Maxwell’s-Lorentz’s Equations

\[\nabla \times \mathbf{H}(r,t) = \mathbf{J}(r,t) + \frac{\partial \mathbf{D}(r,t)}{\partial t} \]
\[\nabla \times \mathbf{E}(r,t) = -\frac{\partial \mathbf{B}(r,t)}{\partial t} \]
\[\nabla \cdot \mathbf{B}(r,t) = 0 \]
\[\nabla \cdot \mathbf{D}(r,t) = \rho(r,t) \]

Equations of motion for fields

Equation of motion for particles

\[\mathbf{f}(r,t) = \rho(r,t) \mathbf{E}(r,t) + \mathbf{J}(r,t) \times \mathbf{B}(r,t) \]

Interaction with materials

\[\mathbf{D}(r,t) = \varepsilon_0 \mathbf{E}(r,t) + \mathbf{P}(r,t) \]
\[\mathbf{B}(r,t) = \mu_0 \left(\mathbf{H}(r,t) + \mathbf{M}(r,t) \right) \]

Absolute majority of things happening around us is described by these equations
Boundary Conditions

\[n(r) \times [E_1(r, t) - E_2(r, t)] = 0 \]

\[n(r) \times [H_1(r, t) - H_2(r, t)] = K(r, t) \]

\[n(r) \cdot [B_1(r, t) - B_2(r, t)] = 0 \]

\[n(r) \cdot [D_1(r, t) - D_2(r, t)] = \sigma(r, t) \]
Electromagnetic Potentials

Lorentz('s) calibration

\[\nabla \cdot A(r, t) = -\sigma \mu \varphi(r, t) - \varepsilon \mu \frac{\partial \varphi(r, t)}{\partial t} \]

\[B(r, t) = \nabla \times A(r, t) \]

\[E(r, t) = -\nabla \varphi(r, t) - \frac{\partial A(r, t)}{\partial t} \]
Wave Equation

\[\Delta A(r, t) - \sigma \mu \frac{\partial A(r, t)}{\partial t} - \varepsilon \mu \frac{\partial^2 A(r, t)}{\partial t^2} = -\mu J_{\text{source}}(r, t) \]

Material parameters are assumed independent of coordinates.
Energy balance in an electromagnetic system

\[- \int_{V} E \cdot J_{source} \, dV = \oint_{S} (E \times H) \cdot dS + \int_{V} \sigma |E|^2 \, dV + \frac{1}{2} \frac{\partial}{\partial t} \int_{V} \left(\varepsilon |E|^2 + \mu |H|^2 \right) \, dV\]
Frequency Domain

\[
F(r, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{F}(r, \omega) e^{j\omega t} d\omega \quad \leftrightarrow \quad \hat{F}(r, \omega) = \int_{-\infty}^{\infty} F(r, t) e^{-j\omega t} dt
\]

- Time derivatives reduce to algebraic multiplication.
- Spatial derivatives are untouched.

Frequency domain helps us to remove explicit time derivatives.
Phasors

\[\hat{F}(r, -\omega) = \hat{F}^*(r, \omega) \]

\[F(r, t) = \frac{1}{\pi} \int_0^\infty \text{Re} \left[\hat{F}(r, \omega) e^{i\omega t} \right] d\omega \]

Reduced frequency domain representation
Maxwell(’s) Equations – Frequency Domain

\[\nabla \times \hat{H}(r, \omega) = \hat{J}(r, \omega) + j\omega \varepsilon \hat{E}(r, \omega) \]

\[\nabla \times \hat{E}(r, \omega) = -j\omega \mu \hat{H}(r, \omega) \]

\[\nabla \cdot \hat{H}(r, \omega) = 0 \]

\[\nabla \cdot \hat{E}(r, \omega) = \frac{\hat{\rho}(r, \omega)}{\varepsilon} \]

We assume linearity of material relations
Helmholtz(‘s) equation

\[\Delta \hat{A}(r, \omega) - j\omega\mu (\sigma + j\omega\varepsilon) \hat{A}(r, \omega) = -\mu \hat{J}_{\text{source}}(r, \omega) \]
Heat Balance in Time-Harmonic Steady State

\[-\int_V \langle E \cdot J_{\text{source}} \rangle \, dV = \oint_S \langle E \times H \rangle \cdot dS + \int_V \langle \sigma |E|^2 \rangle \, dV\]

\[-\frac{1}{2} \int_V \text{Re} \left[\hat{E} \cdot \hat{J}^*_{\text{source}} \right] \, dV = \frac{1}{2} \oint_S \text{Re} \left[\hat{E} \times \hat{H}^* \right] \cdot dS + \frac{1}{2} \int_V \sigma |\hat{E}|^2 \, dV\]

Valid for general periodic steady state

Cycle mean

Valid for time-harmonic steady state
Plane Wave

The simplest wave solution of Maxwell’s equations is given by:

\[
\hat{E}(r, \omega) = E_0(\omega) e^{-jkr} e^{-j\omega t} \\
\hat{H}(r, \omega) = \frac{k}{\omega \mu} \left[n \times E_0(\omega) \right] e^{-jkr} e^{-j\omega t}
\]

- **Unitary vector representing the direction of propagation**
- **Electric and magnetic fields are mutually orthogonal**
- **Electric and magnetic fields are orthogonal to propagation direction**
- **Wave-number**

\[
n \cdot E_0(\omega) = 0 \\
n \cdot H_0(\omega) = 0 \\
k^2 = -j\omega \mu \left(\sigma + j\omega \varepsilon \right)
\]

The simplest wave solution of Maxwell’s equations
Plane Wave Characteristics

\[k = \sqrt{-j\omega\mu(\sigma + j\omega\varepsilon)} \]

- \(\text{Re}[k] > 0; \ \text{Im}[k] < 0 \)

\[\lambda = \frac{2\pi}{\text{Re}[k]} \]

\[v_f = \frac{\omega}{\text{Re}[k]} \]

\[Z = \frac{\omega\mu}{k} \]

\[\delta = -\frac{1}{\text{Im}[k]} \]

