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The Nature of Cognition

1.1 Motivation for Studying Artificial Cognitive Systems

When we set about building a machine or writing a software ap-
plication, we usually have a clear idea of what we want it to do
and the environment in which it will operate. To achieve reliable
performance, we need to know about the operating conditions
and the user’s needs so that we can cater for them in the design.
Normally, this isn’t a problem. For example, it is straightfor-
ward to specify the software that controls a washing machine or
tells you if the ball is out in a tennis match. But what do we do
when the system we are designing has to work in conditions that
aren’t so well-defined, where we cannot guarantee that the infor-
mation about the environment is reliable, possibly because the
objects the system has to deal with might behave in an awkward
or complicated way, or simply because unexpected things can
happen?

Let’s use an example to explain what we mean. Imagine we
wanted to build a robot that could help someone do the laun-
dry: load a washing machine with clothes from a laundry basket,
match the clothes to the wash cycle, add the detergent and con-
ditioner, start the wash, take the clothes out when the wash is
finished, and hang them up to dry (see Figure 1.1). In a per-
fect world, the robot would also iron the clothes,1 and put them

1 The challenge of ironing
clothes as a benchmark for
robotics [1] was originally
set by Maria Petrou [2]. It
is a difficult task because
clothes are flexible and
unstructured, making them
difficult to manipulate, and
ironing requires careful use
of a heavy tool and complex
visual processing.

back in the wardrobe. If someone had left a phone, a wallet, or
something else in a pocket, the robot should either remove it
before putting the garment in the wash or put the garment to
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Figure 1.1: A cognitive robot
would be able to see a dirty
garment and figure out what
needs to be done to wash
and dry it.

one side to allow a human to deal with it later. This task is well
beyond the capabilities of current robots2 but it is something 2 Some progress has been

made recently in developing
a robot that can fold clothes.
For example, see the article
“Cloth grasp point detection
based on multiple-view geo-
metric cues with application
to robotic towel folding” by
Jeremy Maitin-Shepard et al.
[3] which describes how the
PR2 robot built by Willow
Garage [4] tackles the prob-
lem. However, the focus in
this task is not so much the
ill-defined nature of the job
— how do you sort clothes
into different batches for
washing and, in the process,
anticipate, adapt, and learn
— as it is on the challenge of
vision-directed manipulation
of flexible materials.

that humans do routinely. Why is this? It is because we have
the ability to look at a situation, figure out what’s needed to
achieve some goal, anticipate the outcome, and take the appro-
priate actions, adapting them as necessary. We can determine
which clothes are white (even if they are very dirty) and which
are coloured, and wash them separately. Better still, we can also
learn from experience and adapt our behaviour to get better at
the job. If the whites are still dirty after being washed, we can
apply some extra detergent and wash them again at a higher
temperature. And best of all, we usually do this all on our own,
autonomously, without any outside help (except maybe the first
couple of times). Most people can work out how to operate a
washing machine without reading the manual, we can all hang
out damp clothes to dry without being told how to do it, and
(almost) everyone can anticipate what will happen if you wash
your smartphone.

We often refer to this human capacity for self-reliance, for
being able to figure things out, for independent adaptive an-
ticipatory action, as cognition. What we want is the ability to
create machines and software systems with the same capacity,
i.e., artificial cognitive systems. So, how do we do it? The first
step would be to model cognition. And this first step is, un-
fortunately, where things get difficult because cognition means
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different things to different people. The issue turns on two key
concerns: (a) the purpose of cognition — the role it plays in hu-
mans and other species, and by extension, the role it should play
in artificial systems — and (b) the mechanisms by which the
cognitive system fulfils that purpose and achieves its cognitive
ability. Regrettably, there’s huge scope for disagreement here
and one of the main goals of this book is to introduce you to the
different perspectives on cognition, to explain the disagreements,
and to tease out their differences. Without understanding these
issues, it isn’t possible to begin the challenging task of develop-
ing artificial cognitive systems. So, let’s get started.

1.2 Aspects of Modelling Cognitive Systems

There are four aspects which we need to consider when mod-
elling cognitive systems:3 how much inspiration we take from 3 For an alternative view

that focusses on assessing
the contributions made by
particular models, espe-
cially computational and
robotic models, see Anthony
Morse’s and Tom Ziemke’s
paper “On the role(s) of
modelling in cognitive
science” [5].

natural systems, how faithful we try to be in copying them, how
important we think the system’s physical structure is, and how
we separate the identification of cognitive capability from the
way we eventually decide to implement it. Let’s look at each of
these in turn.

