Lecture 1: MATLAB in a Nutshell A8B17CAS

Miloslav Čapek

Department of Electromagnetic Field Czech Technical University in Prague Czech Republic miloslav.capek@fel.cvut.cz

 $\begin{array}{c} {\rm September}\ 23 \\ {\rm Winter\ semester}\ 2024/25 \end{array}$

Outline

- 1. What is Matlab?
- 2. Launching and Termination
- 3. Matlab Environment
- 4. Scalars, Vectors, Matrices
- 5. Basic Math Operations

MATLAB is...

- ▶ High-level programming language (4th generation language).
- ▶ Interpreted language (not compiled, but...JIT).
 - ▶ Intended mainly for numerical computing (nevertheless includes MuPAD symbolic kernel).
- \blacktriangleright Philosophy: kernel & tool boxes & user-defined functions \rightarrow wide application.
 - ▶ Wide possibilities of linking with other tools (Java, C++, Fortran, Python, .NET, Excel, physical- / multi-physical softwares).
- ▶ Speed (of well written) algorithm comes near to that of C++.
- ► Excellent for "fast prototyping."
 - ▶ Matlab does not require variables declaration (not always the advantage).
- ▶ Multi-licensed for CTU.
 - ► Available for students as well!
 - ► CTU students: download.cvut.cz
 - ► FEE students: svti.fel.cvut.cz/cz/services/software/matlab.html

Historical Development of MATLAB

- ▶ the 1970's
 - ► Cleve Moler¹, MATLAB used instead of Fortran.
 - \blacktriangleright MATrix LABoratory \rightarrow matrix is the basic data structure.
 - ► Fortran-based syntax.
- **▶** 1983
 - ▶ Jack Little rewrote Matlab in C.
 - ▶ New functionality and new mathematical libraries added.
- ▶ 1984 (MATLAB is so far for free!)
 - ▶ MathWorks founded in 1984
- ▶ 2004
 - ▶ Matlab used by more than 1 million of active users.
- **▶** now...
 - ▶ R2022a is the newest version of Matlab.
 - ▶ local distribution: Humusoft s.r.o.

¹see: http://www.mathworks.com/company/aboutus/founders/clevemoler.html

Alternatives to MATLAB

Fortran: most of the libraries still in Fortran, used mostly by physicists

Python: for free, fast and intuitive; Spyder provides MATLAB-like features

Julia: very fast, still limited community

Mathematica: symbolic and numerical calculations, excellent symbolic kernel, extensive applicability, mostly for mathematicians and physicists

Maple: symbolic and numerical calculations

MathCad: used for symbolic and numerical calculations, slightly out-of-date

Octave: for free, syntax and functionality similar to Matlab, not so extensive, smartphone executable

R: for free, designed particularly for statistical applications

Scilab: Matlab-like, open documentation

Derive: small, fast, Casio calculator executable

Launching Matlab

▶ Desktop icon

- ► Command line:
 - ▶ matlab

- ► MATLAB can be launched with a set of optional parameters.
 - ▶ matlab -r "test(10)"

- ► System requirements² for MATLAB R2022a+:
 - ▶ Windows 10+
 - ► 4 GB RAM
 - ► 3.1 GB of HDD (MATLAB only), 5-8 GB for a typical installation
 - ► Any Intel or AMD x86-64 processor
- ► Available also for Mac and Linux!

²https://www.mathworks.com/support/requirements/matlab-system-requirements.html

MATLAB Termination

► Close button in the top right of MATLAB window.

▶ Possibility to terminate MATLAB in the command window.

```
>> quit % terminates Matlab
>> exit % -//-
```

▶ More advanced options (see documentation).

```
>> quit cancel
>> exit force
```

The MATLAB Environment

The MATLAB Environment – Panels

- 1. Command Window
- 2. Workspace
- 3. Command History not activated, to activate \rightarrow
- 4. Current Folder
- 5. Current Folder Details
- 6. Current Working Directory
- 7. Status ("Busy" when MATLAB is executing your code)
- 8. Search in documentation

MATLAB Online

- ▶ matlab.mathworks.com
- ▶ Runs in a web browser.
- ► Requires (CTU) log in.
- ► Slower than regular MATLAB.

