Prediction of non-linguistic speaker attributes from voice

Dec 16, 2021

Outline

- Introduction/Motivation
- EXTRA TOPIC: Beyond "traditional" HMM ASR RNN-T ASR approach
- Acoustic features of human voice (connection to previous talks on Biometry)
- Non-linguistic features
- ML pipeline
 - Data collection (incl. Cleaning, labeling)
 - Feature extraction
 - Model training and evaluation
 - API/Deployment
 - Kubernetes stack, websocket API
 - GUI for demo purposes
- EXTRA TOPIC: Text-to-Speech Synthesis state of the art system from our company
 - Architecture
 - Model training
 - Demo voices

About us

World class AI and Cloud experts with 25+ years of experience

Trustworthy relationships with customers and industry partners

IBM Watson and IBM Research alumni

Multigenerational team, balanced and highlyperforming

Mama Al team "stats"

	302 Publications	
270 Years in IBM	cons CitationS	1 accoredonist
	95 Patent applications filed	1.6 ukulelist
8 Years in Startups		4.8 pianist
8 Years in Academia 51 Years in Academia		4.5 guitar
165 Years In Spenine Translation		1 bass
29 Years in Machine	en Learning	1 violin
Years in Machine Years in Dialog Years in Neural Networks, Deep Learning Years in Neural Networks, Deep Learning Years in Statistical NLP		0.7 drums
90 Years in Neural NLP		27425 bullet chess
Voars III		250 floorball matches
Voars III		53 Sněžka summit
11.5 Years in SRE	15521 Miles run to date	33 Říp summit
11.5 Years in k8s		230 countries visited
42 Years in IoT	1 Ironmans completed	sandles visited
33 Years in IoT		

P(T|A)

T ... text. A ... acoustics

• Unable to model P(T|A) directly, so using Bayes:

$$P(T|A) = \frac{P(A|T)P(T)}{P(A)}$$

- P(A) constant, ignoring
- P(A|T) ... acoustic model PA
- P(T) ... language model P_T

Acoustic model $P_A(A|T)$

- T... hypothesized sequence of acoustic units
- we assume independence between frames so that we can write

$$P(A|T) = \prod_{i} P_A(a_i | t_i)$$
 i... time

- i ... time
- a_i ... feature vector
- t_i ... acoustic class (a phone or context-dependent phone)

Language model $P_{LM}(T)$

- T... sentence, consists of word sequence $w_1 ... w_N$
- sequence probability modelled with n-gram LM (or neural LMs)

$$P_{LM}(T) = \prod_{i} P(w_i | w_{i-1}, w_{i-2}, ...)$$

How to map words w_i to acoustic classes t_i ? \rightarrow need Dictionary $P_{pron}(pron|w)$

- "several" S EH V AX R AX L
- "several" S EH V R AX L

T ... text, A ... acoustics

• Unable to model P(T|A) directly, so using Bayes:

$$P(T|A) = \frac{P(A|T)P(T)}{P(A)}$$

- P(A) constant, ignoring
- P(A|T) ... acoustic model P_A
- P(T) ... language model P_T

Acoustic model $P_A(A|T)$

- •
- T... hypothesized sequence of acoustic units
- we assume independence between frames so that we can write

$$P(A|T) = \prod_{i} P_A(a_i | t_i)$$
 i... time

- i ... time
- a_i ... feature vector
- t_i ... acoustic class (a phone or context-dependent phone)

Language model $P_{LM}(T)$

- •
- T... sentence, consists of word sequence $w_1 ... w_N$
- sequence probability modelled with n-gram LM (or neural LMs)

$$P_{LM}(T) = \prod_{i} P(w_i | w_{i-1}, w_{i-2}, ...)$$

How to map words w_i to acoustic classes t_i ? \rightarrow need Dictionary $P_{pron}(pron|w)$

- "several" S EH V AX R AX L
- "several" S EH V R AX L

End-to-end ASR (E2E)

- Models P(T|A) directly
- Able to predict per-frame probability of characters, sub-words or even words
- No need for Dictionary (pronunciation is not modelled explicitly)
- No separate acoustic model → no need for alignment between symbols and audio
- Decoder can be much simpler
- All you need to build the model is audio and its transcript

