
Advanced algorithms  
  

strongly connected components algorithms,  

Euler trail,  

Hamiltonian path  

 

Jiří Vyskočil, Radek Mařík 

2012 



Advanced algorithms 
2 / 101 

Connected component 

 A connected component of graph G =(V,E ) with regard to 
vertex v  is a set 

 C(v ) = {u ∈ V | there exists a path in G from u  to v }. 

 In other words: If a graph is disconnected, then parts from 
which is composed from and that are themselves 
connected, are called connected components. 

  

a 

b 

d 

c 

e 

C(a)=C(b)={a,b} 

C(c) =C(d) =C(e)={c,d,e} 



Advanced algorithms 
3 / 101 

Strongly Connected Components 
 A directed graph G =(V,E ) is called strongly connected 

if there is a path in each direction between every couple 
of vertices in the graph. 

 The strongly connected components of a directed 
graph G are its maximal strongly connected subgraphs.  

SCC(v ) = {u ∈ V | there exists a path in G from u  to v  and           
a path in G from v  to u} 

 

 a b c d 

e f g h 



Advanced algorithms 
4 / 101 

Kosaraju-Sharir Algorithm 

input: graph G = (V, E ) 

output: set of strongly connected components (sets of vertices)  

1. S = empty stack; 

2. while S does not contain all vertices do 

Choose an arbitrary vertex v  not in S;  

DFS-Walk’(v ) and each time that DFS finishes expanding a vertex u, push u onto S; 

3. Reverse the directions of all arcs to obtain the transpose graph; 

4. while S is nonempty do 

v  = pop(S); 

if  v  is UNVISITED  then  DFS-Walk(v );  

The set of visited vertices will give the strongly connected component containing v;  

 



Advanced algorithms 
5 / 101 

 input:  Graph G. 
1) procedure DFS-Walk(Vertex u ) { 

2)       state[u ] = OPEN; d[u ] = ++time; 

3)       for each Vertex v  in  succ(u )   

4)            if (state[v ] == UNVISITED) then   {p[v ] = u;  DFS-Walk(v ); } 

5)       state[u ] = CLOSED; f[u ] = ++time; 

6) } 

 

7) procedure DFS-Walk’(Vertex u ) { 

8)       state[u ] = OPEN; d[u ] = ++time; 

9)       for each Vertex v  in  succ(u )   

10)            if (state[v ] == UNVISITED) then   {p[v ] = u;  DFS-Walk’(v ); } 

11)       state[u ] = CLOSED; f[u ] = ++time; push u to S; 

12) } 

 output:   array p pointing to predecessor vertex, array d with 
times of vertex opening and array  f with time of vertex closing. 

