Feature extraction and selection

Based on slides Martina Bachlera martin.bachler@igi.tugraz.at, Makoto Miwa
And paper Isabelle Guyon, André Elisseeff: An Introduction to variable and feature selection. JMLR, 3 (2003) 1157-1182
Overview

- Introduction/Motivation
- Basic definitions, Terminology
- Variable Ranking methods
- Feature subset selection

WHY ?
WHAT ?
HOW ?
Problem: **Where to focus attention?**

- A universal problem of intelligent (learning) agents is where to focus their attention.

- What aspects of the problem at hand are important/necessary to solve it?

- Discriminate between the relevant and irrelevant parts of experience.
What is **feature selection**?

- **Feature selection**: Problem of selecting some subset of a learning algorithm’s input variables upon which it should focus attention, while ignoring the rest (DIMENSIONALITY REDUCTION)

- **Humans/animals do that constantly!**
Monkeys performing classification task

Motivational example from Biology

Motivational example from Biology

Monkeys performing classification task

All considered features:
- Eye height
- Eye separation
- Nose length
- Mouth height

How many pairs of features?

Diagnostic features:
- Eye height
- Eye separation

Non-Diagnostic features:
- Nose length
- Mouth height
Motivational example from Biology

Monkeys performing classification task

Results:

- activity of a population of 150 neurons in the anterior inferior temporal cortex was measured

- 44 neurons responded significantly differently to at least one feature

- After Training: 72% (32/44) were selective to one or both of the diagnostic features (and not for the non-diagnostic features)
Why even think about Feature Selection in ML?

- The information about the target class is **inherent in the variables**!

- Naive theoretical view:
 More features
 => More information
 => More discrimination power.

- In practice:
 many reasons why this is not the case!

- Also:
 Optimization is (usually) good, so why not try to optimize the input-coding?
Introduction

- Large and high-dimensional data
 - Web documents, etc...
 - A large amount of resources are needed in
 - Information Retrieval
 - Classification tasks
 - Data Preservation etc...

Dimension Reduction
Dimension Reduction

- preserves information on classification of overweight and underweight as much as possible
- makes classification easier
- reduces data size (2 features → 1 feature)
Dimension Reduction

- Feature Extraction (FE)
 - Generates feature
 - ex.
 - Preserves weight / height

- Feature Selection (FS)
 - Selects feature
 - ex.
 - Preserves weight
Problem Setting

- Each of data X (n samples) is represented by d features
- Data belong to c different classes in supervised learning
- Dimension reduction is to generate or select p features preserving original information as much as possible in some criterion

$$1 < p \approx c \ll d < n$$
Feature Extraction

- Extracts features by projecting data to a lower-dimensional space

 - Unsupervised Method
 - Principal Component Analysis (PCA)
 - Independent Component Analysis (ICA)

 - Supervised Method
 - Linear Discriminant Analysis (LDA)
 - Maximum Margin Criterion (MMC)
 - Orthogonal Centroid algorithm (OC)

- Finds an optimal projection matrix W
Principal Component Analysis

- Unsupervised Method
- PCA tries to maximize

\[J(W) = \text{trace}(W^T C W) \]

- PCA needs Singular Value Decomposition calculation (SVD).
 - time complexity: \(O(n^2 d) \)
 - space complexity: \(O(nd) \)

\(C \): covariance matrix
Linear Discriminant Analysis

Supervised method

Time complexity
$O((n + c)^2d)$

Space complexity
$O(nd)$

S_b Interclass scatter matrix
S_w: Intra-class scatter matrix
Feature Selection in ML ? YES!

- Many explored domains have **hundreds** to **tens of thousands** of variables/features with many irrelevant and redundant ones!

- In domains with many features the underlying probability distribution can be very complex and very hard to estimate (e.g. dependencies between variables)!

- Irrelevant and redundant features can „confuse“ learners!

- Limited training data!

- Limited computational resources!

- **Curse of dimensionality**!
Curse of dimensionality

- The required number m of samples (to achieve the same accuracy) grows exponentially with the number of variables! PAC: $m > |\text{Hypothesis_space}|$

- In practice: number of training examples is fixed!

