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Connected component 

 A connected component of graph G =(V,E ) with regard to 
vertex v  is a set 

 C(v ) = {u ∈ V | there exists a path in G from u  to v }. 

 In other words: If a graph is disconnected, then parts from 
which is composed from and that are themselves 
connected, are called connected components. 

  

a 

b 

d 

c 

e 

C(a)=C(b)={a,b} 

C(c) =C(d) =C(e)={c,d,e} 
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Strongly Connected Components 
 A directed graph G =(V,E ) is called strongly connected 

if there is a path in each direction between every couple 
of vertices in the graph. 

 The strongly connected components of a directed 
graph G are its maximal strongly connected subgraphs.  

SCC(v ) = {u ∈ V | there exists a path in G from u  to v  and           
a path in G from v  to u} 

 

 a b c d 

e f g h 



Advanced algorithms 
4 / 101 

Kosaraju-Sharir Algorithm 

input: graph G = (V, E ) 

output: set of strongly connected components (sets of vertices)  

1. S = empty stack; 

2. while S does not contain all vertices do 

Choose an arbitrary vertex v  not in S;  

DFS-Walk’(v ) and each time that DFS finishes expanding a vertex u, push u onto S; 

3. Reverse the directions of all arcs to obtain the transpose graph; 

4. while S is nonempty do 

v  = pop(S); 

if  v  is UNVISITED  then  DFS-Walk(v );  

The set of visited vertices will give the strongly connected component containing v;  
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 input:  Graph G. 
1) procedure DFS-Walk(Vertex u ) { 

2)       state[u ] = OPEN; d[u ] = ++time; 

3)       for each Vertex v  in  succ(u )   

4)            if (state[v ] == UNVISITED) then   {p[v ] = u;  DFS-Walk(v ); } 

5)       state[u ] = CLOSED; f[u ] = ++time; 

6) } 

 

7) procedure DFS-Walk’(Vertex u ) { 

8)       state[u ] = OPEN; d[u ] = ++time; 

9)       for each Vertex v  in  succ(u )   

10)            if (state[v ] == UNVISITED) then   {p[v ] = u;  DFS-Walk’(v ); } 

11)       state[u ] = CLOSED; f[u ] = ++time; push u to S; 

12) } 

 output:   array p pointing to predecessor vertex, array d with 
times of vertex opening and array  f with time of vertex closing. 

DFS-Walk 
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Kosaraju-Sharir Algorithm 

a b c d 

e f g h 
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Kosaraju-Sharir Algorithm 

 Complexity: 

 

 The Kosaraju-Sharir algorithm performs two complete 

traversals of the graph. 

 

 If the graph is represented as an adjacency list then 

the algorithm runs in Θ(|V|+|E|) time (linear time). 

  

 If the graph is represented as an adjacency matrix 

then the algorithm runs in O(|V|2) time.  
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Tarjan's Algorithm  
procedure find_scc( v ) 

  v.index = v.lowlink = ++index; 

  push( v ); 

  foreach node w in succ( v ) do 

    if w.index = 0 then // not yet visited 

      find_scc( w ); 

      v.lowlink = min( v.lowlink, w.lowlink ); 

    elsif w.instack then 

      v.lowlink = min( v.lowlink, w.index ); 

    end if 

  end foreach 

 

  if v.lowlink = v.index then // v: head of SCC 

    SCC++ // track how many SCCs found 

    repeat 

      x = pop( S ); 

      add x to current strongly connected component; 

    until x = v; 

    output the current strongly connected component; 

  end if 

end find_scc; 

 

index = 0;    // unique node number > 0 

S = null;     // pointer to node stack 

SCC = 0;      // number of SCCs in G 

foreach node v in V do 

  if v.index = 0 then // yet unvisited 

    find_scc( v ); 

  end if 

end foreach; 

 

 

input: graph G = (V, E)  

output:  set of strongly connected components  
 

// every node has following fields: 

// index: a unique number to ID node 

// lowlink: ties node to others in SCC 

// pred: pointer to stack predecessor 

// instack: true if node is in stack 

 

procedure push( v )  

// stack may be null 

  v.pred    = S; 

  v.instack = true; 

  S         = v; 

end push; 

 

 

function pop( v )  

// val param v is stack copy 

  S         = v.pred; 

  v.pred    = null; 

  v.instack = false; 

  return v; 

end pop; 
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Tarjan's Algorithm  
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Tarjan's Algorithm  
 Complexity: 

 

 The Tarjan's algorithm performs only one complete 

traversal of the graph. 

 

 If the graph is represented as an adjacency list then 

the algorithm runs in Θ(|V|+|E|) time (linear time). 

  

 If the graph is represented as an adjacency matrix 

then the algorithm runs in O(|V|2) time. 

 

 The Tarjan's algorithm runs faster than the Kosaraju-

Sharir algorithm. 
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Euler Trail 
 Euler Trail Problem:  

Does a (directed or undirected) graph G contain a trail (trail is 
similar to path but vertices can repeat and edges cannot 
repeat) that visits every edge exactly once? 
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Euler Trail - Properties 

 Theorem: A graph G has an Euler trail if and only if it is 
connected and has 0 or 2 vertices of odd degree.  

 We can distinguish two cases: 

1. Euler trail starts and ends in the same vertex.   
(Eulerian Tour) 
→Every vertex must have even degree. 

2. Euler trail starts and ends in the different vertices. 
→The starting and ending vertex must have odd degree and the 

others have even degree. 
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Euler Trail 
input: graph G = (V, E ) 

output: trail (as a stack with edges) 

  

procedure  euler-trail(vertex v); 

{ 

  foreach vertex u in succ(v) do { 

      remove edge(v,u) from graph; 

      euler-trail(u); 

      push(edge(v,u)); 

    } 

} 
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Euler Trail 
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Euler Trail 

 Complexity: 

 

 The Euler trail algorithm performs only one complete 

traversal of the graph. 

 

 If the graph is represented as an adjacency list then 

the algorithm runs in Θ(|V|+|E|) time (linear time). 

  

 If the graph is represented as an adjacency matrix 

then the algorithm runs in O(|V|2) time.  
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Hamiltonian Path 
 Hamiltonian Path Problem:  

Does a (directed or undirected) graph G contain a path that 
visits every node exactly once? 

start target 
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Hamiltonian Path 

 Why is the Hamiltonian Path problem so hard (NPC)? 

 Reduction Idea: 
 Suppose we have a black box to solve Hamiltonian Path. 

 We already know that SAT is hard – NP-Complete (Cook 1971). 

 If we can do a polynomial time transformation of an arbitrary 

input SAT instance to some instance for our black box in such a 

way, that our black box solution will directly represent SAT 

solution for the input, then If we solve our black box in 

polynomial time then we can solve even SAT in polynomial time. 
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Hamiltonian Path 
 High level structure: 

. . . 

x1  
 
 
 
 
 
x2  
 
 
. 
. 
. 
 
 
 xn 

c1  
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Hamiltonian Path 
 Internal structure of variable xi: 

 A number of occurrences of variable xi in the whole SAT exactly 

corresponds to the number of pairs in yellow ovals. 

. . . 

xi 

Direction we travel along this 

chain represents whether to 

set the variable to true. 

Direction we travel along this 

chain represents whether to 

set the variable to false. 
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Hamiltonian Path 
 Internal structure of variable xi: 

 If the clause cj contains the positive literal: xi 

. . . 

xi 

cj 
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Hamiltonian Path 
 Internal structure of variable xi: 

 If the clause cj contains the negative literal: xi 

. . . 

xi 

cj 
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