To replicate the cognitive capabilities we see in humans and
some other species, we can either invent a completely new so-
lution or draw inspiration from human psychology and neuro-
science. Since the most powerful tools we have today are com-
puters and sophisticated software, the first option will probably
be some form of computational system. On the other hand, psy-
chology and neuroscience reflect our understanding of biological
life-forms and so we refer to the second option as a bio-inspired
system. More often than not, we try to blend the two together.
This balance of pure computation and bio-inspiration is the first
aspect of modelling cognitive systems.

Unfortunately, there is an unavoidable complication with the
bio-inspired approach: we first have to understand how the bi-
ological system works. In essence, this means we must come up
with a model of the operation of the biological system and then
use this model to inspire the design of the artificial system. Since
biological systems are very complex, we need to choose the level
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Modular decomposition of a
hypothetical model of mind

Cognitive system based on 
statistical learning of 
specific domain rules

Cognitive system modelled on 
the macroscopic organization 
of the brain

Cognitive system based on
artificial neural networks

Figure 1.2: Attempts to build
an artificial cognitive sys-
tem can be positioned in a
two-dimensional space, with
one axis defining a spec-
trum running from purely
computational techniques to
techniques strongly inpired
by biological models, and
with another axis defining
the level of abstraction of the
biological model.

of abstraction at which we study them. For example, assuming
for the moment that the centre of cognitive function is the brain
(this might seem a very safe assumption to make but, as we’ll
see, there’s a little more to it than this), then you might attempt
to replicate cognitive capacity by emulating the brain at a very
high level of abstraction, e.g. by studying the broad functions of
different regions in the brain. Alternatively, you might opt for a
low level of abstraction by trying to model the exact electrochem-
ical way that the neurons in these regions actually operate. The
choice of abstraction level plays an important role in any attempt
to model a bio-inspired artificial cognitive system and must be
made with care. That’s the second aspect of modelling cognitive
systems.

Taking both aspects together — bio-inspiration and level of
abstraction — we can position the design of an artificial cognitive
system in a two-dimensional space spanned by a computational
/ bio-inspired axis and an abstraction-level axis; see Figure 1.2.
Most attempts today occupy a position not too far from the cen-
tre, and the trend is to move towards the biological side of the
computational / bio-inspired spectrum and to cover several lev-
els of abstraction.

In adopting a bio-inspired approach at any level of abstraction
it would be a mistake to simply replicate brain mechanisms in
complete isolation in an attempt to replicate cognition. Why? Be-
cause the brain and its associated cognitive capacity is the result



the nature of cognition 5

Copyright © 2012 David Vernon

The Ultimate-Proximate Distinction

Proximate Explanation: 
How?

Mechanism 1 Mechanism N

Behaviour Z

Ultimate
Explanation:

Why?

Behaviour A

Different behaviours realized 
with the same mechanism

Different mechanisms used
to realize the same behaviour

Figure 1.3: The ultimate-
proximate distinction. Ulti-
mate explanations deal with
why a given behaviour exists
in a system, while proximate
explanations address the
specific mechanisms by
which these behaviours are
realized. As shown here,
different mechanisms could
be used to achieve the same
behaviour or different be-
haviours might be realized
with the same mechanism.
What’s important is to un-
derstand that identifying the
behaviours you want in a
cognitive system and finding
suitable mechanisms to re-
alize them are two separate
issues.

of evolution and the brain evolved for some purpose. Also, the
brain and the body evolved together and so you can’t divorce
one from the other without running the risk of missing part of
the overall picture. Furthermore, this brain-body evolution took
place in particular environmental circumstances so that the cog-
nitive capacity produced by the embodied brain supports the
biological system in a specific ecological niche. Thus, a com-
plete picture may really require you to adopt a perspective that
views the brain and body as a complete system that operates in
a specific environmental context. While the environment may
be uncertain and unknown, it almost always has some in-built
regularities which are exploited by brain-body system through
its cognitive capacities in the context of the body’s characteris-
tics and peculiarities. In fact, the whole purpose of cognition in
a biological system is to equip it to deal with this uncertainty
and the unknown nature of the system’s environment. This,
then, is the third aspect of modelling cognitive systems: the ex-
tent to which the brain, body, and environment depend on one
another.4 4 We return to the relation-

ship between the brain,
body, and environment in
Chapter 5 on embodiment.

