Autonomous robotics: outline Karel Zimmermann

Karel Zimmermann

- ARO lecturer
- associate professor

Vojta Vonásek
ARO lecturer
PostDoc researche

Several Severa

Severt Pěnička ROS tutor.

Vít Krátký is the exploration and path following lab tutor.

Bedřich Himmel is technical support staff

Solution Martin Pecka is localization labs tutor and can help with ROS-related questions.

Ruslan Agishev is ICP SLAM lab tutor

Outline:

- Who are we and what are we doing?
- What is the Autonomous Robotics course about?
- Course organization

sing? cs course about?

What is the Autonomous Robotics course about? Obviously about **robotics**, but what is it?

Merriam-Webster definition:

Robotics == technology dealing with the design, construction, and operation of robots in automation

M. Brady's definition:Robotics == the intelligent connection of perception to action

Robotics researchers definition: Robotics == do some **fancy** stuff with robots

Robotics == do some **fancy** stuff with robots

autonomous ants

auton

Controlled environment makes the task significantly easier

What do these robotics solutions have in common?

autonomous butterfly

humanoid parkour

Robotics == do some **fancy** stuff with robots

In order to motivate the robotics research in less controlled environments

DARPA robotic challenges: GOAL: Develop robotic capabilities to execute complex tasks in apriori unknown, uncontrolled environments.

DARPA Grand Challenge 2004, 2005

winner CMU with11.87km/240km

1 Prilit

DARPA Urban Challenge 2007

oogl

RedBull

winner CMU with 96km/96km

DARPA Robotics (humanoid) challenge 2012-2015

how did it go?-

DARPA Robotics (humanoid) challenge 2012-2015 EARPLEX

Urban Environment

Sub-Domains Tunnel Systems • Urban Underground • Cave Networks

Competition Tracks Systems Track • Virtual Track

Revolutionary Vision Create breakthrough technologies and capabilities for underground operations

Cave Environment

SubT challenge 2018-2021

Artist's Concept

explore find

Learn More at www.darpa.mil

Team of our robots

Time: T-45 mins

12

Time: T-35 mins

Arrive .

TTU

Time: T-30 mins

THE TO

180

Electric

Time: T-15 mins

CRAS-09

Time: T-12 mins

Mission: 60 minutes

F

Command: path follow

True detections: 0 False detections: 2

Time: T>60 mins

TK I

Adversarialy controlled environment

.

M ==

My CTU

Outline:

- Who are we and what are we doing?
- What is the Autonomous Robotics course about?
- Course organization

cing? cs course about?

Autonomous robotics course

"How we do it"

Mapping & localisation

Autonomous Robotics (KZ lectures)

Husky robot

l robot

CTU robot

development, visualization and high-level control

Planning for exploration

Object detection

Robotics VV Jectures

Autonomous

DOHCS

Autonomous

Survey B/U Reaver and ar 0.98

cours

Mapping & localisation

Autonomous **Robotics** (KZ lectures)

Husky robot

l robot

CTU robot

development, visualization and high-level control

Planning for exploration

Object detection

Robotics ciures

Autonomous

DOHCS

Autonomous

team

cours

Key essence of the victory is relaxed team

tunnel circuit

Inis component is not com course, but you are encu practise "being relaxed" o

urban circuit

IS not covered over u are encouraged to elaxed" on you own ;

- Autonomous robotics course = "How we do it"

Semestral work="Autonomous exploration of the unknown environment by Turtlebot"

Outline:

- Who are we and what are we doing?
- What is the Autonomous Robotics course about?
- Course organization

cing? cs course about?

Lectures:

- Simultaneous localisation and mapping (KZ)
- Planning (VV)
- Remaining lectures (not necessary for solving the SW) Labs:
- ROS
- SLAM from lidar + IMU + markers
- Motion control & Planning
- Semestral work (3 weeks)

Turtlebot simulator

- Remaining lectures (not necessary for solving the SW) Labs:
- ROS
- SLAM from lidar + IMU + markers
- Motion control & Planning
- Semestral work (3 weeks)

Turtlebot simulator

- ROS
- SLAM from lidar + IMU + markers
- Motion control & Planning
- Semestral work (3 weeks)

- Labs:
- ROS
- SLAM from lidar + IMU + markers
- Motion control & Planning
- Semestral work (3 weeks)

- Labs:
- ROS
- SLAM from lidar + IMU + markers
- Motion control & Planning
- Semestral work (3 weeks)

- 30p from homeworks
- 20p from semestral work (10p simulation + 10p real robots) • 50p points from exam test

Final grade determined by the number of achieved points:

No of points	Exam assessment
0-49	F
50- 59	E
60-69	D
70-79	С
80-89	В
90-100	A

Minimum credit requirements:

- submit own solution of all HWs + SW
- explore at least 50% of map in SW
- active participation in regular labs

Outline