Documentation

>> doc % opens documentation window

>> doc sin % opens documentation of sin function

MATLAB Commands

Matlab is cAsE sEnSiTiVe!

- ▶ Almost entirely, with certain exceptions (properties of graphics objects, ...).
- ▶ Pay attention to typos and variable names (see later).
 - ▶ New versions of Matlab offer certain options.

```
a, A, b, c, x1, x2, M_12, test1, matrix_A, fx, fX
```

- ▶ Beware of different syntax in MATHEMATICA, e.g., sin(x) vs. Sin[x], etc.
 - ► Following syntax is incorrect both in MATLAB and MATHEMATICA:

```
matrix A % contains space
coef.a % possible only if coef is of type 'struct'
```

▶ Will be discussed in the next lectures.

Naming Conventions

- ▶ Choose names corresponding to the meaning of each particular variable.
 - ▶ Letters and numbers are allowed, other symbols (colon ":", hyphen "-" and others) are not.
 - \blacktriangleright Underscore is allowed in the variable name "_" (not at the beginning, though!).

Naming Conventions

- ▶ Choose names corresponding to the meaning of each particular variable.
 - ▶ Letters and numbers are allowed, other symbols (colon ":", hyphen "-" and others) are not.
 - ▶ Underscore is allowed in the variable name " " (not at the beginning, though!).

Recommendations:

- ▶ Lowercase letters in the names of scalars and variables (a = 17.59;).
- ► Matrix names usually start with a capital letter (A = [..];).
- ▶ Iteration variables, variables used in for cycles usually named m, n, k, etc.
 - ▶ It is advisable to avoid i and j (complex unit).
- ▶ Avoid, if possible, standalone letter "1" (to be confused with one "1") and predefined variables in MATLAB environment (see later).
- ▶ Avoid using names of existing functions or scripts (overloading can occur).
- ▶ The same conventions are valid for names of functions and scripts.

Variable Names

► Examples of valid variable names:

```
a, A, b, c, x1, x2, M_12, test1, matrix_A, fx, fX
```

► Examples of invalid variable names:

► Examples of valid numbers in MATLAB,

```
3, -66, +0.0015, .015, 1e2, 1.6025e-10, 05.1
```

Workspace – Output Deletion

► To clean (erase) command window:

```
>> clc
```

► To clean one (or more) variable(s):

```
>> clear % whole Workspace is deleted
>> clear XX % variable XX is deleted
>> clear XX YY % variables XX and YY are deleted
>> clear z* % everything starting with 'z' is deleted
```

► clear has a number of other options (graphics, I/O)

Command History Window

- ▶ Command History window stores all commands from the Command Window.
- ▶ Command History is accessible though \uparrow or \downarrow .
- ▶ it is possible to filter out past commands by, e.g.:

 » A = [+ ↑.
- ▶ It is possible to copy-and-paste entire Command History: SHIFT / CTRL / CTRL + A \rightarrow CTRL + C.

Matrices in MATLAB

- ► Matrix is a basic data structure in Matlab.
- ► There are the following variables' types depending on size:
 - ► scalar: 1 × 1
 - \triangleright vector: $M \times 1$ or $1 \times N$
 - ightharpoonup matrix: $M \times N$
 - ▶ array (multidimensional matrices): $M \times N \times P \times Q \times R \times ...$
- ► Matrices can be complex.
- ► It can contain text as well (beware of the length).

▶ M-by-N matrix:

Matrix Creation

- ► Following techniques are available:
 - ▶ element-by-element entering (suitable for small matrices only),
 - ▶ colon notation ":" to define elements of series,
 - ▶ generation by built-in functions,
 - ▶ generation of matrices in m-files,
 - ▶ import and export from/to external files(.mat, .txt, .xls, ...).

Matrix Construction Element-by-element I.

▶ Test the following commands to construct matrices by element enumeration.

```
>> a1 = -1
>> a2 = [-1] % brackets are redundant
```

► Suitable for small matrices only.

$$a_1 = a_2 = -1$$

$$\mathbf{v}_1 = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{v}_2 = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_1 = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_1 = \left[\begin{array}{rrr} -1 & 0 & 1 \\ -2 & 0 & 2 \end{array} \right]$$

$$\mathbf{M}_2 = \left[\begin{array}{rrr} -1 & -2 \\ 0 & 0 \\ 1 & 2 \end{array} \right]$$

$$\mathbf{M}_3 = \left[\begin{array}{cc} -1 & -2 \\ 0 & 0 \end{array} \right]$$

Matrix Construction Element-by-element II.