Finally, we must address the two concerns we raised in the
opening section, i.e., the purpose of cognition and the mecha-
nisms by which the cognitive system fulfils that purpose and
achieves its cognitive ability. That is, in drawing on bio-inspiration,
we need to factor in two complementary issues: what cognition
is for and how it is achieved. Technically, this is known as the
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ultimate-proximate distinction in evolutionary psychology; see Fig-
ure 1.3. Ultimate explanations deal with questions concerned
with why a given behaviour exists in a system or is selected
through evolution, while proximate explanations address the
specific mechanisms by which these behaviours are realized.
To build a complete picture of cognition, we must address both
explanations. We must also be careful not to get the two issues
mixed up, as they very often are.5 Thus, when we want to build 5 The importance of the

ultimate-proximate dis-
tinction is highlighted by
Scott-Phillips et al. in a re-
cent article [6]. This article
also points out that ultimate
and proximate explanations
of phenomena are often con-
fused with one another so
we end up discussing prox-
imate concerns when we
really should be discussing
ultimate ones. This is very
often the case with artificial
cognitive systems where
there is a tendency to focus
on the proximate issues of
how cognitive mechanisms
work, often neglecting the
equally important issue of
what purpose cognition is
serving in the first place.
These are two complemen-
tary views and both are
needed. See [7] and [8] for
more details on the ultimate-
proximate distinction.

machines which are able to work outside known operating con-
ditions just like humans can — to replicate the cognitive charac-
teristics of smart people — we must remember that this smart-
ness may have arisen for reasons other than the ones in which
it is being deployed in the current task-at-hand. Our brains and
bodies certainly didn’t evolve so that we could load and unload
a washing machine with ease, but we’re able to do it nonethe-
less. In attempting to use bio-inspired cognitive capabilites to
perform utilitarian tasks, we may well be just piggy-backing on
a deeper and quite possibly quite different functional capacity.
The core problem then is to ensure that this system functional
capacity matches the ones we need to get our job done. Under-
standing this, and keeping the complementary issues of the
purpose and mechanisms of cognition distinct, allows us to keep
to the forefront the important issue of how one can get an artifi-
cial cognitive system (and a biological one, too, for that matter)
to do what we want it to do. If we are having trouble doing this,
the problem may not be the operation of the specific (proximate)
mechanisms of the cognitive model but the (ultimate) selection of
the cognitive behaviours and their fitness for the given purpose
in the context of the brain-body-mind relationship.

To sum up, in preparing ourselves to study artificial cognitive
systems, we must keep in mind four important aspects when
modelling cognitive systems:

1. The computational / bio-inspired spectrum;

2. The level of abstraction in the biological model;

3. The mutual dependence of brain, body, and environment;

4. The ultimate-proximate distinction (why vs. how).
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Understanding the importance of these four aspects will help
us make sense of the different traditions in cognitive science,
artificial intelligence, and cybernetics (among other disciplines)
and the relative emphasis they place on the mechanisms and the
purpose of cognition. More importantly, it will ensure we are
addressing the right questions in the right context in our efforts
to design and build artificial cognitive systems.

1.3 So, What Is Cognition Anyway?

It should be clear from what we have said so far that in asking
“what is cognition?” we are posing a badly-framed question:
what cognition is depends on what cognition is for and how
cognition is realized in physical systems — the ultimate and
proximate aspects of cognition, respectively. In other words, the
answer to the question depends on the context — on the rela-
tionship between brain, body, and environment — and is heavily
coloured by which cognitive science tradition informs that an-
swer. We devote all of Chapter 2 to these concerns. However,
before diving into a deep discussion of these issues, we’ll spend
a little more time here setting the scene. In particular, we’ll pro-
vide a generic characterization of cognition as a preliminary
answer to the question “what is cognition?”, mainly to identify
the principal issues at stake in designing artificial cognitive sys-
tems and always mindful of the need to explain how a given
system addresses the four aspects of modelling identified above.
Now, let’s cut to the chase and answer the question.