Vacuum

\[k = \frac{\omega}{c_0} \]

- \(\text{Re}[k] > 0; \ \text{Im}[k] = 0 \)

\[\lambda = \frac{c_0}{f} \]

\[v_f = c_0 \]

\[Z = c_0\mu_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} \approx 377 \ \Omega \]

\[\delta \to \infty \]

General isotropic material
Cycle Mean Power Density of a Plane Wave

\[
\left\langle E(r, t) \times H(r, t) \right\rangle = \frac{1}{2} \frac{\text{Re}[k]}{\omega \mu} |E_0(\omega)|^2 \ e^{2\text{Im}[k]n \cdot r}
\]
Source Free Maxwell(’s) Equations in Free Space

\[\nabla \times \mathbf{H}(\mathbf{r}, t) = \sigma(\mathbf{r}, t) \times \mathbf{E}(\mathbf{r}, t) + \varepsilon(\mathbf{r}, t) \times \frac{\partial \mathbf{E}(\mathbf{r}, t)}{\partial t} \]
\[\nabla \times \mathbf{E}(\mathbf{r}, t) = -\mu(\mathbf{r}, t) \times \frac{\partial \mathbf{H}(\mathbf{r}, t)}{\partial t} \]
\[\nabla \cdot \mathbf{H}(\mathbf{r}, t) = 0 \]
\[\nabla \cdot \mathbf{E}(\mathbf{r}, t) = 0 \]

\[|k|^2 = k^2 = -j\omega \mu(\omega)\sigma(\omega) + j\omega \varepsilon(\omega) \]
\[\hat{\mathbf{E}}(k, \omega) = \frac{k}{\omega \varepsilon(\omega) - j\sigma(\omega)} \times \hat{\mathbf{H}}(k, \omega) \]
\[\hat{\mathbf{H}}(k, \omega) = -\frac{k}{\omega \mu(\omega)} \times \hat{\mathbf{E}}(k, \omega) \]
\[k \cdot \hat{\mathbf{E}}(k, \omega) = 0 \]
\[k \cdot \hat{\mathbf{H}}(k, \omega) = 0 \]

\[\mathbf{F}(\mathbf{r}, t) = \frac{1}{(2\pi)^4} \int_{k,t} \hat{\mathbf{F}}(k, \omega) e^{j(k \cdot r - \omega t)} \, dk \, d\omega \]

Fourier’s transform leads to simple algebraic equations
Spatial Wave Packet

\[|k|^2 = k^2 = -j\omega\mu(\omega)(\hat{\sigma}(\omega) + j\omega\epsilon(\omega)) \quad \rightarrow \quad \omega = \omega(|k|) \]

This can be electric or magnetic intensity

\[\mathbf{F}(r, t) = \frac{1}{(2\pi)^3} \int k \hat{\mathbf{F}}_0(k) e^{j(k \cdot r + \omega(|k|) t)} \, dk \]

\[k \cdot \hat{\mathbf{F}}_0(k) = 0 \]

General solution to free-space Maxwell’s equations
Spatial Wave Packet in Vacuum

\[\omega(|k|) = \pm c_0 |k| \]

\[k \cdot \hat{F}_0^+ (k) = k \cdot \hat{F}_0^- (k) = 0 \]

\[\hat{F}_0^- (k) = [\hat{F}_0^+ (-k)]^* \]

\[\hat{F}_0^+ (k) = [\hat{F}_0^- (-k)]^* \]

\[F(r, t) = \frac{1}{(2\pi)^3} \int_k e^{jk \cdot r} \left[\hat{F}_0^+ (k)e^{jc_0 |k| t} + \hat{F}_0^- (k)e^{-jc_0 |k| t} \right] dk \]

\[\hat{F}_0^+ (k) = \frac{1}{2} \int_r F(r, 0) + \frac{1}{jc_0 |k|} \frac{\partial F(r, t)}{\partial t} \bigg|_{t=0} \right] e^{-jk \cdot r} dr \]

\[\hat{F}_0^- (k) = \frac{1}{2} \int_r F(r, 0) - \frac{1}{jc_0 |k|} \frac{\partial F(r, t)}{\partial t} \bigg|_{t=0} \right] e^{-jk \cdot r} dr \]

The field is uniquely given by initial conditions
Spatial Wave Packet in Vacuum

$$\omega(\lvert \mathbf{k} \rvert) = \pm c_0 \lvert \mathbf{k} \rvert$$

$$\mathbf{E}(\mathbf{r}, t) = \frac{1}{(2\pi)^3} \int \frac{e^{i\mathbf{k} \cdot \mathbf{r}}}{(2\pi)^3} \left[\hat{\mathbf{E}}^+ (\mathbf{k}) e^{i c_0 t \lvert \mathbf{k} \rvert} + \hat{\mathbf{E}}^- (\mathbf{k}) e^{-i c_0 t \lvert \mathbf{k} \rvert} \right] d\mathbf{k}$$

$$\mathbf{H}(\mathbf{r}, t) = -\frac{1}{(2\pi)^3} \int \frac{e^{i\mathbf{k} \cdot \mathbf{r}}}{(2\pi)^3} \frac{\mathbf{k}}{Z_0 \lvert \mathbf{k} \rvert} \times \left[\hat{\mathbf{E}}^+ (\mathbf{k}) e^{i c_0 t \lvert \mathbf{k} \rvert} - \hat{\mathbf{E}}^- (\mathbf{k}) e^{-i c_0 t \lvert \mathbf{k} \rvert} \right] d\mathbf{k}$$

$$\mathbf{k} \cdot \hat{\mathbf{E}}^+ (\mathbf{k}) = \mathbf{k} \cdot \hat{\mathbf{E}}^- (\mathbf{k}) = 0$$

Electric and magnetic field are not independent
Vacuum Dispersion

1D waves in vacuum propagate without dispersion

\[\mathbf{E}(z, t) = \mathbf{E}^+(z + c_0 t) + \mathbf{E}^-(z - c_0 t) \]

\[\mathbf{H}(z, t) = -\frac{1}{Z_0} \mathbf{z}_0 \times \left[\mathbf{E}^+ (z + c_0 t) - \mathbf{E}^- (z - c_0 t) \right] \]
Vacuum Dispersion