DFS-Walk 



Advanced algorithms 
6 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 



Advanced algorithms 
7 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 



Advanced algorithms 
8 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 



Advanced algorithms 
9 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 



Advanced algorithms 
10 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 



Advanced algorithms 
11 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

g 



Advanced algorithms 
12 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

f 

g 



Advanced algorithms 
13 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

f 

g 



Advanced algorithms 
14 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

e 

f 

g 



Advanced algorithms 
15 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

e 

f 

g 



Advanced algorithms 
16 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

e 

f 

g 



Advanced algorithms 
17 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

e 

f 

g 



Advanced algorithms 
18 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

h 

e 

f 

g 



Advanced algorithms 
19 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

d 

h 

e 

f 

g 



Advanced algorithms 
20 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

c 

d 

h 

e 

f 

g 



Advanced algorithms 
21 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

b 

c 

d 

h 

e 

f 

g 



Advanced algorithms 
22 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

a 

b 

c 

d 

h 

e 

f 

g 



Advanced algorithms 
23 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

a 

b 

c 

d 

h 

e 

f 

g 



Advanced algorithms 
24 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

a 

b 

c 

d 

h 

e 

f 

g 



Advanced algorithms 
25 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

b 

c 

d 

h 

e 

f 

g 



Advanced algorithms 
26 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

b 

c 

d 

h 

e 

f 

g 



Advanced algorithms 
27 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

b 

c 

d 

h 

e 

f 

g 



Advanced algorithms 
28 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

b 

c 

d 

h 

e 

f 

g 



Advanced algorithms 
29 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

b 

c 

d 

h 

e 

f 

g 



Advanced algorithms 
30 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

b 

c 

d 

h 

e 

f 

g 



Advanced algorithms 
31 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

b 

c 

d 

h 

e 

f 

g 



Advanced algorithms 
32 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

c 

d 

h 

e 

f 

g 



Advanced algorithms 
33 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

d 

h 

e 

f 

g 



Advanced algorithms 
34 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

d 

h 

e 

f 

g 



Advanced algorithms 
35 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

d 

h 

e 

f 

g 



Advanced algorithms 
36 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

d 

h 

e 

f 

g 



Advanced algorithms 
37 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

d 

h 

e 

f 

g 



Advanced algorithms 
38 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

d 

h 

e 

f 

g 



Advanced algorithms 
39 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

d 

h 

e 

f 

g 



Advanced algorithms 
40 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

h 

e 

f 

g 



Advanced algorithms 
41 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

e 

f 

g 



Advanced algorithms 
42 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

f 

g 



Advanced algorithms 
43 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

g 



Advanced algorithms 
44 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

g 



Advanced algorithms 
45 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

g 



Advanced algorithms 
46 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

g 



Advanced algorithms 
47 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 

g 



Advanced algorithms 
48 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 



Advanced algorithms 
49 / 101 

Kosaraju-Sharir Algorithm 

a b c d 

e f g h 

OPEN CLOSED UNVISITED 



Advanced algorithms 
50 / 101 

Kosaraju-Sharir Algorithm 

 Complexity: 

 

 The Kosaraju-Sharir algorithm performs two complete 

traversals of the graph. 

 

 If the graph is represented as an adjacency list then 

the algorithm runs in Θ(|V|+|E|) time (linear time). 

  

 If the graph is represented as an adjacency matrix 

then the algorithm runs in O(|V|2) time.  

 



Advanced algorithms 
51 / 101 

Tarjan's Algorithm  
procedure find_scc( v ) 

  v.index = v.lowlink = ++index; 

  push( v ); 

  foreach node w in succ( v ) do 

    if w.index = 0 then // not yet visited 

      find_scc( w ); 

      v.lowlink = min( v.lowlink, w.lowlink ); 

    elsif w.instack then 

      v.lowlink = min( v.lowlink, w.index ); 

    end if 

  end foreach 

 

  if v.lowlink = v.index then // v: head of SCC 

    SCC++ // track how many SCCs found 

    repeat 

      x = pop( S ); 

      add x to current strongly connected component; 

    until x = v; 

    output the current strongly connected component; 

  end if 

end find_scc; 

 

index = 0;    // unique node number > 0 

S = null;     // pointer to node stack 

SCC = 0;      // number of SCCs in G 

foreach node v in V do 

  if v.index = 0 then // yet unvisited 

    find_scc( v ); 

  end if 

end foreach; 

 

 

input: graph G = (V, E)  

output:  set of strongly connected components  
 

// every node has following fields: 

// index: a unique number to ID node 

// lowlink: ties node to others in SCC 

// pred: pointer to stack predecessor 

// instack: true if node is in stack 

 

procedure push( v )  

// stack may be null 

  v.pred    = S; 

  v.instack = true; 

  S         = v; 

end push; 

 

 

function pop( v )  

// val param v is stack copy 

  S         = v.pred; 

  v.pred    = null; 

  v.instack = false; 

  return v; 

end pop; 

 