Cognition implies an ability to make inferences about events
in the world around you. These events include those that in-
volve the cognitive agent itself, its actions, and the consequences
of those actions. To make these inferences, it helps to remem-
ber what happened in the past since knowing about past events
helps to anticipate future ones.6 Cognition, then, involves pre-

6 We discuss the forward-
looking role of memory
in anticipating events in
Chapter 7.

dicting the future based on memories of the past, perceptions of
the present, and in particular anticipation of the behaviour7 of

7 Inanimate objects don’t
behave but animate ones
do, as do inanimate objects
being controlled by animate
ones (e.g. cars in traffic). So
agency, direct or indirect, is
implied by behaviour.

the world around you and, especially, the effects of your actions
in it. Notice we say actions, not movement of motions. Actions
usually involve movement or motion but an action also involves
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something else. This is the goal of the action: the desired out-
come, typically some change in the world. Since predictions are
rarely perfect, a cognitive system must also learn by observing
what does actually happen, assimilate it into its understanding,
and then adapt the way it subsequently does things. This forms
a continuous cycle of self-improvement in the system’s ability to
anticipate future events. The cycle of anticipation, assimilation,
and adaptation supports — and is supported by — an on-going
process of action and perception; see Figure 1.4.

Anticipate  

Assimilate Adapt

Action Perception

Figure 1.4: Cognition as
a cycle of anticipation,
assimilation, and adaptation:
embedded in, contributing
to, and benefitting from a
continuous process of action
and perception.

We are now ready for our preliminary definition.

Cognition is the process by which an autonomous system per-
ceives its environment, learns from experience, anticipates the
outcome of events, acts to pursue goals, and adapts to changing
circumstances.8

8 These six attributes of
cognition — autonomy,
perception, learning, antic-
ipation, action, adaptation
— are taken from the au-
thor’s definition of cognitive
systems in the Springer En-
cyclopedia of Computer Vision
[9]

We will take this as our preliminary definition of cognition and,
depending on the approach we are discussing, we will adjust it
accordingly in later chapters.

While definitions are convenient, the problem with them is
that they have to be continuously amended as we learn more
about the thing they define.9 So, with that in mind, we won’t be-

9 The Nobel laureate, Peter
Medawar, has this to say
about definitions: “My ex-
perience as a scientist has
taught me that the comfort
brought by a satisfying and
well-worded definition is
only short-lived, because it is
certain to need modification
and qualification as our ex-
perience and understanding
increase; it is explanations
and descriptions that are
needed” [10]. Hopefully, you
will find understandable
explanations in the pages
that follow.

come too attached to the definition and we’ll use it as a memory
aid to remind us that cognition involved at least six attributes of
autonomy, perception, learning, anticipation, action, and adapta-
tion.

For many people, cognition is really an umbrella term that
covers a collection of skills and capabilities possessed by an
agent.10 These include being able to do the following.

10 We frequently use the term
agent in this book. It means
any system that displays a
cognitive capacity, whether
it’s a human, or (potentially,
at least) a cognitive robot,
or some other artificial
cognitive entity. We will use
agent interchangably with
artifical cognitive system.

• Take on goals, formulate predictive strategies to achieve them,
and put those strategies into effect;

• Operate with varying degrees of autonomy;

• Interact — cooperate, collaborate, communicate — with other
agents;

• Read the intentions of other agents and anticipate their ac-
tions;

• Sense and interpret expected and unexpected events;
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Figure 1.5: Another aspect
of cognition: effective
interaction. Here the robot
anticipates someone’s needs
(see Chapter 9, Section 9.4
Instrumental Helping).

• Anticipate the need for actions and predict the outcome of its
own actions and those of others;

• Select a course of action, carry it out, and then assess the
outcome;

• Adapt to changing circumstances, in real-time, by adjusting
current and anticipated actions;

• Learn from experience: adjust the way actions are selected
and performed in the future;

• Notice when performance is degrading, identify the reason for
the degradation, and take corrective action.

These capabilities focus on what the agent should do: its func-
tional attributes. Equally important are the effectiveness and
the quality of its operation: its non-functional characteristics (or,
perhaps more accurately, its meta-functional characteristics): its
dependability, reliability, usability, versatility, robustness, fault-
tolerance, and safety, among others.11

11 The “non-” part of “non-
functional” is misleading
as it suggests a lesser value
compared to functional
characteristics whereas, in
reality, these characteristics
are equally important but
complementary to func-
tionality when designing a
system. For that reason, we
sometimes refer to them as
meta-functional attributes;
see [11] for a more extensive
list and discussion of meta-
functionional attributes.

These meta-functional characteristics are linked to the func-
tional attributes through system capabilities that focus not
on carrying out tasks but on maintaining the integrity of the
agent.12 Why are these capabilities relevant to artificial agents?

12 We will come back to
the issue of maintaining
integrity several times in
this book, briefly in the next
section, and more at length
in the next chapter. For the
moment, we will just remark
that the processes by which
integrity is maintained
are known as autonomic
processes.

