, - xp) EOPS =%, = [(1> (1)]
Xt

: PS11?2 2
= arg min ||X, — ZtG °||* + 1%, — Xl

Least squares solution

S 2

Equilibrium of mechanical machine
(I.e. state with minimum energy)

conserved energy:

1 1
L = 5 - Kk - th o XOH2+5 -k - HXt o ZtGPSH2



Example: 2D Localisation from GPS measurements omT In single time instance

| |
x* = arg max A (2" x, TN (X ; X, Zp) 20 = 0 (1) Z = 0 (1)
= arg min (x, — 29") TZOF S_l(xt — 27" + (%, — xp) 251 (x, — X)
Xt

_ : GPS||2 2
= argmin ||x, — 2z, "[|" + [|X, — X F — l X, = X || = - 1|, — 2005 ||2

i i 2 2

1 30

L 25
L 20

+ 15

N |

d 5

¢ £ O

. e v N L5

- - — | 4

4 - | 3

1 - | 2
S What kind of optimizer am l-using?— 2
0- i covariance of the GPS measurément?

0 3 - >



Example: 2D Localisation from GPS measurements only in single time instance

x* = arg max A (2" x, TN (X ; X, Zp) 2 = (1) (1) = 1(/)3 1(/)3

1 —1
= arg min (X, — ztGP S)TZtGP S (X, — ZtGP S) + (X, — XO)T26 I(Xt — X))

= arg min 3||x, — z875||% + ||x, — X, ||’ E=li1x — x|~ 3" [x — 2672
. X, ) 2
+ 70
L 60
L 50
+ 40
L 30
+ 20
L 10
L O

1_

S
| 4
| 3
NV
| 2
1
0

One spring is stronger than the gther sl R
0 1 2 3 4 5

0 ) | ) |
0 1 2 3 4 -




Example: 2D Localisation from GPS measurements only in single time instance
x* = arg max ,/V(ztGPS; X,, ZIGPS)/I/(Xt; X(, 240) ZtGPS =[1,2]", X = EXIH

N ~1 - GPS
= arg min (x, — z&7°) T2 (x, — 2989) + (x, — X,) ' 2 l(x, — xp) 2", 2
Xt

- PS||2
= arg min ||x, — z¢ SHE

X;

2
GPS T th o XOHEO

th o ZIGPSH%tGPS

The result Is linear least squares
with closed-form solution

Stiffness of springs is orientation-specific



Example: 2D Localisation from GPS measurements only in single time instance

X* = argmin ||x, —z7"°||5

2
GPS + HXt T X()Hzo
X, !

Two terms => two springs with orientation-dependent stiffness




Example: 2D Localisation from GPS measurements only in single time instance

X* = arg min ||x, —z""||

2 2
>GPS + HXt o XOHZO
Xt

Two terms => two springs with orientation-dependent stiffness

Adding more measurements ...




Example: 2D Localisation from GPS measurements only in single time instance

X* = argmin ||x, —ZGPSHZGPS+ |, —XOHZ +||x, —ZGPS’

[
X, 2

Three terms => three springs with orientation-dependent stiffness

Adding more measurements ...

PS’
S




Satelite navigation (GPS/GNSS)

X* = arg min th — ZtGPSIH%tGPSl T ”Xt — Z?PSZH%tGpsz + HXt — ZZGPS?,H%tGPSS
Xy
B
-
0 , , , , 0




= arg min ||X, — Z

GPS1|12
F s

GPS| + ”Xt T Zt

10

GPSZHZ
>

Satelite navigation (GPS/GNSS)

GPS2 + th — 7

GPS3112
GPS|[2

6P small




10

= argmin [|x, — 27|36
Xt
Isualization ...

é )

N -
.\‘\‘/
\
0 < ('5 8 10

10

GPS3112
12ors:

¢

77

;»,:-;;» ay of thinking .{.