Advanced algorithms 
52 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 



Advanced algorithms 
53 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 

1 
1 



Advanced algorithms 
54 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 

1 
1 

2 
2 



Advanced algorithms 
55 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 

1 3 
1 

2 
2 3 



Advanced algorithms 
56 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 

1 3 4 
1 

2 
2 3 4 



Advanced algorithms 
57 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 

1 3 4 

5 

1 
2 

2 3 4 

5 



Advanced algorithms 
58 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 

1 3 4 

6 5 

1 
2 

2 3 4 

5 6 



Advanced algorithms 
59 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 

1 3 4 

7 6 5 

1 
2 

2 3 4 

5 6 7 



Advanced algorithms 
60 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 

1 3 4 

7 6 5 

1 
2 

2 3 4 

5 6 6 



Advanced algorithms 
61 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 

1 3 4 

7 6 5 

1 
2 

2 3 4 

5 6 6 



Advanced algorithms 
62 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 

1 3 4 

7 6 5 

1 
2 

2 3 4 

5 6 6 



Advanced algorithms 
63 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 

1 3 4 

7 6 5 

1 
2 

2 3 4 

4 6 6 



Advanced algorithms 
64 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 

1 3 4 

7 6 5 

1 
2 

2 3 3 

4 6 6 



Advanced algorithms 
65 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 

1 3 4 

7 6 5 

1 
2 

2 3 3 

4 6 6 



Advanced algorithms 
66 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 

1 3 4 

7 6 5 

1 
2 

2 3 3 

4 6 6 



Advanced algorithms 
67 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 

1 3 4 

7 6 5 

1 
2 

2 3 3 

4 6 6 



Advanced algorithms 
68 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 

1 3 4 

8 7 6 5 

1 
2 

2 3 3 

4 6 6 8 



Advanced algorithms 
69 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 

1 3 4 

8 7 6 5 

1 
2 

2 3 3 

4 6 6 1 



Advanced algorithms 
70 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 

1 3 4 

8 7 6 5 

1 
2 

1 3 3 

4 6 6 1 



Advanced algorithms 
71 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 

1 3 4 

8 7 6 5 

1 
2 

1 3 3 

4 6 6 1 



Advanced algorithms 
72 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 

1 3 4 

8 7 6 5 

1 
2 

1 3 3 

4 6 6 1 



Advanced algorithms 
73 / 101 

Tarjan's Algorithm  

pred instack = true instack = false 

S 

1 3 4 

8 7 6 5 

1 
2 

1 3 3 

4 6 6 1 



Advanced algorithms 
74 / 101 

Tarjan's Algorithm  
 Complexity: 

 

 The Tarjan's algorithm performs only one complete 

traversal of the graph. 

 

 If the graph is represented as an adjacency list then 

the algorithm runs in Θ(|V|+|E|) time (linear time). 

  

 If the graph is represented as an adjacency matrix 

then the algorithm runs in O(|V|2) time. 

 

 The Tarjan's algorithm runs faster than the Kosaraju-

Sharir algorithm. 

 



Advanced algorithms 
75 / 101 

Euler Trail 
 Euler Trail Problem:  

Does a (directed or undirected) graph G contain a trail (trail is 
similar to path but vertices can repeat and edges cannot 
repeat) that visits every edge exactly once? 



Advanced algorithms 
76 / 101 

Euler Trail - Properties 

 Theorem: A graph G has an Euler trail if and only if it is 
connected and has 0 or 2 vertices of odd degree.  

 We can distinguish two cases: 

1. Euler trail starts and ends in the same vertex.   
(Eulerian Tour) 
→Every vertex must have even degree. 

2. Euler trail starts and ends in the different vertices. 
→The starting and ending vertex must have odd degree and the 

others have even degree. 



Advanced algorithms 
77 / 101 

Euler Trail 
input: graph G = (V, E ) 

output: trail (as a stack with edges) 

  

procedure  euler-trail(vertex v); 

{ 

  foreach vertex u in succ(v) do { 

      remove edge(v,u) from graph; 

      euler-trail(u); 

      push(edge(v,u)); 

    } 

} 

 



Advanced algorithms 
78 / 101 

Euler Trail 
input: graph G = (V, E ) 

output: trail (as a stack with edges) 

  

procedure  euler-trail(vertex v); 

{ 

  foreach vertex u in succ(v) do { 

      remove edge(v,u) from graph; 

      euler-trail(u); 

      push(edge(v,u)); 

    } 

} 

 



Advanced algorithms 
79 / 101 

Euler Trail 
input: graph G = (V, E ) 

output: trail (as a stack with edges) 