They are relevant — and critically so — because artificial agents
such as a robot that is deployed outside the carefully-configured
environments typical of many factory floors have to deal with a
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world that is only partially known. It has to work with incom-
plete information, uncertainty, and change. The agent can only
cope with this by exhibiting some degree of cognition. When you
factor interaction with people into the requirements, cognition
becomes even more important. Why? Because people are cogni-
tive and they behave in a cognitive manner. Consequently, any
agent that interacts with a human needs to be cognitive to some
degree for that interaction to be useful or helpful. People have
their own needs and goals and we would like our artificial agent
to be able to anticipate these (see Figure 1.5). That’s the job of
cognition.

So, in summary, cognition is not to be seen as some module
in the brain of a person or the software of a robot — a planning
module or a reasoning module, for example — but as a system-
wide process that integrates all of the capabilities of the agent to
endow it with the six attributes we mentioned in our memory-
aid definition: autonomy, perception, learning, anticipation,
action, and adaptation.

1.3.1 Why Autonomy?

Notice that we included autonomy in our definition. We need to
be careful about this. As we will see in Chapter 4, the concept of
autonomy is a difficult one. It means different things to different
people, ranging from the fairly innocent, such as being able to
operate without too much help or assistance from others, to the
more controversial, which sees cognition as one of the central
processes by which advanced biological systems preserve their
autonomy. From this perspective, cognitive development has
two primary functions: (1) to increase the system’s repertoire of
effective actions, and (2) to extend the time-horizon of its ability
to anticipate the need for and outcome of future actions.13

13 The increase of action ca-
pabilities and the extension
anticipation capabilities as
the primary focus of cogni-
tion is the central message
conveyed in A Roadmap
for Cognitive Development
in Humanoid Robots [12], a
multi-disciplinary book co-
written by the author, Claes
von Hofsten, and Luciano
Fadiga.

Without wishing to preempt the discussion in Chapter 4,
because there is a tight relationship between cognition and au-
tonomy — or not, depending on who you ask — we will pause
here just a while to consider autonomy a little more.

From a biological perspective, autonomy is an organizational
characteristic of living creatures that enables them to use their
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own capacities to manage their interactions with the world in
order to remain viable, i.e., to stay alive. To a very large extent,
autonomy is concerned with the system maintaining itself: self-
maintenance, for short.14 This means that the system is entirely 14 The concepts of self-

maintenance and recursive
self-maintenance in self-
organizing autonomous
system was introduced by
Mark Bickhard [13]. We will
discuss them in more detail
in Chapter 2. The key idea is
that self-maintenant systems
make active contributions
to their own persistence
but do not contribute to
the maintenance of the
conditions for persistence.
On the other hand, recursive
self-maintenant systems do
contribute actively to the
conditions for persistence.

self-governing and self-regulating. It is not controlled by any
outside agency and this allows it to stand apart from the rest
of the environment and assert an identity of its own. That’s
not to say that the system isn’t influenced by the world around
it, but rather that these influences are brought about through
interactions that must not threaten the autonomous operation of
the system.15

15 When an influence on
a system isn’t directly
controlling it but nonetheless
has some impact on the
behaviour of the system, we
refer to it as a perturbation.

If a system is autonomous, its most important goal is to pre-
serve its autonomy. Indeed, it must act to preserve it since the
world it inhabits that may not be very friendly. This is where
cognition comes in. From this (biological) perspective, cognition
is the process whereby an autonomous self-governing system
acts effectively in the world in which it is embedded in order to
maintain its autonomy.16 To act effectively, the cognitive system

16 The idea of cognition
being concerned with
effective action, i.e. action
that helps preserve the
system’s autonomy, is due
primarily to Francisco Varela
and Humberto Maturana
[14]. These two scientists
have had a major impact
on the world of cognitive
science through their work
on biological autonomy and
the organizational principles
which underpin autonomous
systems. Together, they
provided the foundations for
a new approach to cognitive
science called Enaction. We
will discuss enaction and
enactive systems is more
detail in Chapter 2.

must sense what is going on around it. However, in biological
agents, the systems responsible for sensing and interpretation of
sensory data, as well as those responsible for getting the motor
systems ready to act, are actually quite slow and there is often
a delay between when something happens and when an au-
tonomous biological agent comprehends what has happened.
This delay is called latency and it is often too great to allow the
agent to act effectively: by time you have realized that a preda-
tor is about to attack, it may be too late to escape. This is one of
the primary reasons a cognitive system must anticipate future
events: so that it can prepare the actions it may need to take in
advance of actually sensing that these actions are needed.