- —

10



Multiple time Iinstances
_|_
Absolute pose measurement (e.g. GPS)
_|_

Relative pose measurement (e.g.odometry from wheels/IMU/camera/lidar)



2D Localisation in multiple time instances from GPS+odom

* ok 00
X[, X, =10

The result Is linear least squares
oroblem with closed-form solution




2D Localisation in multiple time instances from GPS+odom

Assume only two absolute gps measurements and one relative odom. measurement

X[, X) = argmax p(X,, X, | 25", 25", 224°™)
X1,Xy
Bayes theorem Unitorm prior
v GPS 4GPS 0d
= arg max Pz Ziy 1%, X)) plX;, X)) ' = arg max p(zGlD S 203 7090m x| X,)
X, X, p(Z?PS ZGPS odom) X, 2 12 [> 2
Conditional Independence < 

odom ‘ X,

= arg max p(z7"° | X)) - p(z5"° | x,) - p(295 X,)
Normal er\iHooN
v

= arg max ./V(ZGPS X, ZGPS)./V(ZGPS X, ZGPS)./V(ZOdOm, X, — X, Zadom)
X1:X2

unrealistic but useful

. GP GP
= argmin [|x; = 207|300 + 11X = 257 3005 + 1% = X = 205" |30

X1,Xy



2D Localisation in multiple time instances from GPS+odom

PS|12 d 2
* PSH%?PS T HXZ o ZQG SHZ { OmH

2GPS + HXZ o Xl T Z12 E?gom

X = argmin ||X; — z?
X1,X2

The result Is linear least squares
oroblem with closed-form solution



2D Localisation in multiple time instances from GPS+odom

unary

PS|12 d 2
* PSH%?PS T HXZ o ZQG SHZ { OmH

2GPS + HXZ o Xl T Z12 E?gom

X™ = argmin _||X; — z?
X7,X)

The result Is linear least squares
oroblem with closed-form solution



2D Localisation in multiple time instances from GPS+odom

unary unary

* PSH%?PS + HXZ - ZzG

2 d 2
SHZZGPS T HXZ — X Z?zomux%om

X™ = argmin _||X; — z?
X7,X)

The result Is linear least squares
oroblem with closed-form solution



2D Localisation in multiple time instances from GPS+odom

unar unar alr-wise
. Zy?PSHZ ¥ P
>

*

x* = arg min_||x, GPS odom 2

2
GPS T ‘ Xo — Zz Hzgps T HXZ — X — Z12 X odom

The result Is linear least squares
oroblem with closed-form solution



2D Localisation in multiple time instances from GPS+odom
unary unary palir-wise

PS|2 2 d 2
SHz?PS + HXZ o ZQG SHZ 1 OmH

*
2GPS + HXZ o Xl T Z12 E?gom

X = argmin ||X; — z?
X1,X2

The result Is linear least squares
oroblem with closed-form solution



Mechanical machine example

N | unaryGPS , una(r})gs , pair-wised ,
X' = arg min Hxl o Z1 HZ?PS T HXZ o Zz HZZGPS T HXZ — X Z?ZOmHZ?czlom

X1,Xy

10

® x, ...robotposes

—> 779" . odometry measurements

GPS||2
MW D lIx, — I 56rs ... GPS loss
[

MW J1x, + zodom — Xz‘@?dom ... odom loss




What happens to resulting loss if GPS and odom are inconsistent?

consistent Inconsistent more Inconsistent
odom rotated by 90degs odom rotated by180degs

10

0 2 - 6 8 1 0 2 - 6 8 1C 0 2 - 6 8 10

loss_opt= 0.002646 loss_opt= 10.972076 l0ss_opt= 18.28627

Does it happen to humans?



Motion sickness

OMG- this is So I know.
much fun! Who wouldn't like this?

Bias R,

PGS Do

B o o o an

NEARTHEDCOMICS.COM 2015 ©SARA ZIMMERMAN

MEANWHILE
‘ ' $
® 0

.\
» &g

https://friendsofwords.com/2023/01/24/why-i-dont-agree-with-enjoy-the-journey-not-the-destination/

Why does the body react so weirdly”

I'M TASTY AND I'M POISONOUS,
NUTRITIOUS! CAREFUL NOWI

[ UNRAVEL THE
VERY FABRIC
OF REALITY!

https://www.reddit.com/r/comics/comments/gsn4ul/fun_guys/
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real world physical inconsistencies




Satelite navigation (GPS/GNSS)  +

X

*

= argmin [[x; — 20752 + 1%, — 2

GPS ‘

X;

10

2ns + 1%, + 2947

X2 ‘ ‘ Zodom

Odometry (IMU)

. 4 :
Fach measurement has its own covariance that:

(1) influences djrectional streng

2

4

th of springs

R :
AVATRY

(2) posigion ofthe MAP estinf4qte sotution

10



Motion model



Localisation in multiple time instances from actions and motion model

Actions: u,...u, (generated by external source)
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Localisation in multiple time instances from actions and motion model

Actions: u,...u, (generated by external source)

State-transition prob.:  P(X;|

future

S @ @“’
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Localisation in multiple time instances from actions and motion model