  

procedure  euler-trail(vertex v); 

{ 

  foreach vertex u in succ(v) do { 

      remove edge(v,u) from graph; 

      euler-trail(u); 

      push(edge(v,u)); 

    } 

} 

 



Advanced algorithms 
80 / 101 

Euler Trail 
input: graph G = (V, E ) 

output: trail (as a stack with edges) 

  

procedure  euler-trail(vertex v); 

{ 

  foreach vertex u in succ(v) do { 

      remove edge(v,u) from graph; 

      euler-trail(u); 

      push(edge(v,u)); 

    } 

} 

 



Advanced algorithms 
81 / 101 

Euler Trail 
input: graph G = (V, E ) 

output: trail (as a stack with edges) 

  

procedure  euler-trail(vertex v); 

{ 

  foreach vertex u in succ(v) do { 

      remove edge(v,u) from graph; 

      euler-trail(u); 

      push(edge(v,u)); 

    } 

} 

 



Advanced algorithms 
82 / 101 

Euler Trail 
input: graph G = (V, E ) 

output: trail (as a stack with edges) 

  

procedure  euler-trail(vertex v); 

{ 

  foreach vertex u in succ(v) do { 

      remove edge(v,u) from graph; 

      euler-trail(u); 

      push(edge(v,u)); 

    } 

} 

 



Advanced algorithms 
83 / 101 

Euler Trail 
input: graph G = (V, E ) 

output: trail (as a stack with edges) 

  

procedure  euler-trail(vertex v); 

{ 

  foreach vertex u in succ(v) do { 

      remove edge(v,u) from graph; 

      euler-trail(u); 

      push(edge(v,u)); 

    } 

} 

 



Advanced algorithms 
84 / 101 

Euler Trail 
input: graph G = (V, E ) 

output: trail (as a stack with edges) 

  

procedure  euler-trail(vertex v); 

{ 

  foreach vertex u in succ(v) do { 

      remove edge(v,u) from graph; 

      euler-trail(u); 

      push(edge(v,u)); 

    } 

} 

 



Advanced algorithms 
85 / 101 

Euler Trail 
input: graph G = (V, E ) 

output: trail (as a stack with edges) 

  

procedure  euler-trail(vertex v); 

{ 

  foreach vertex u in succ(v) do { 

      remove edge(v,u) from graph; 

      euler-trail(u); 

      push(edge(v,u)); 

    } 

} 

 



Advanced algorithms 
86 / 101 

Euler Trail 
input: graph G = (V, E ) 

output: trail (as a stack with edges) 

  

procedure  euler-trail(vertex v); 

{ 

  foreach vertex u in succ(v) do { 

      remove edge(v,u) from graph; 

      euler-trail(u); 

      push(edge(v,u)); 

    } 

} 

 



Advanced algorithms 
87 / 101 

Euler Trail 
input: graph G = (V, E ) 

output: trail (as a stack with edges) 

  

procedure  euler-trail(vertex v); 

{ 

  foreach vertex u in succ(v) do { 

      remove edge(v,u) from graph; 

      euler-trail(u); 

      push(edge(v,u)); 

    } 

} 

 



Advanced algorithms 
88 / 101 

Euler Trail 
input: graph G = (V, E ) 

output: trail (as a stack with edges) 

  

procedure  euler-trail(vertex v); 

{ 

  foreach vertex u in succ(v) do { 

      remove edge(v,u) from graph; 

      euler-trail(u); 

      push(edge(v,u)); 

    } 

} 

 



Advanced algorithms 
89 / 101 

Euler Trail 
input: graph G = (V, E ) 

output: trail (as a stack with edges) 

  

procedure  euler-trail(vertex v); 

{ 

  foreach vertex u in succ(v) do { 

      remove edge(v,u) from graph; 

      euler-trail(u); 

      push(edge(v,u)); 

    } 

} 

 



Advanced algorithms 
90 / 101 

Euler Trail 
input: graph G = (V, E ) 

output: trail (as a stack with edges) 

  

procedure  euler-trail(vertex v); 