 => the classifier’s performance usually will degrade for a large number of features!

In many cases

 - the information that is lost by discarding variables
 - is made up for by
 - a more accurate mapping/sampling in the lower-dimensional space!
Věta o PAC učení rozhodovacího stromu

Nechť objekty jsou charakterizovány pomocí n binárních atributů a nechť připouštíme jen hypotézy ve tvaru rozhodovacího stromu s maximální délkou větve k. Dále nechť δ, ε jsou malá pevně zvolená kladná čísla blízká 0. Pokud algoritmus strojového učení vygeneruje hypotézu φ, která je konzistentní se všemi m příklady trénovací množiny a platí

$$m \geq m_{k-DT}(n) \geq c \left(n^k + \ln \left(\frac{1}{\delta} \right) \right) / \varepsilon$$

pak φ je ε-skoro správná hypotéza s pravděpodobností větší než $(1-\delta)$, t.j. chyba hypotézy φ na celém definičním oboru konceptu je menší než ε s pravděpodobností větší než $(1-\delta)$.
Gene selection from microarray data

- **Variables:**
 - gene expression coefficients corresponding to the amount of mRNA in a patient's sample (e.g. tissue biopsy)

- **Task:** Separate healthy patients from cancer patients

- Usually there are only about 100 examples (patients) available for training and testing (!!!)
- Number of variables in the raw data: 6,000 – 60,000
- Does this work? ([8])

Text-Categorization

- Documents are represented by a vector containing word frequency counts (its size ~ number of features is comparable to that of the vocabulary)

- Vocabulary ~ 15,000 words (i.e. each document is represented by a 15,000-dimensional vector)

- Typical tasks:
 - Automatic sorting of documents into web-directories
 - Detection of spam-email
Motivation

- Especially when dealing with a large number of variables there is a need for **dimensionality reduction**!

- Feature Selection can significantly improve a learning algorithm’s performance!
Overview

- Introduction/Motivation
- Basic definitions, Terminology
- Variable Ranking methods
- Feature subset selection
Given a set of features \(F = \{ f_1, \ldots, f_i, \ldots, f_n \} \),

the Feature Selection problem is to find a subset \(F' \subseteq F \) that “maximizes the learners ability to classify patterns”.

\[
\{ f_1, \ldots, f_i, \ldots, f_n \} \xrightarrow{f \text{. selection}} \{ f_{i_1}, \ldots, f_{i_j}, \ldots, f_{i_m} \}
\]

\[
i_j \in \{1, \ldots, n\}; \ j = 1, \ldots, m\]
\[
i_a = i_b \Rightarrow a = b; \ a, b \in \{1, \ldots, m\}\]
Given a set of features \(F = \{ f_1, \ldots, f_i, \ldots, f_n \} \),

the Feature Extraction ("Construction") problem is to map \(F \) to some feature set \(F' \) that maximizes the learner’s ability to classify patterns (design new derived attributes).
Feature Selection – Optimality?

- In theory the goal is to find an optimal feature-subset (one that maximizes the scoring function)

- In real world applications this is usually not possible
 - For most problems it is computationally intractable to search the whole space of possible feature subsets
 - One usually has to settle for approximations of the optimal subset
 - Most of the research in this area is devoted to finding efficient search-heuristics
Optimal feature subset

- Often: Definition of optimal feature subset in terms of classifier’s performance

- The best one can hope for theoretically is the Bayes error rate

- Given a learner I and training data L with features $F = \{f_1, \ldots, f_i, \ldots, f_n\}$ an optimal feature subset F_{opt} is a subset of F such that the accuracy of the learner’s hypothesis h is maximal (i.e. its performance is equal to an optimal Bayes classifier)*.

 - F_{opt} (under this definition) depends on I
 - F_{opt} need not be unique
 - Finding F_{opt} is usually computationally intractable

* for this definition a possible scoring function is $1 - true_error(h)$
Relevance of features

- Relevance of a variable/feature:
 - There are several definitions of relevance in literature:
 - Relevance of 1 variable,
 - Relevance of a variable given other variables,
 - Relevance given a certain learning algorithm,..

