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SRS Connected component

A connected component of graph G =(V,£) with regard to
vertex v Is a set

C(v) ={u € V]| there exists a path in G from u to v}.

In other words: If a graph is disconnected, then parts from

which is composed from and that are themselves
connected, are called connected components.

b
\ ((a)=((b)={a,b}
C

a

C(c) =d(d) =(e)={c,d,e}
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" =eStrongly Connected Components

A directed graph G =(V,£) is called strongly connected
if there is a path in each direction between every couple
of vertices in the graph.

The strongly connected components of a directed
graph G are its maximal strongly connected subgraphs.

SCC(v) = {u € V| there exists a path in G from u to v and
a path in G from v to u}
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=K osaraju-Sharir Algorithm

input: graph ¢= (I} E)
output: set of strongly connected components (sets of vertices)
S = empty stack;

while S does not contain all vertices do

Choose an arbitrary vertex v not in S;
DFS-Walk’(v) and each time that DFS finishes expanding a vertex u, push uzonto S;

Reverse the directions of all arcs to obtain the transpose graph;

while S is nonempty do

v = pop(S);
if v is UNVISITED then DFS-Walk(v);
The set of visited vertices will give the strongly connected component containing v;
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S DFS'WaIk

input: Graph G.
procedure DFS-Walk(Vertex u) {
state[u] = OPEN; d[u] = ++time;
for each Vertex v in succ(u)
if (state[v] == UNVISITED) then {p[v]=u; DFS-Walk(v); }
state[u ] = CLOSED; f[u ] = ++time;

procedure DFS-Walk’(Vertex u) {
state[u] = OPEN; d[u ] = ++time;
for each Vertex v in succ(u)
if (state[v] == UNVISITED) then {p[v] = u; DFS-Walk'(v); }
state[u ] = CLOSED; f[u] = ++time; push u to S;

}

output: array p pointing to predecessor vertex, array d with
times of vertex opening and array f with time of vertex closing.
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=K osaraju-Sharir Algorithm
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=K osaraju-Sharir Algorithm

Complexity:

The Kosaraju-Sharir algorithm performs two complete
traversals of the graph.

If the graph is represented as an adjacency list then
the algorithm runs in O(|V|+|E|) time (linear time).

If the graph is represented as an adjacency matrix
then the algorithm runs in O(]V|?) time.
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input:
output:

graph G = (v, E)
set of strongly connected components

// every node has following fields:

// index: a unique number to ID node
// lowlink: ties node to others in SCC
// pred: pointer to stack predecessor
// instack: true if node is in stack

procedure push( v )
// stack may be null

v.pred = S5

v.instack = true;

S = v;
end push;

function pop( v )
// val param v 1s stack copy

S = v.pred;
v.pred = null;
v.instack = false;
return v;

end pop;

Advanced algorithms

Tarjan's Algorithm

procedure find scc( v )
v.index = v.lowlink = ++index;
push( v );
foreach node w in succ( v ) do
if w.index = 0 then // not yet visited
find scc( w );

v.lowlink = min( v.lowlink, w.lowlink );
elsif w.instack then

v.lowlink = min( v.lowlink, w.index );
end if

end foreach

if v.lowlink = v.index then // v: head of SCC
SCC++ // track how many SCCs found
repeat
X = pop( S );
add x to current strongly connected component;
until x = v;
output the current strongly connected component;
end if
end find scc;

index = 0; // unique node number > 0
S = null; // pointer to node stack
SCcC = 0; // number of SCCs in G

foreach node v in V do
if v.index = 0 then // yet unvisited
find scc( v );
end if
end foreach;
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A Tarjan's Algorithm
Complexity:

The Tarjan's algorithm performs only one complete
traversal of the graph.

If the graph is represented as an adjacency list then
the algorithm runs in ©(|V|+|E]) time (linear time).

If the graph is represented as an adjacency matrix
then the algorithm runs in O(|V|?) time.

The Tarjan's algorithm runs faster than the Kosaraju-
Sharir algorithm.
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Euler Trail Problem:

Euler Tralil

Does a (directed or undirected) graph G contain a trail (trail is
similar to path but vertices can repeat and edges cannot
repeat) that visits every edge exactly once?
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" EEE uler Trail - Properties

Theorem: A graph G has an Euler trail if and only if it is
connected and has 0 or 2 vertices of odd degree.

We can distinguish two cases:

Euler trail starts and ends in the same vertex.
(Eulerian Tour)
Every vertex must have even degree.

Euler trail starts and ends in the different vertices.

The starting and ending vertex must have odd degree and the
others have even degree.
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o
input: graph ¢= (I, E)

output: trail (as a stack with edges)

procedure euler-trail(vertex v);
{
foreach vertex u in succ(v) do {
remove edge(v,u) from graph;
euler-trail(u);
push(edge(v,u));
}
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P —— Euler Trail

Complexity:

The Euler trail algorithm performs only one complete
traversal of the graph.

If the graph is represented as an adjacency list then
the algorithm runs in O(|V|+|E|) time (linear time).

If the graph is represented as an adjacency matrix
then the algorithm runs in O(]V|?) time.
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R Hamiltonian Path

Hamiltonian Path Problem:

Does a (directed or undirected) graph G contain a path that
visits every node exactly once?

start

— ®
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— Hamiltonian Path

Why is the Hamiltonian Path problem so hard (NPC)?

Reduction Idea:
Suppose we have a black box to solve Hamiltonian Path.
We already know that SAT is hard — NP-Complete (Cook 1971).
If we can do a polynomial time transformation of an arbitrary
input SAT instance to some instance for our black box in such a
way, that our black box solution will directly represent SAT

solution for the input, then If we solve our black box in
polynomial time then we can solve even SAT in polynomial time.
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e Hamiltonian Path

High level structure:




R Hamiltonian Path

Internal structure of variable x::

1 A number of occurrences of variable x, in the whole SAT exactly
corresponds to the number of pairs in yellow ovals.
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e Hamiltonian Path

Internal structure of variable x::
1 If the clause c; contains the positive literal: x;

G
X
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T Hamiltonian Path

Internal structure of variable x::
If the clause c; contains the negative literal: —x;

G

X. f <
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