In general this term does not represent translation

\[\left([x, y, z] \pm c_0 t \right) \]

\[E(r, t) = \frac{1}{(2\pi)^3} \int \frac{e^{ikr}}{k^3} \left[E^+ (k) e^{j\omega t|k|} + E^- (k) e^{-j\omega t|k|} \right] dk \]

Waves propagating in all directions

2D and 3D waves in vacuum always disperse = change shape in time
Angular Spectrum Representation

\[|\mathbf{k}|^2 = k^2 = -j\omega\hat{\mu}(\omega)\left(\hat{\sigma}(\omega) + j\omega\hat{\varepsilon}(\omega)\right) \Rightarrow k_z = \pm \sqrt{k_x^2 - k_y^2 - k_z^2} \]

\[\hat{\mathbf{H}}_0(k_x, k_y, \omega) = -\frac{k}{Z|\mathbf{k}|} \times \hat{\mathbf{E}}_0(k_x, k_y, \omega) \quad \hat{\mathbf{E}}_0(k_x, k_y, \omega) = \mathcal{F}_{x,y,t}\{\mathbf{E}(x, y, 0, t)\} \]

\[\mathbf{E}(x, y, z < 0, t) = \frac{1}{(2\pi)^3} \int_{k_x, k_y, \omega} e^{j(k_x x + k_y y + \omega t)} \hat{\mathbf{E}}_0(k_x, k_y, \omega) e^{j\sqrt{k_x^2 - k_y^2 - k_z^2}} dk_x dk_y d\omega \]

\[\mathbf{E}(x, y, z > 0, t) = \frac{1}{(2\pi)^3} \int_{k_x, k_y, \omega} e^{j(k_x x + k_y y + \omega t)} \hat{\mathbf{E}}_0(k_x, k_y, \omega) e^{-j\sqrt{k_x^2 - k_y^2 - k_z^2}} dk_x dk_y d\omega \]

\[k \cdot \hat{\mathbf{E}}_0 = 0 \]

General solution to free-space Maxwell's equations
Propagating vs Evanescent Waves

These waves propagate and can carry information to far distances

\[k_x^2 + k_y^2 < k^2 \]

These waves exponentially decay in amplitude and cannot carry information to far distances

\[k_x^2 + k_y^2 > k^2 \]

Field picture losses it resolution with distance from the source plane
Paraxial Waves

\[\hat{E}_0(k_x, k_y, \omega) \quad \Rightarrow \quad k_x^2 + k_y^2 \ll k^2 \quad \Rightarrow \quad \sqrt{k_x^2 - k_x^2 - k_y^2} \approx k - \frac{1}{2k} (k_x^2 + k_y^2) \]

\[E(x, y, z > 0, t) = \frac{1}{(2\pi)^3} \int_{k_x, k_y, \omega} e^{i(k_x x + k_y y - k_z z - \omega t)} \hat{E}_0(k_x, k_y, \omega) e^{i \frac{1}{2k}(k_x^2 + k_y^2)} dk_x \, dk_y \, d\omega \]

\[k \cdot \hat{E}_0 = 0 \]

Propagates almost as a planewave

\[z_0 \cdot \hat{E}_0 \approx 0 \]
Gaussian Beam

\[
\hat{E}_{0\perp}(k_x, k_y, \omega) = A_{0\perp} \pi w_0^2 e^{-\frac{1}{4}w_0^2(k_x^2 + k_y^2)}
\]

\[
E_{\perp}(x, y, z > 0, t) = \frac{1}{2\pi} \int_{\omega} A_{0\perp} \frac{w_0}{w(z)} e^{\frac{-(x^2+y^2)}{w^2(z)}} e^{\frac{2\pi j}{\lambda_0} \left[x \frac{z}{w(z)} + \frac{x^2+y^2}{w^2(z)} \frac{z}{w(z)} \right]} e^{\frac{2\pi j t}{\lambda_0}} d\omega
\]

Approximates radiation of sources large in comparison to wavelength
Gaussian Beam

Half-width of the beam

\[w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_R} \right)^2} \]

Beam divergence

\[\Theta = \frac{2\lambda}{\pi w_0} \]

Rayleigh's distance

\[z_R = \frac{1}{2} kw_0^2 = \frac{\pi w_0^2}{\lambda} \]
Gaussian Beam – Time-Harmonic Case

\[\langle S \rangle = \frac{1}{2} \text{Re} \left[\mathbf{E}(x, y, z, \omega) \times \mathbf{H}^*(x, y, z, \omega) \right] = z_0 S_0 \frac{w_0^2}{w^2(z)} e^{-\frac{2\rho^2}{w^2(z)}} \]

86.5 % of power flows through the beam width

\[w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_R} \right)^2} \]

Power density at origin
Material Dispersion

Causality requirement
\[\varepsilon(\tau) = 0, \tau < 0 \]

Stability requirement
\[\varepsilon(\tau) \to 0, \tau \to \infty \]

\[D(r,t) = \int_{-\infty}^{\infty} \varepsilon(\tau) E(r,t-\tau) d\tau \]

\[B(r,t) = \int_{-\infty}^{\infty} \mu(\tau) H(r,t-\tau) d\tau \]

\[J(r,t) = \int_{-\infty}^{\infty} \sigma(\tau) E(r,t-\tau) d\tau \]

\[\hat{D}(r,\omega) = \hat{\varepsilon}(\omega) \hat{E}(r,\omega) \]

\[\hat{B}(r,\omega) = \hat{\mu}(\omega) \hat{H}(r,\omega) \]

\[\hat{J}(r,\omega) = \hat{\sigma}(\omega) \hat{E}(r,\omega) \]