In addition to sensory latencies, there are also limitations im-
posed by the environment and the cognitive system’s body. To
perform an action, and specifically to accomplish the goal asso-
ciated with an action, you need to have the relevant part of your
body in a certain place at a certain time. It takes time to move,
so, again, you need to be able to predict what might happen and
prepare to act. For example, if you have to catch an object, you
need to start moving your hand before the object arrives and
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sometimes even before it has been thrown. Also, the world in
which the system is embedded is constantly changing and is out-
side the control of the system. Consequently, the sensory data
which is available to the cognitive system may not only be late in
arriving but critical information may also be missing. Filling in
these gaps is another of the primary functions of a cognitive sys-
tem. Paradoxically, it is also often the case that there is too much
information for the system to deal with and it has to ignore some
of it.17

17 The problem of ignoring
information is related to
two problems in cogitive
science: the Frame Problem
and Attention. We will take
up these issues again later in
the book.

Now, while these capabilities derive directly from the biolog-
ical autonomy-preserving view of cognition, it should be fairly
clear that they would also be of great use to artificial cognitive
systems, whether they are autonomous or not. However, before
moving on to the next section which elaborates a little more on
the relationship between biological and artificial cognitive sys-
tems, it is worth noting that some people consider that cognition
should involve even more than what we have discussed so far.
For example, an artificial cognitive system might also be able
to explain what it is doing and why it is doing it.18 This would 18 The ability not simply

to act but to explain the
reasons for an action was
proposed by Ron Brachman
in an article entitled “Sys-
tems that know what they’re
doing” [15].

enable the system to identify potential problems which could
appear when carrying out a task and to know when it needed
new information in order to complete it. Taking this to the next
level, a cognitive system would be able to view a problem or sit-
uation in several different ways and to look at alternative ways
of tackling it. In a sense, this is similar to the attribute we dis-
cussed above about cognition involving an ability to anticipate
the need for actions and their outcomes. The difference in this
case is that the cognitive system is considering not just one but
many possible sets of needs and outcomes. There is also a case to
be made that cognition should involve a sense of self-reflection:19

19 Self-reflection, often re-
ferred to as meta-cognition,
is emphasized by some peo-
ple, e.g. Aaron Sloman [16]
and Ron Sun [17], as an im-
portant aspect of advanced
cognition.

an ability on the part of the system to think about itself and its
own thoughts. We see here cognition straying into the domain of
consciousness. We won’t say anything more in this book on that
subject apart from remarking that computational modelling of
consciousness is an active area of research in which the study of
cognition plays an important part.
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1.4 Levels of Abstraction in Modelling Cognitive Systems

All systems can be viewed at different levels of abstraction, suc-
cessively removing specific details at higher levels and keeping
just the general essence of what is important for a useful model
of the system. For example, if we wanted to model a physical
structure, such as a suspension bridge, we could do so by speci-
fying each component of the bridge — the concrete foundations,
the suspension cables, the cable anchors, the road surface, and
the traffic that uses it — and the way they all fit together and
influence one another. This approach models the problem at a
very low level of abstraction, dealing directly with the materials
from which the bridge will be built, and we would really only
know after we built it whether or not the bridge will stay up. Al-
ternatively, we could describe the forces at work in each member
of the structure and analyze them to find out if they are strong
enough to bear the required loads with an acceptable level of
movement, typically as a function of different patterns of traffic
flow, wind conditions, and tidal forces. This approach models
the problem at a high level of abstraction and allows the architect
to established whether or not his or her design is viable before
it is constructed. For this type of physical system, the idea is
usually to use an abstract model to validate the design and then
realize it as a physical system. However, deciding on the best
level of abstraction is not always straightforward. Other types
of system — biological ones for example — don’t yield easily to
this top-down approach. When it comes to modelling cognitive
systems, it will come as no surprise that there is some disagree-
ment in the scientific community about what level of abstraction
one should use and how they should relate to one another. We
consider here two contrasting approaches to illustrate their dif-
ferences and their relative merits in the context of modelling and
designing artificial cognitive systems.