{ 

  foreach vertex u in succ(v) do { 

      remove edge(v,u) from graph; 

      euler-trail(u); 

      push(edge(v,u)); 

    } 

} 

 



Advanced algorithms 
91 / 101 

Euler Trail 
input: graph G = (V, E ) 

output: trail (as a stack with edges) 

  

procedure  euler-trail(vertex v); 

{ 

  foreach vertex u in succ(v) do { 

      remove edge(v,u) from graph; 

      euler-trail(u); 

      push(edge(v,u)); 

    } 

} 

 



Advanced algorithms 
92 / 101 

Euler Trail 
input: graph G = (V, E ) 

output: trail (as a stack with edges) 

  

procedure  euler-trail(vertex v); 

{ 

  foreach vertex u in succ(v) do { 

      remove edge(v,u) from graph; 

      euler-trail(u); 

      push(edge(v,u)); 

    } 

} 

 



Advanced algorithms 
93 / 101 

Euler Trail 
input: graph G = (V, E ) 

output: trail (as a stack with edges) 

  

procedure  euler-trail(vertex v); 

{ 

  foreach vertex u in succ(v) do { 

      remove edge(v,u) from graph; 

      euler-trail(u); 

      push(edge(v,u)); 

    } 

} 

 



Advanced algorithms 
94 / 101 

Euler Trail 

 Complexity: 

 

 The Euler trail algorithm performs only one complete 

traversal of the graph. 

 

 If the graph is represented as an adjacency list then 

the algorithm runs in Θ(|V|+|E|) time (linear time). 

  

 If the graph is represented as an adjacency matrix 

then the algorithm runs in O(|V|2) time.  

 



Advanced algorithms 
95 / 101 

Hamiltonian Path 
 Hamiltonian Path Problem:  

Does a (directed or undirected) graph G contain a path that 
visits every node exactly once? 

start target 



Advanced algorithms 
96 / 101 

Hamiltonian Path 

 Why is the Hamiltonian Path problem so hard (NPC)? 

 Reduction Idea: 
 Suppose we have a black box to solve Hamiltonian Path. 

 We already know that SAT is hard – NP-Complete (Cook 1971). 

 If we can do a polynomial time transformation of an arbitrary 

input SAT instance to some instance for our black box in such a 

way, that our black box solution will directly represent SAT 

solution for the input, then If we solve our black box in 

polynomial time then we can solve even SAT in polynomial time. 

 



Advanced algorithms 
97 / 101 

Hamiltonian Path 
 High level structure: 

. . . 

x1  
 
 
 
 
 
x2  
 
 
. 
. 
. 
 
 
 xn 

c1  
 
c2 
 
 
c3  
 
 
. 
. 
. 
 
 
 ck 

. . . 

S 

. . . 

. . . 

T 



Advanced algorithms 
98 / 101 

Hamiltonian Path 
 Internal structure of variable xi: 

 A number of occurrences of variable xi in the whole SAT exactly 

corresponds to the number of pairs in yellow ovals. 

. . . 

xi 

Direction we travel along this 

chain represents whether to 

set the variable to true. 

Direction we travel along this 

chain represents whether to 

set the variable to false. 



Advanced algorithms 
99 / 101 

Hamiltonian Path 
 Internal structure of variable xi: 

 If the clause cj contains the positive literal: xi 

. . . 

xi 

cj 



Advanced algorithms 
100 / 101 

Hamiltonian Path 
 Internal structure of variable xi: 

 If the clause cj contains the negative literal: xi 

. . . 

xi 

cj 



Advanced algorithms 
101 / 101 

References 

 Matoušek, J.; Nešetřil, J. Kapitoly z diskrétní matematiky. 
Karolinum. Praha 2002. ISBN 978-80-246-1411-3. 

 Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; 
Stein, Clifford (2001). Introduction to Algorithms (2nd ed.). MIT 
Press and McGraw-Hill. ISBN 0-262-53196-8. 

 Tarjan, R. E. (1972). Depth-first search and linear graph 
algorithms, SIAM Journal on Computing 1 (2): 146–160, 
doi:10.1137/0201010 

 