Even single planewave undergoes time dispersion when materials are present
Lorentz’s Dispersion Model

\[
\frac{\partial^2 P(t)}{\partial t^2} + \Gamma \frac{\partial P(t)}{\partial t} + \omega_0^2 P(t) = \varepsilon_0 \omega_p^2 E(t)
\]

\[
\varepsilon(\omega) = \varepsilon_0 \left(1 + \frac{\omega_p^2}{\omega_0^2 - \omega^2 + j\omega\Gamma}\right)
\]

\[
\varepsilon(\omega) = \varepsilon_0 \left(1 + \sum_i \frac{\omega_{p,i}^2}{\omega_{0,i}^2 - \omega^2 + j\omega\Gamma_i}\right)
\]

Dispersion model able to describe vast amount of natural materials
Drude’s Dispersion Model

Special case of Lorentz's dispersion

\[\omega_0 = 0 \]
\[\omega_p^2 = \frac{\sigma_0 \Gamma}{\varepsilon_0} \]

Permittivity model

\[\varepsilon(\omega) = \varepsilon_0 \left(1 - \frac{\omega_p^2}{\omega(\omega - j\Gamma)} \right) \]

Conductivity model

\[\sigma(\omega) = \frac{\sigma_0}{1 + j\frac{\omega}{\Gamma}} \]

Collisionless plasma

\[\frac{\Gamma}{\omega} \ll 1 \quad \Rightarrow \quad \varepsilon(\omega) \approx \varepsilon_0 \left(1 - \frac{\omega_p^2}{\omega^2} \right) \]

Dispersion model describing neutral plasma
Appleton’s Dispersion Model

\[\frac{\partial^2 P(t)}{\partial t^2} + \omega_c \frac{\partial P(t)}{\partial t} \times z_0 = \varepsilon_0 \omega_p^2 E(t) \]

- Cyclotron frequency
- Plasma frequency
- Direction of magnetization

\[\hat{\varepsilon} \neq \hat{\varepsilon}^T \]
Propagation in opposite directions is not the same

\[\hat{\varepsilon} = \varepsilon_0 \begin{bmatrix} 1 - \frac{\omega_p^2}{\omega^2 - \omega_c^2} & -j\omega_c \frac{\omega_p^2}{\omega(\omega^2 - \omega_c^2)} & 0 \\ \frac{j\omega_c \omega_p^2}{\omega(\omega^2 - \omega_c^2)} & 1 - \frac{\omega_p^2}{\omega^2 - \omega_c^2} & 0 \\ 0 & 0 & 1 - \frac{\omega_p^2}{\omega^2} \end{bmatrix} \]

Dispersion model describing magnetized neutral plasma
Propagating waves in Appleton’s Dispersion Model

Planewave propagation along magnetization:

\[\mathbf{E} = E_0 e^{j k_z z} \]
\[k \cdot E_0 = 0 \]

Fundamental modes are circularly polarized waves:

\[\frac{k_z^2}{k_0^2} = 1 - \frac{\omega_p^2}{\omega(\omega \pm \omega_c)} \]
\[\hat{E}_x = \mp j \hat{E}_y \]

Dispersion model describing magnetized neutral plasma.
Radiation

Microscopic charge velocity

\[\frac{\partial v(t)}{\partial t} \neq 0 \]

Macroscopic current density

\[\frac{\partial J(r,t)}{\partial t} \neq 0 \]

Any surface circumscribing the sources

\[\int_{-\infty}^{\infty} \oint S \left(E(r,t) \times H(r,t) \right) \cdot dS \, dt \neq 0 \]

Only accelerating charges can radiate
Time-Harmonic Electric Dipole

\[\hat{P}(r, \omega) = z_0 p_z(\omega) \delta(x) \delta(y) \delta(z) \]

\[\rho(r, \omega) \approx 0 \]

\[\hat{A}(r, \omega) = j Z_0 k^2 \left(r_0 \cos \theta - \theta_0 \sin \theta \right) p_z(\omega) \frac{e^{-jkr}}{4\pi kr} \]

\[\hat{H}(r, \omega) = c_0 k^3 \varphi_0 \sin \theta \left(-1 + \frac{j}{kr} \right) p_z(\omega) \frac{e^{-jkr}}{4\pi kr} \]

\[\hat{E}(r, \omega) = Z_0 c_0 k^3 \left[2r_0 \cos \theta \left(\frac{j}{kr} + \frac{1}{k^2 r^2} \right) + \theta_0 \left(-1 + \frac{j}{kr} + \frac{1}{k^2 r^2} \right) \sin \theta \right] p_z(\omega) \frac{e^{-jkr}}{4\pi kr} \]

Elementary source of radiation
Time-Harmonic Electric Dipole - Field Zones

\[\hat{E}(r, \omega) = Z_0 c_0 k^3 \left[2r_0 \cos \theta \left(\frac{j}{kr} + \frac{1}{k^2 r^2} \right) + \theta_0 \left(-1 + \frac{j}{kr} + \frac{1}{k^2 r^2} \right) \sin \theta \right] p_z(\omega) \frac{e^{-jkr}}{4\pi kr} \]

Static, quasi-static and fully dynamic terms all appear in the formula.
Time-Harmonic Electric Dipole - Radiation Zone

\[\hat{P}(r, \omega) = z_0 p_z(\omega) \delta(x) \delta(y) \delta(z) \]

Farfield has a planewave-like geometry

\[\hat{E}_\infty(r, \omega) \approx -Z_0 c_0 k^3 \theta_0 p_z(\omega) \frac{e^{-jkr}}{4\pi kr} \sin \theta \]

\[\hat{H}_\infty(r, \omega) \approx \frac{1}{Z_0} r_0 \times \hat{E}_\infty(r, \omega) \]

\[\langle S_\infty \rangle = \frac{1}{2} \text{Re}[\hat{E}_\infty \times \hat{H}_\infty^*] = \frac{1}{2Z_0} \left|\hat{E}_\infty(r, \omega)\right|^2 r_0 \]