As part of his influential work on modelling the human visual
system, David Marr20 advocated a three-level hierarchy of ab-

20 David Marr was a pioneer
in the field of computer
vision. He started out as a
neuroscientist but shifted
to computational modelling
to try to establish a deeper
understanding of the human
visual system. His semi-
nal book Vision [18] was
published posthumously in
1982.

straction;21 see Figure 1.6. At the top level, there is the computa- 21 Marr’s three-level hierar-
chy is sometimes known as
the Levels of Understanding
framework.

tional theory. Below this, there is the level of representation and
algorithm. At the bottom, there is the hardware implementation.
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Computational
Theory

Representation
& Algorithms

Hardware
Implementation

Goal, logic, strategy, model 

Representation & transformation

Physical realization

Loose coupling

Loose coupling

Figure 1.6: The three levels
at which a system should be
understood and modelled:
the computational theory
that formalizes the prob-
lem, the representational
and algorithmic level that
addresses the implementa-
tion of the theory, and the
hardware level that phy-
ically realizes the system
(after David Marr [18]).
The computational theory
is primary and the system
should be understood and
modelled first at this level
of abstraction, although the
representational and algo-
rithmic level is often more
intuitively accessible.

At the level of the computational theory, you need to answer
questions such as “what is the goal of the computation, why is
it appropriate, and what is the logic of the strategy by which it
is carried out?” At the level of representation and algorithm, the
questions are different: “how can this computational theory be
applied? In particular, what is the representation for the input
and output, and what is the algorithm for the transformation?”
Finally, the question at the level of hardware implementation is
“how can the representation and algorithm be physically real-
ized?” In other words, how can we build the physical system?
Marr emphasized that these three levels are only loosely cou-
pled: you can — and, according to Marr, you should — think
about one level without necessarily paying any attention to those
below it. Thus, you begin modelling at the computational level,
ideally described in some mathematical formalism, moving on to
representations and algorithms once the model is complete, and
finally you can decide how to implement these representations
and algorithms to realize the working system. Marr’s point is
that, although the algorithm and representation levels are more
accessible, it is the computational or theoretical level that is crit-
ically important from an information processing perspective. In
essence, he states that the problem can and should first be mod-
elled at the abstract level of the computational theory without
strong reference to the lower and less abstract levels.22 Since

22 Tomaso Poggio recently
proposed a revision of
Marr’s three-level hierarchy
in which he advocates
greater emphasis on the
connections between the
levels and an extension of
the range of levels, adding
Learning and Development
on top of the computational
theory level (specifically
hierarchical learning), and
Evolution on top of that [19].
Tomaso Poggio co-authored
the original paper [20] on
which David Marr based his
more famous treatment in
his 1982 book Vision [18].

many people believe that cognitive systems — both biological
and artificial — are effectively information processors, Marr’s
hierarchy of abstraction is very useful.

Marr illustrated his argument succinctly by comparing the
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problem of understanding vision (Marr’s own goal) to the prob-
lem of understanding the mechanics of flight.

“Trying to understand perception by studying only neurons is
like trying to understand bird flight by studying only feathers: it
just cannot be done. In order to understand bird flight, we have to
understand aerodynamics; only then do the structure of feathers
and the different shapes of birds’ wings make sense”

Objects with different cross-sectional profiles give rise to differ-
ent pressure patterns on the object when they move through a
fluid such as air (or when a fluid flows around an object). If you
choose the right cross-section then there is more pressure on the
bottom than on the top, resulting in a lifting force that counters
the force of gravity and allows the object to fly. It isn’t until you
know this that you can begin to understand the problem in a
way that will yield a solution for your specific needs.

Of course, you eventually have to decide how to realize a
computational model but this comes later. The point he was
making is that you should decouple the different levels of ab-
straction and begin your analysis at the highest level, avoiding
consideration of implementation issues until the computational
or theoretical model is complete. When it is, it can then subse-
quently drive the decisions that need to be taken at the lower
level when realizing the physical system.

Marr’s dissociation of the different levels of abstraction is
significant because it provides an elegant way to build a com-
plex system by addressing it in sequential stages of decreasing
abstraction. It is a very general approach and can be applied
successfully to modelling, designing, and building many differ-
ent systems that depend on the ability to process information. It
also echoes the assumptions made by proponents of a particular
paradigm of cognition — cognitivism — which we will meet in
the next chapter.23

23 The cognitivist approach
to cognition proposes an
abstract model of cognition
which doesn’t require you to
consider the final realization.
In other words, cognitivist
models can be applied to
any platform that supports
the required computations
and this platform could be
a computer or a brain. See
Chapter 2, Section 2.1, for
more details.