- Most definitions are problematic, because there are problems where all features would be declared to be irrelevant.

- The authors of [2] define two degrees of relevance: weak and strong relevance.

- A feature is relevant iff it is weakly or strongly relevant and "irrelevant" (redundant) otherwise.

Relevance of features

- **Strong Relevance** of a variable/feature:

 Let $S_i = \{f_1, \ldots, f_{i-1}, f_{i+1}, \ldots, f_n\}$ be the set of all features except f_i. Denote by s_i a value-assignment to all features in S_i.

 A feature f_i is strongly relevant, iff removal of f_i alone will always result in a performance deterioration of an optimal Bayes classifier.

- **Weak Relevance** of a variable/feature:

 A feature f_i is weakly relevant, iff it is not strongly relevant, and there exists a subset of features S_i' of S_i, for which there exists a subset of features S_i'', such that the performance of an optimal Bayes classifier on S_i'' is worse than on $S_i' \cup \{f_i\}$.
Relevance of features

- Relevance \(\not\implies \) Optimality of Feature-Set
 - Classifiers induced from training data are likely to be suboptimal (no access to the real distribution of the data)
 - Relevance does not imply that the feature is in the optimal feature subset
 - Even “irrelevant” features can improve a classifier’s performance
 - Defining relevance in terms of a given classifier (and therefore a hypothesis space) would be better.
Overview

- Introduction/Motivation
- Basic definitions, Terminology
- Variable Ranking methods
- Feature subset selection
Variable Ranking

Given a set of features F

Variable Ranking is the process of ordering the features by the value of some scoring function $S: F \rightarrow \Omega$ (which usually measures feature-relevance)

Resulting set: a permutation of F: $F' = \{ f_{i_1}, \ldots, f_{i_j}, \ldots f_{i_n} \}$ with

$$S(f_{i_j}) \geq S(f_{i_{j+1}}); \quad j = 1, \ldots, n-1;$$

The score $S(f_i)$ is computed from the training data, measuring some criteria of feature f_i.

By convention a high score is indicative for a valuable (relevant) feature.
A simple method for feature selection using variable ranking is to select the \(k \) highest ranked features according to \(S \).

This is usually not optimal.

but often preferable to other, more complicated methods.

computationally efficient(!): only calculation and sorting of \(n \) scores
Ranking Criteria – Correlation

Correlation Criteria:

- Pearson correlation coefficient

\[R(f_i, y) = \frac{\text{cov}(f_i, y)}{\sqrt{\text{var}(f_i) \text{ var}(y)}} \]

- Estimate for \(m \) samples:

\[R(f_i, y) = \frac{\sum_{k=1}^{m} (f_{k,i} - \bar{f_i})(y_k - \bar{y})}{\sqrt{\sum_{k=1}^{m} (f_{k,i} - \bar{f_i})^2 \sum_{k=1}^{m} (y_k - \bar{y})^2}} \]

The higher the correlation between the feature and the target, the higher the score!
Ranking Criteria – Correlation

- $r = 1$: Perfect (linear) correlation
- $r = 0.5$: Intermediate correlation
- $r = 0$: No correlation
- $r = -1$: Perfect (linear) inverse correlation
Correlation Criteria:

- $\rho_{xy} \in [-1,1]$

- mostly $R(x_i,y)^2$ or $|R(x_i,y)|$ is used

- measure for the goodness of \textbf{linear} fit of x_i and y.
 (can only detect \textit{linear dependencies} between variable and target.)

- what if $y = XOR(x_1,x_2)$?

- often used for microarray data analysis
Ranking Criteria – Correlation

Questions:

- Can variables with **small score** be automatically discarded?

- Can a useless variable (i.e. one with a small score) be useful together with others?

- Can two variables that are useless by themselves can be useful together?)
Ranking Criteria – Correlation

• Can variables with small score be discarded without further consideration? **NO!**

• Even variables with small score can improve class separability!

• Here this depends on the correlation between x_1 and x_2.

(Here the class conditional distributions have a high covariance in the direction orthogonal to the line between the two class centers)
• Example with high correlation between x_1 and x_2.