Radiated power [W]

\[P_{\text{rad}} = \frac{c_0^2 Z_0 k^4}{12\pi} \left|p_z(\omega)\right|^2 \]
Time-Harmonic Electric Dipole – General Case

\[\hat{P}(r, \omega) = \hat{p}(\omega) \delta (r - r') \]

\[\hat{H}(r, \omega) = c_0 k^3 \left(\frac{R}{R} \times \hat{p} \right) \left(1 + \frac{1}{jkR} \right) \frac{e^{-jkR}}{4\pi kR} \]

\[\hat{E}(r, \omega) = Z_0 c_0 k^3 \left[-\frac{R}{R} \times \left(\frac{R}{R} \times \hat{p} \right) + \left(3 \frac{R}{R} \left(\hat{p} \cdot \frac{R}{R} \right) - \hat{p} \right) \left(\frac{1}{k^2 R^2} + \frac{j}{kR} \right) \right] \frac{e^{-jkR}}{4\pi kR} \]

Elementary source of radiation

\[R = \left| r - r' \right| \]

\[R = r - r' \]
General Radiator

\[\hat{\mathbf{J}}(\mathbf{r}, \omega), \mathbf{J}(\mathbf{r}, t) \]

\[\hat{\mathbf{A}}(\mathbf{r}, \omega) = \frac{\mu_0}{4\pi} \int_{V'} \hat{\mathbf{J}}(\mathbf{r}', \omega) \frac{e^{-jk_0 R}}{R} dV' \]

\[\mathbf{A}(\mathbf{r}, t) = \frac{\mu_0}{4\pi} \int_{V'} \mathbf{J} \left[\mathbf{r}', t - \frac{R}{c_0} \right] \frac{dV'}{R} \]

\[R = \left| \mathbf{r} - \mathbf{r}' \right| \]

Superposition of dipole fields
Field in Radiation Zone – General Case FD

\[kR \gg 1 \land r \gg r' \]

\[\hat{A}_\infty (r, \omega) \approx \frac{\mu_0}{4\pi r} e^{\frac{-jkr}{r}} \int_{V'} \hat{J} (r', \omega) e^{\frac{jkr_0}{r} \cdot r'} dV' \]

\[\hat{H}_\infty (r, \omega) \approx -\frac{j\omega}{Z_0} r_0 \times \hat{A}_\infty (r, \omega) \]

\[\hat{E}_\infty (r, \omega) \approx j\omega r_0 \times (r_0 \times \hat{A}_\infty (r, \omega)) \]

\[\langle S_\infty \rangle = \frac{1}{2Z_0} \omega^2 \left| r_0 \times \hat{A}_\infty (r, \omega) \right|^2 r_0 \]

Farfield has a planewave-like geometry
Field in Radiation Zone – General Case TD

\[E_\infty \approx -Z_0 \left(r_0 \times H_\infty \right) \]

\[A_\infty (r, t) \approx \frac{\mu}{4\pi r} \int_{V'} J \left(r', t - \frac{r'}{c_0} + \frac{r_0 \cdot r'}{c_0} \right) dV' \]

\[H_\infty (r, t) \approx -\frac{1}{Z_0} r_0 \times \dot{A}_\infty (r, t) \]

\[E_\infty (r, t) \approx r_0 \times \left(r_0 \times \dot{A}_\infty (r, t) \right) \]

\[S_\infty \approx \frac{1}{Z_0} \left| r_0 \times \dot{A}_\infty (r, t) \right|^2 r_0 \]

Farfield has a planewave-like geometry
Radiation Zone = Rays

\[\hat{A}_\infty (\mathbf{r}, \omega) \approx \frac{\mu_0}{4\pi} \frac{e^{-jk_0r}}{r} \int_{V'} \hat{J} (\mathbf{r}', \omega) e^{jk_0r_0r'} \, dV' \]

4D Fourier(’s) transform

\[\hat{J} (k_x, k_y, k_z, \omega) = \mathcal{F}_{x,y,z,t} \{ J (x, y, z, t) \} \]

\[A_\infty (\mathbf{r}, t) \approx \mathcal{F}^{-1}_\omega \left[\frac{\mu_0}{4\pi} \hat{J} (-k_0 \mathbf{r}_0, \omega) e^{-jk_0r} \right] \]

Radiation diagram is formed by Fourier(’s) transform of sources
Angular Spectrum Representation (Sources)

4D Fourier(´s) transform

\[
\hat{\mathbf{J}}(k_x, k_y, k_z, \omega) = \mathcal{F}_{x,y,z,t} \{ \mathbf{J}(x, y, z, t) \}
\]

\[
k_z = \sqrt{k_x^2 - k_y^2 - k_z^2}
\]

\[
\text{Im}[k_z] < 0
\]

\[
\hat{\mathbf{G}} = \frac{\hat{\mathbf{J}}(k_x, k_y, \mp k_z, \omega)}{2k_z} e^{\pm jk_z z}
\]

Valid only outside the source region

\[
\mathbf{H} \left(x, y, z > \max \left(z' \right), t \right) = \mathcal{F}_{k_x, k_y, \omega}^{-1} \left[\left[k_x, k_y, \mp k_z \right] \times \hat{\mathbf{G}} \right]
\]

\[
\mathbf{E} \left(x, y, z > \max \left(z' \right), t \right) = \mathcal{F}_{k_x, k_y, \omega}^{-1} \left[\frac{Z_0}{k} \left[k_x, k_y, \mp k_z \right] \times \left(\left[k_x, k_y, \mp k_z \right] \times \hat{\mathbf{G}} \right) \right]
\]

General solution to free-space Maxwell's equations
Angular Spectrum in Radiation Zone

\[F(\mathbi{x}, \mathbi{y}, \mathbi{z} > 0, \omega) = \mathcal{F}^{-1}_{k_x, k_y} \{ \hat{G}(k_x, k_y) e^{-jk_z z} \} \]

As \(k_0 r \to \infty \):
- \(k_z = \sqrt{k_0^2 - k_x^2 - k_y^2} \)
- \(\text{Im}[k_z] < 0 \)

\[r_0 = \frac{[x, y, z]}{r} \]

\[F_\infty (\mathbi{r}, \omega) = \frac{1}{(2\pi)^2} \int_{k^2 > k_x^2 + k_y^2} \hat{G}(k_x, k_y) e^{jk_0 r \left[\frac{k_x r_{0x} + k_y r_{0y} - k_z r_{0z}}{k_x k_y k_z} \right]} dk_x dk_y \]