Actions: u,...u, (generated by external source)

State-transition prob.:  P(X;|

Markov assumption: P | Xmply) = p(X, XS X, o, ... X U, .., UL Z s 000 Z))

Motion model: X, = g(X;_1, W) + € 0icc (prior about robot’s behaviour)
Example: pX, X, u) = N (X;8(x,_1,0), ZF) e.g. linear /' (x;x,_; +u, X))
past future

— .\

S @ @"’
@ O




L ocalisation from GPS + IMU + actions

e Motion
moagel




L ocalisation from actions + GPS + IMU
Bayes theorem

Z, | Xp- -

)

p(z,..
arg max p-IC1 Z, u1,3 = arg max

Conditional independence of z on u given X

v

= arg max p(z,...Z,|Xy...X,) p(Xy...X,|0;...1,)
Xg---X,

Normal likelihoods + conditional independences

v

= arg max H,/I/(ZGPS X, ZGPS) H/V(z“dom X — X._ 1,ZOdOm) H/V(Xl,g(xl 1> W), Zg)

X0 -

arg min Z 1%; — 2875 30rs + Z 1%, = Xy = 20" 300 + Z Ix; — g1, w13,
U =

arg min Z ]j-(x, 7)°
Xq,- - X, ;



X), X, = argmin ||x,

10

X1,Xy

PSH2
)

e Motion

GPS/GNSS ~ + e
ors (1% = 23 15 gns + 11%o + 2357 = X5l i + 18(X1: 1) — X5,
® x .......... robot poses

% 29 GPS measurement
—» zodom ... odometry measurements
. 8&(X;,u,) ...motion model
MW\ Z 1X, — 20 ||50ps ... GPS loss
[
MWV 11x, + 2990 — X||30in  --- OdOM lOSS
3 o A lle(x w) — XI5 ... motion loss



Factor graph



Factor graph
o Design choices (I\/Iarkmz assumphon cond:: rndependence) yleJde@I sparse. nodel

* ol a,
° 8 S
7
® . ..

X" = arg Max . I I P (ZGPS‘X) I I P(Ziadam‘xiax I I pX;|x;_j,u;)
et i unary R pa|r—vv|se I i pair-wise ,:
_ __ yodom o, - RS

T arg mln‘ Z HX Z I—1 Z 2@&’01%0 Z HX g(Xl lau)

X0 -




Factor graph
Def: Factor graph is bipartite graph & = {%, 7", &} with

o Two types of nodes: factors m @, € % and Q) variables X, €7

D,(x,)

D, (x)



Factor graph
Def: Factor graph is bipartite graph & = {%, 7", &} with

o Two types of nodes: factors m @, € % and Q) variables X, €7
o bdges ¢; € & are always between factor nodes and variable nodes.

D(X,X,,X;) .. €.0. ternary factor

D,(x,)

D, (x)



Factor graph
Convenient visualisation of the (sparse) problem structure

Simple formulation of MAP estimation problem in negative log-space
X)) ...X;” = arg max H ® (X)) = arg min 2 — log(CI)i(Xi))

Optimisation (contlinuous var. => \oca\lgradient opt., discr. var. => graph search)
Sampling of P(Xp---X) (MCMC Gibbs sampling, ancestral sampling for dir. acyclic)
f factors are linear => closed-form solution available (e.g. LS, KF)

D,(x,)

D, (x)



Factor graph
Convenient visualisation of the (sparse) problem structure

Simple formulation of MAP estimation problem in negative log-space
X)) ...X;” = arg max H ® (X)) = arg min 2 — log(CI)i(Xi))
Xg..- X, 7. Xp. .. X, .

Optimisation (contlinuous var. => \oca\lgradient opt., discr. var. => graph search)
Sampling of P(Xp---X,)) (MCMC Gibbs sampling, ancestral sampling for dir. acyclic'

o |f factors are linear => closed-form solution available (e.g. LS, KF)
o Graphical model usetul for MAP estimation:

SLAM

optimal control

tracking

self-supervised learning

O O O O O



Summary
Understand localisation problem in robotics as MAP estimate of unknown variable:

Model measurement probability of simplitied relative and absolute measurements
Model state-transition probability for linear and nonlinear motion models
Write down optimisation criterion in negative log-space for gaussian prob. distr.

Solve underlying opt. problem using least squares / gradient descend algorithm
in your favourite optimisation tool (MATLAB, Scipy, Pytorch, Julia, Mosek)

Next lecture: Adds rotation and solve the optimization in SE(2) manifold