- ► Construct the following matrices:
 - ▶ Matrix values are defined inside square brackets [],
 - ▶ semicolon ";" separates individual rows of a matrix.

$$\mathbf{A} = \begin{bmatrix} -1 & 1 \\ 1 & -2 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Matrix Construction

- ▶ Semicolon placed at the end of a command suppresses the display of the output in the Command Window.
 - ▶ Note: it is possible to copy and paste code including "»"

▶ When there is more than one command on the same line, a comma is used to separate them.

▶ Row vs. column vector:

Basic Math Operators I.

- ► Operator types:
 - ► arithmetic:
 - ▶ matrix,
 - ▶ vector,
 - ► relational,
 - ▶ logical and other (to be mentioned later ...).
- ▶ Other operations using Matlab functions:
 - ► complex conjugate,
 - ▶ sum, determinant, square root,
 - ▶ and hundreds of other functions . . .

- + addition
- subtraction
- \star multiplication
- ` power
- .' transpose
- \ left matrix division
- / right matrix division
- . dot notation

Notice the operator's precedence (to be discussed later).

 \blacktriangleright see Matlab \rightarrow Language Fundamentals \rightarrow Operators and Elementary Operations \rightarrow Arithmetic

Basic Math Operators II.

Type in the following commands:

► Zero can be omitted with a decimal number beginning with zero (not recommended).

- ▶ What is the difference between a_3 , a_4 and a_5 ?
- ▶ Beware the precedence of operators:

► Explain the difference between a2/a3*a4 and a2/(a3/a4).

Basic Math Functions I.

Math functions in Matlab are generally divided in three groups:

- ➤ Scalar
 - ▶ Function operates over individual elements of a matrix,
 - ightharpoonup e.g.: sin, sqrt, log, factorial.
- ➤ Vector
 - ► Function operates over individual rows/columns of a matrix,
 - ightharpoonup e.g.: sum, max.
- ► Matrix
 - ▶ Function operates over a whole matrix,
 - ightharpoonup e.g.: det, trace.

Basic Math Functions II.

▶ Using Matlab help, calculate the following expression: $a \sin^2(\alpha) + a \cos^2(\alpha) - a$ ▶ Use numerical values your own choice.

▶ Verify following logarithmic identity: $\log_{10}(a) + \log_{10}(b) - \log_{10}(ab) = 0$

▶ Find sum of all elements in individual rows of the following matrix:

$$T = \begin{bmatrix} \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ 6 & 7 & 8 & 9 \\ 0.2 & 0.3 & 0.4 & 0.5 \end{bmatrix}$$

Basic Math Functions III.

- ▶ Assume following vectors $\mathbf{u} = (1, 2, 3)$ and $\mathbf{v} = (3, 2, 1)$.
 - ► Calculate:

$$egin{array}{ccc} \mathbf{u}\mathbf{v}^{\mathrm{T}} & \mathbf{v}\mathbf{u}^{\mathrm{T}} \\ \mathbf{v}^{\mathrm{T}}\mathbf{u} & \mathbf{u}^{\mathrm{T}}\mathbf{v} \end{array}$$

- ▶ Following function is needed:
 - ▶ transpose (.') of a vector/matrix,
- ▶ What is the result of the above-mentioned operations?

$$\mathbf{A} = \left[\begin{array}{rr} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{array} \right]$$

$$\mathbf{A}^{\mathrm{T}} = \left[\begin{array}{ccc} 1 & 3 & 5 \\ 2 & 4 & 6 \end{array} \right]$$

Plot a Function

- ▶ Plot the following function in the interval $t \in (0, 10)$.
 - ightharpoonup Choose your sampling of the axis t.

$$f(t) = |\sin(t)| + 1$$

```
% write your code here
%
plot(t, f);
ylim([0 3]);
grid on;
```


Questions?

A8B17CAS miloslav.capek@fel.cvut.cz

September 23 Winter semester 2024/25

This document has been created as a part of A8B17CAS course. Apart from educational purposes at CTU in Prague, this document may be reproduced, stored, or transmitted only with the prior permission of the authors.