As \(k_0 r \to \infty \):
- Stationary phase method

\[F_\infty (\mathbi{r}, \omega) = \frac{jk_0 r_{0z}}{2\pi} \hat{G}\left(-k_0 r_{0x}, -k_0 r_{0y}, \frac{e^{-jk_0 r}}{r} \right) \]

Farfield is made of propagating planewaves
Angular Spectrum in Radiation Zone

4D Fourier(´s) transform

\[\hat{\mathbf{J}}(k_x, k_y, k_z, \omega) = \mathcal{F}_{x,y,z,t}\{\mathbf{J}(x, y, z, t)\} \]

\[H_{\infty}(r, t) \approx \mathcal{F}_\omega^{-1}\left\{ \frac{jk_0}{4\pi} r_0 \times \hat{\mathbf{J}}(-k_0 r_0, \omega) \frac{e^{-jk_0 r}}{r} \right\} \]

\[E_{\infty}(r, t) \approx \mathcal{F}_\omega^{-1}\left\{ \frac{jk_0 Z_0}{4\pi} r_0 \times [r_0 \times \hat{\mathbf{J}}(-k_0 r_0, \omega)] \frac{e^{-jk_0 r}}{r} \right\} \]

Farfield is made of propagating planewaves

\[r_0 = \frac{[x, y, z]}{r} \]
Planar Material Boundary

Field is composed of incident, reflected and transmitted waves

\[k_z = \sqrt{k_x^2 - k_y^2 - k_z^2} \]

Incident wave

Reflected (1 → 1) / Transmitted (2 → 1) wave

\[
H(z < 0) = \mathcal{F}_{k_x,k_y}^{-1} \left\{ \frac{H_1^+(k_x,k_y,\omega)}{k_1} e^{-j k_1 z} + \frac{H_1^-(k_x,k_y,\omega)}{k_1} e^{j k_1 z} \right\}
\]

\[
E(z < 0) = \mathcal{F}_{k_x,k_y}^{-1} \left\{ \left[\frac{k_x k_y - k_{z1}}{k_1} \right] \times \frac{H_1^+(k_x,k_y,\omega)}{k_1} e^{-j k_1 z} + \left[\frac{k_x k_y - k_{z1}}{k_1} \right] \times \frac{H_1^-(k_x,k_y,\omega)}{k_1} e^{j k_1 z} \right\}
\]

Reflected (2 → 2) / Transmitted (1 → 2) wave

\[
H(z > 0) = \mathcal{F}_{k_x,k_y}^{-1} \left\{ \frac{H_2^+(k_x,k_y,\omega)}{k_2} e^{-j k_2 z} + \frac{H_2^-(k_x,k_y,\omega)}{k_2} e^{j k_2 z} \right\}
\]

\[
E(z > 0) = \mathcal{F}_{k_x,k_y}^{-1} \left\{ \left[\frac{k_x k_y - k_{z2}}{k_2} \right] \times \frac{H_2^+(k_x,k_y,\omega)}{k_2} e^{-j k_2 z} + \left[\frac{k_x k_y - k_{z2}}{k_2} \right] \times \frac{H_2^-(k_x,k_y,\omega)}{k_2} e^{j k_2 z} \right\}
\]

Boundary is at \(z = 0 \)

Incident wave

\(~\)
Planar Material Boundary – Boundary Conditions

\[
\begin{align*}
[k_x, k_y, \mp k_z] \cdot H_1^\pm &= 0 \\
[k_x, k_y, \mp k_z] \cdot H_2^\pm &= 0
\end{align*}
\]

\[
\begin{align*}
\mathbf{z}_0 \times H_1^+ + \mathbf{z}_0 \times H_1^- &= \mathbf{z}_0 \times H_2^+ + \mathbf{z}_0 \times H_2^- \\
\frac{\mathbf{z}_0 \times \left([k_x, k_y, -k_z] \times H_1^+\right)}{Z_1} + \frac{\mathbf{z}_0 \times \left([k_x, k_y, k_z] \times H_1^-\right)}{k_1} &= \\
\frac{\mathbf{z}_0 \times \left([k_x, k_y, -k_z] \times H_2^+\right)}{Z_2} + \frac{\mathbf{z}_0 \times \left([k_x, k_y, k_z] \times H_2^-\right)}{k_2}
\end{align*}
\]

\[k_x, k_y\] are equal on both sides

\[k_z = \sqrt{k_x^2 - k_y^2 - k_z^2}, \quad \text{Im}[k_z] < 0\]

Relations valid for both propagative and evanescent waves
Perpendicular Incidence – Matrix Form

\[k_x = k_y = 0 \]

Transmission matrix
(multilayer cascade)

\[
\begin{bmatrix}
E_2^+ \\
E_2^-
\end{bmatrix} = [T] \begin{bmatrix}
E_1^+ \\
E_1^-
\end{bmatrix}
\]

\[
[T] = \frac{1}{T_{22}} \begin{bmatrix}
-T_{21} & 1 \\
\det T & T_{12}
\end{bmatrix}
\]

\[
[S] = \frac{1}{S_{12}} \begin{bmatrix}
-S_{11} & S_{22} \\
\det S & S_{22}
\end{bmatrix}
\]

Scattering matrix
(experiments)

\[
\begin{bmatrix}
E_1^- \\
E_2^+
\end{bmatrix} = [S] \begin{bmatrix}
E_1^+ \\
E_2^-
\end{bmatrix}
\]

\[
[S] = \frac{1}{Z_2 + Z_1} \begin{bmatrix}
Z_2 - Z_1 & 2Z_1 \\
2Z_2 & Z_1 - Z_2
\end{bmatrix}
\]

Matrices with the use across the electrical engineering
Perpendicular Incidence – Interesting Cases

Wavelength inside the slab

\[d = \frac{\lambda}{2N} \]