(Here the class conditional distributions have a high covariance in the direction of the two class centers)

• No gain in separation ability by using two variables instead of just one!
Can a useless variable be useful together with others?

YES!
• correlation between variables and target are not enough to assess relevance!

• correlation / covariance between pairs of variables has to be considered too!

(potentially difficult)

• diversity of features
Information Theoretic Criteria

- Most approaches use (empirical estimates of) mutual information between features and the target:

\[
I(x_i, y) = \int \int p(x_i, y) \log \frac{p(x_i, y)}{p(x_i)p(y)} \, dx \, dy
\]

- Case of discrete variables:

\[
I(x_i, y) = \sum_{x_i} \sum_{y} P(X = x_i, Y = y) \log \frac{P(X = x_i, Y = y)}{P(X = x_i)P(Y = y)}
\]

(probabilities are estimated from frequency counts)
Mutual information can also detect non-linear dependencies among variables!

But harder to estimate than correlation!

It is a measure for “how much information (in terms of entropy) two random variables share”
Variable Ranking - SVC

Single Variable Classifiers

- Idea: Select variables according to their *individual predictive power*
- criterion: Performance of a classifier built with 1 variable
- e.g. the value of the variable itself
 (set threshold on the value of the variable)
- predictive power is usually measured in terms of error rate (or criteria using fpr, fnr)
- also: combination of SVCs using ensemble methods
 (boosting, ...)

Overview

- Introduction/Motivation
- Basic definitions, Terminology
- Variable Ranking methods
- Feature subset selection
Feature Subset Selection

- Goal:
 - Find the optimal feature subset.
 - (or at least a “good one.”)

- Classification of methods:
 - Filters
 - Wrappers
 - Embedded Methods
Feature Subset Selection

- You need:
 - a measure for assessing the goodness of a feature subset (scoring function)
 - a strategy to search the space of possible feature subsets

- Finding a minimal optimal feature set for an arbitrary target concept is NP-hard

=> Good heuristics are needed!

Feature Subset Selection

- **Filter Methods**

 Select subsets of variables as a pre-processing step, independently of the used classifier!!

- Note that Variable Ranking-FS is a filter method
Feature Subset Selection

- Filter Methods
 - usually fast
 - provide generic selection of features, not tuned by given learner (universal)
 - this is also often criticised (feature set not optimized for used classifier)
 - sometimes used as a preprocessing step for other methods
Feature Subset Selection

- **Wrapper Methods**
 - Learner is considered a black-box
 - Interface of the black-box is used to score subsets of variables according to the predictive power of the learner when using the subsets.
 - Results vary for different learners
 - One needs to define:
 - how to search the space of all possible variable subsets?
 - how to assess the prediction performance of a learner?
Feature Subset Selection

Wrapper Methods
Feature Subset Selection

- **Wrapper Methods**
 - The problem of finding the optimal subset is NP-hard!
 - A wide range of heuristic search strategies can be used. Two different classes:
 - **Forward selection**
 (start with empty feature set and add features at each step)
 - **Backward elimination**
 (start with full feature set and discard features at each step)
 - Predictive power is usually measured on a validation set or by cross-validation
 - By using the learner as a black box wrappers are universal and simple!
 - Criticism: a large amount of computation is required.
Feature Subset Selection

- **Embedded Methods**
 - Specific to a given learning machine!
 - Performs variable selection (implicitly) in the process of training
 - E.g. WINNOW-algorithm
 - (linear unit with multiplicative updates)
Important points 1/2

• Feature selection can significantly increase the performance of a learning algorithm (both accuracy and computation time) – but it is not easy!

• One can work on problems with very high-dimensional feature-spaces

• Relevance <-> Optimality

• Correlation and Mutual information between single variables and the target are often used as Ranking-Criteria of variables.
Important points 2/2

- One can not automatically discard variables with small scores – they may still be useful together with other variables.

- Filters – Wrappers - Embedded Methods

- How to search the space of all feature subsets?

- How to assess performance of a learner that uses a particular feature subset?
THANK YOU!
Sources

9. E. Amaldi, V. Kann: The approximability of minimizing nonzero variables and unsatisfied relations in linear systems. (1997)