Not everyone agrees with Marr’s approach, mainly because
they think that the physical implementation has a direct role to
play in understanding the computational theory. This is particu-
larly so in the emergent paradigm of embodied cognition which
we will meet in the next chapter, the embodiment reflecting the
physical implementation. Scott Kelso,24 makes a case for a com-

24 Over the last 25 years,
Scott Kelso, the founder
of the Center for Complex
Systems and Brain Sciences
at Florida Atlantic Univer-
sity, has developed a theory
of Coordination Dynamics.
This theory, grounded in the
concepts of self-organization
and the tools of coupled
nonlinear dynamics, incor-
porates essential aspects of
cognitive function, includ-
ing anticipation, intention,
attention, multimodal inte-
gration, and learning. His
book, Dynamic Patterns –
The Self-Organization of Brain
and Behaviour [21], has influ-
enced research in cognitive
science world-wide.
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Figure 1.7: Another three
levels at which a system
should be modelled: a
boundary constraint level
that determines the task or
goal, a collective variable
level that characterizes
coordinated states, and a
component level which
forms the realized system
(after Scott Kelso [21] ).
All three levels are equally
important and should be
considered together.

pletely different way of modelling systems, especially non-linear
dynamical types of systems that he believes may provide the true
basis for cognition and brain dynamics. He argues that these
types of system should be modelled at three distinct levels of ab-
straction, but at the same time. These three levels are a boundary
constraint level, a collective variables level, and a components
level. The boundary constraint level determines the goals of
the system. The collective variable25 level characterizes the be- 25 Collective variables, also

referred to as order param-
eters, are so called because
they are responsible for the
system’s overall collective
behaviour. In dynamical
systems theory, collective
variables are a small sub-
set of the system’s many
degrees of freedom but
they govern the transitions
between the states that the
system can exhibit and
hence its global behaviour.

haviour of the system. The component level forms the realized
physical system. Kelso’s point is that the specification of these
three levels of model abstraction are tightly coupled and mutu-
ally dependent. For example, the environmental context of the
system often determines what behaviours are feasible and use-
ful. At the same time, the properties of the physical system may
simplify the necessary behaviour. Paraphrasing Rolf Pfeifer,26

26 Rolf Pfeifer, University
of Zurich, has long been
a champion of the tight
relationship between a
system’s embodiment and
its cognitive behaviour, a
relationship set out in his
book How the body shapes the
way we think: A new view of
intelligence [22], co-authored
by Josh Bongard.

“morphology matters”: the properties of the physical shape or
the forced needed for required movements may actually simplify
the computational problem. In other words, the realization of
the system and its particular shape or morphology cannot be
ignored and should not be abstracted away when modelling the
system. This idea that you cannot model the system in isolation
from either the system’s environmental context or the system’s
ultimate physical realization is linked directly to the relationship
between brain, body, and environment. We will meet it again
later in the book when we discuss enaction in Chapter 2 and
when we consider the issue of embodiment in Chapter 5.

The mutual dependence of system realization and system
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Figure 1.8: Circular causality
— sometimes referred

to as continuous recipro-
cal causation or recursive
self-maintenance — refers to
the situation where global
system behaviour some-
how influences the local
behaviour of the system
components and yet it is the
local interaction between
the components that deter-
mines the global behaviour.
This phenomenon appears
to be one of the pivotal
mechanisms in autonomous
cognitive systems.

modelling presents us with a difficulty, however. If we look care-
fully, we see a circularity, with everything depending on some-
thing else. It’s not easy to see how you break into the modelling
circle. This is one of the attractions of Marr’s approach: there is
a clear place to get started. This circularity crops up repeatedly
in cognition and it does so in many forms. All we will say for
the moment is that circular causality27 — where global system

27 Scott Kelso uses the
term “circular causality”
to describe the situation
in dynamical systems
where the cooperation of
the individual parts of the
system determine the global
system behaviour which, in
turn, governs the behaviour
of these individual parts
[21]. This is related to
Andy Clark’s concept
of continuous reciprocal
causation (CRC) [23] which
“occurs when some system
S is both continuously
affecting and simultaneously
being affected by, activity in
some other system O” [24].
These ideas are also echoed
in Mark Bickhard’s concept
of recursive self-maintenance
[13]. We will say more about
these matters in Chapter 4.

behaviour somehow influences the local behaviour of the sys-
tem components and yet it is the local interaction between the
components that determines the global behaviour; see Figure 1.8
— appears to be one of the key mechanisms of cognition. We
will return again to this point later in the book. For the moment,
we’ll simply remark that the two constrasting approaches to
system modelling mirror two opposing paradigms of cognitive
science. It is to these that we now turn in Chapter 2 to study the
foundations that underpin our understanding of natural and
artificial cognitive systems.
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