Transparent dielectric layer

\[T = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \quad S = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \]

Bragg's mirror
(dielectric mirror)

Alternating dielectric layers

\[k_0 \left(n_1 d_1 + n_2 d_2 \right) = N \pi \]

Technically important special cases
Oblique Incidence – TM / TE Case

Snell’s law is a property of k-vectors

\[k_x = k_x \]
\[k_y = 0 \]

Snell’s law of refraction

\[k_1 \sin \alpha_{\text{inc}} = k_2 \sin \alpha_{\text{trans}} \]

\[k_1 \sin \alpha_{\text{inc}} = k_1 \sin \alpha_{\text{refl}} \]

The angle of incidence equals to the angle of reflection

Snell’s law is a property of k-vectors
Oblique Incidence – TM Case

\[
R_{1\rightarrow 1}^{\text{TM}} = \frac{E_{1x}^-}{E_{1x}^+} = \frac{\sqrt{1 - \frac{k_x^2}{k_2^2} Z_2} - \sqrt{1 - \frac{k_x^2}{k_1^2} Z_1}}{\sqrt{1 - \frac{k_x^2}{k_2^2} Z_2} + \sqrt{1 - \frac{k_x^2}{k_1^2} Z_1}}
\]

\[
T_{1\rightarrow 2}^{\text{TM}} = \frac{E_{2x}^+}{E_{1x}^+} = \frac{2Z_2 \sqrt{1 - \frac{k_x^2}{k_2^2}}}{\sqrt{1 - \frac{k_x^2}{k_2^2} Z_2} + \sqrt{1 - \frac{k_x^2}{k_1^2} Z_1}}
\]

Generalization of reflection and transmission to oblique incidence
Oblique Incidence – TM Case

Vanishing reflection on a boundary

\[R_{1 \rightarrow 1}^{\text{TM}} = 0 \]

\[\frac{k_x'}{k_1} = \frac{\sqrt{\varepsilon_2 \left(\mu_2 \varepsilon_1 - \mu_1 \varepsilon_2 \right)}}{\mu_1 \left(\varepsilon_1^2 - \varepsilon_2^2 \right)} \]

Brewster’s angle

Simplification for pure dielectrics

\[\frac{k_x'}{k_1} = \left(1 + \frac{\varepsilon_1}{\varepsilon_2} \right)^{-\frac{1}{2}} \]

Can be used for polarizing unpolarized light beams
Oblique Incidence – TE Case

\[R_{1 \rightarrow 1}^{\text{TE}} = \frac{E_{1y}^-}{E_{1y}^+} = \frac{\sqrt{1 - \frac{k_x^2}{k_1^2} Z_2} - \sqrt{1 - \frac{k_x^2}{k_2^2} Z_1}}{\sqrt{1 - \frac{k_x^2}{k_1^2} Z_2} + \sqrt{1 - \frac{k_x^2}{k_2^2} Z_1}} \]

\[T_{1 \rightarrow 2}^{\text{TE}} = \frac{E_{2y}^+}{E_{1y}^+} = \sqrt{2Z_2} \sqrt{1 - \frac{k_x^2}{k_1^2}} \frac{1}{\sqrt{1 - \frac{k_x^2}{k_1^2} Z_2} + \sqrt{1 - \frac{k_x^2}{k_2^2} Z_1}} \]

Generalization of reflection and transmission to oblique incidence
Oblique Incidence – TE Case

\[R_{1 \rightarrow 1}^{\text{TE}} = 0 \]

\[\frac{k_x}{k_1} = \sqrt{\frac{\mu_2 (\varepsilon_2 \mu_1 - \varepsilon_1 \mu_2)}{\varepsilon_1 (\mu_1^2 - \mu_2^2)}} \]

Brewster's angle

Vanishing reflection on a boundary

Simplification for pure magnetics

\[\frac{k_x}{k_1} = \left(1 + \frac{\mu_1}{\mu_2}\right)^{-\frac{1}{2}} \]

Unrealistic scenario for natural materials

\[k_y = 0 \]
\[E_x = 0 \]
\[E_z = 0 \]
Oblique Incidence – Total Reflection

\[
\frac{k_2}{k_1} > \frac{n_2}{n_1} = 1
\]

\[
|R_{1\rightarrow 1}^{TM}| = |R_{1\rightarrow 1}^{TE}| = 1
\]

Valid for both, the TM and the TE case
Guided TEM Wave

Wave propagation identical to a planewave

\[k^2 = -j\omega \mu (\sigma + j\omega \varepsilon) \]

Generalization of a planewave

\[\hat{E}(r, \omega) = E_\perp(x, y, \omega) e^{-jkz} \]

\[\hat{H}(r, \omega) = H_\perp(x, y, \omega) e^{-jkz} \]

Boundary condition on the conductor

\[\Delta_\perp E_\perp = 0 \]
\[\Delta_\perp H_\perp = 0 \]

Geometry of a planewave

\[\hat{H} = \frac{k}{\omega \mu} (z_0 \times \hat{E}) \]
Circuit Parameters of the TEM Wave

\[\hat{U}(z, \omega) = \hat{U}_0(\omega) e^{-jkz} \]
\[\hat{I}(z, \omega) = \hat{I}_0(\omega) e^{-jkz} \]

Between conductors

\[\hat{I}_0(\omega) = \int_A^B \vec{E}_\perp \cdot dl = \frac{k}{\omega \mu} \cdot \frac{Q_{\text{pul}}}{\varepsilon} \]
\[\hat{U}_0(\omega) = -\int_A^B \vec{H}_\perp \cdot dl = \frac{\omega \mu}{k} \cdot \frac{\Phi_{\text{pul}}}{\mu} \]

Per unit length

\[Z_{\text{TRL}} = \frac{\hat{U}_0(\omega)}{\hat{I}_0(\omega)} = \frac{\omega \mu}{k} \cdot \frac{\varepsilon}{C_{\text{pul}}} = \frac{\omega \mu}{k} \cdot \frac{L_{\text{pul}}}{\mu} = \frac{L_{\text{pul}}}{\sqrt{C_{\text{pul}}}} \]

Velocity of phase propagation

\[v_{\text{phase}} = \frac{1}{\sqrt{\varepsilon \mu}} = \frac{1}{\sqrt{C_{\text{pul}} L_{\text{pul}}}} \]
The Telegraph Equations

\[
\frac{\partial U(z,t)}{\partial z} = -L_{\text{pul}} \frac{\partial I(z,t)}{\partial t}
\]

\[
\frac{\partial I(z,t)}{\partial z} = -C_{\text{pul}} \frac{\partial U(z,t)}{\partial t}
\]

Circuit analog of Maxwell’s equations
Guided TE and TM Waves

Wave propagation differs from a planewave

\[k_z^2 = k^2 - k_{\perp}^2 \]

\[\hat{E}(r, \omega) = \left[E_{\perp}(r_{\perp}, \omega) + z_0 E_z(r_{\perp}, \omega) \right] e^{-j k_z z} \]

\[\hat{H}(r, \omega) = \left[H_{\perp}(r_{\perp}, \omega) + z_0 H_z(r_{\perp}, \omega) \right] e^{-j k_z z} \]

\[E_{\perp} = -\frac{1}{k_{\perp}^2} \left(j k_z \nabla_{\perp} E_z - j \omega \mu z_0 \times \nabla_{\perp} H_z \right) \]

\[H_{\perp} = -\frac{1}{k_{\perp}^2} \left(j k_z \nabla_{\perp} H_z + (\sigma + j \omega \varepsilon) z_0 \times \nabla_{\perp} E_z \right) \]

\[\Delta_{\perp} E_z + k_{\perp}^2 E_z = 0 \]

\[\Delta_{\perp} H_z + k_{\perp}^2 H_z = 0 \]

TEM mode must be completed with TE and TM modes to form a complete set
PEC Waveguides – pure TE, TM modes

Boundary condition on the conductor:

\[\mathbf{n} \times \hat{\mathbf{E}} = 0 \]

Impedances differ from those of a planewave

Modes are orthogonal in waveguide cross-section

Modes form a complete set in waveguide cross-section

TEM mode must be completed with TE and TM modes to form a complete set
PEC Waveguides – modal orthogonality

\[\int_S E_{\perp \alpha} \cdot E^*_{\perp \beta} dS = C \delta_{\alpha\beta} \]

cross-section of the waveguide

\[\int_S \left(E_{\perp \alpha} \times H^*_{\perp \beta} \right) \cdot z_0 dS = \frac{1}{Z_\beta} \int_S E_{\perp \alpha} \cdot E^*_{\perp \beta} dS \]

\[\int_S H_{\perp \alpha} \cdot H^*_{\perp \beta} dS = \frac{1}{Z_\alpha Z^*_\beta} \int_S E_{\perp \alpha} \cdot E^*_{\perp \beta} dS \]

Waveguide modes form an orthogonal set
PEC Waveguides – modal decomposition

positive direction

\[
\hat{E}^+ (r, \omega) = \sum_{\alpha} C^+_{\alpha} \left[E_{\perp \alpha} (r_{\perp}, \omega) + z_0 E_{z\alpha} (r_{\perp}, \omega) \right] e^{-j k_{z\alpha} z}
\]

\[
\hat{H}^+ (r, \omega) = \sum_{\alpha} C^+_{\alpha} \left[H_{\perp \alpha} (r_{\perp}, \omega) + z_0 H_{z\alpha} (r_{\perp}, \omega) \right] e^{-j k_{z\alpha} z}
\]

negative direction

\[
\hat{E}^- (r, \omega) = \sum_{\alpha} C^-_{\alpha} \left[E_{\perp \alpha} (r_{\perp}, \omega) - z_0 E_{z\alpha} (r_{\perp}, \omega) \right] e^{j k_{z\alpha} z}
\]

\[
\hat{H}^- (r, \omega) = \sum_{\alpha} C^-_{\alpha} \left[-H_{\perp \alpha} (r_{\perp}, \omega) + z_0 H_{z\alpha} (r_{\perp}, \omega) \right] e^{j k_{z\alpha} z}
\]

Any field within a waveguide can be composed of its modes
PEC Waveguides – Field Sources

Tangential fields within the cross-section fully define the field everywhere

\[C_{\beta}^{\pm} = \frac{1}{2} \int_S \left[E_{\perp,\beta}^*(r,\omega) \cdot \hat{E}(r,\omega) \pm |Z_{\beta}|^2 H_{\perp,\beta}^*(r,\omega) \cdot \hat{H}(r,\omega) \right] dS \]

\[= e^{\pm jk_{\perp} z} \int_S E_{\perp,\beta}^*(r,\omega) \cdot E_{\perp,\beta}(r,\omega) dS \]
PEC Waveguides – Field Sources

\[C_{\beta}^{\pm} = -\frac{Z_{\beta}}{2} \int_{V} \hat{E}_{\beta}^{\mp}(r, \omega) \cdot \hat{J}_s(r, \omega) \, dV \]

\[= \frac{1}{2} \int_{S} \frac{E_{\perp \beta}(r_{\perp}, \omega)}{E_{\perp \beta}(r_{\perp}, \omega)} \cdot E_{\perp \beta}(r_{\perp}, \omega) \, dS \]

Valid to the right (+) or to the left (-) of the source region

Full field of the waveguide mode

Source current density existing within the waveguide

transversal field of the waveguide mode

This is how waveguide modes are excited
Dielectric Waveguides – mixed TE + TM modes

Boundary condition on the conductor

\[
\mathbf{n} \times [\mathbf{\hat{E}}_1 - \mathbf{\hat{E}}_2] = 0
\]

\[
\mathbf{n} \times [\mathbf{\hat{H}}_1 - \mathbf{\hat{H}}_2] = 0
\]

- **Finite** number of guided modes
- **Continuum** of radiating modes
- **Only combination** of guided and radiating modes forms a complete set in the waveguide cross-section

General field is not guided by a dielectric waveguide