End-to-end ASR - RNN-Transducer

^{* &}quot;Streaming End-to-end Speech Recognition for Mobile Devices". ICASSSP'19, Google

End-to-end ASR - RNN-T model architecture – an example

End-to-end ASR - RNN-T Decoder

- Beam search
- RNN-T gives P(y|x,y_), where y is the next character, x are the audio frames so far, y_ is the current hypothesis
- RNN-T does not always consume input (allows to decode multiple characters in a single frame)

End-to-end ASR - RNN-T loss

- For each frame, NN outputs probabilities of characters + blank symbol
- We have the correct transcript in train time
- An alignment is a sequence of characters + blank symbols
- A consistent alignment is one consistent with the correct transcript, e.g.
- Let's say we have 8 acoustic frames and a transcript "hello"
- an alignment "_ h e _ l _ l _ o _ _ _ " is consistent
- by definition, blank symbol means go to next frame
- RNN-T optimizes the sum of probabilities across all consistent alignments

Introduction/Motivation Biospeech engines

- Dialog systems

- Speech Activity spare speech recognition cycles when no one speaks
- Gender verb forms "Co byste nám chtěl(a) sdělit"
- Speaking rate matching speaking rate improver user experience
- Age adapt speaking style/tempo for different age cohorts
- SNR adapt to level of noise
 - use confirmations more often in noisy condition
 - Be more "greedy" when noise level is low
 - ask the user to speak louder or call from a quieter place
- Emotion
 - Hand-over to human agent if customer gets too angry
 - Analyze interaction patterns with respect to detected emotions

Biospeech

- Leveraging signals in spoken word to identify number of biomarkers
 - understand mood to be able to approach clients differently
 - measure stress during tasks and interactions
 - measure and help control rate of person's speech etc.
 - recognize gender and age group based on voice

Real time

Audio file

WebRTC VAD	speech
Speech activity	speech
Gender	male (100%)
Age	sixties (51%)
Cadence	3.0
Energy	75.7
SNR	23.1
Emotion	happy (100%

The non-linguistic speaker attributes from voice - Demo Page

Current version of web demonstrates detection of:

- Speech activity (WebRCT and Neural)
- Gender
- Age in decades
- Cadence Praat based and Neural (syllables/second)
- Energy of signal
- Signal to noise ratio SNR in dB
- One of four emotions (angry, happy, sad, neutral)

RECURRENT NEURAL NETWORKS WITH LOCAL ATTENTION for Emotion, Gender, Age:

Original paper uses Low level descriptors based on the Praat framework:

- pitch (F0),
- voicing probability,
- energy,
- zero-crossing rate,
- Mel-filterbank features,
- MFCCs,
- formant locations/bandwidths, harmonics-to-noise ratio, jitter, etc.).

Our version uses log-mel features

Fig. 1. Architectures for applying DNN/RNN for SER. (a) Learning LLDs using fixed temporal aggregation. (b) frame-wise training. (c) final-frame (many-to-one) training. (d) Mean-pooling in time. (e) Weighted pooling with logistic regression attention model. (f) general attention model.

The non-linguistic speaker attributes from voice - Weighted pooling with logistic regression

$$\alpha_t = \frac{\exp(\mathbf{u}^T \mathbf{y}_t)}{\sum_{\tau=1}^T \exp(\mathbf{u}^T \mathbf{y}_\tau)}.$$

The non-linguistic speaker attributes from voice - Log-Mel features

Signal -> [Hamming] -> [FFT] -> [abs()^2] -> [x*Mel] -> [log()] -> log-mel

The non-linguistic speaker attributes from voice - Articulation rate / Speech cadence

- Bidirectional LSTM
 - Input dimension 40
 - hidden dimensions 300
 - o 3 layers
- Fully connected linear layer → dimension 1
- Mean over all LSTM steps
- MAE: 0.328 syll/sec
 - More than double the performance of Praat (0.767 syll/sec)
- Speed: ~100x faster than real time

The non-linguistic speaker attributes from voice - Energy, SNR

- Energy P_{signal} of speech is measured in the speech segments of the audio
- SNR is computed from energy of speech Psignal and background noise measured in non-speech segments Pnoise
- For identification of speech/non-speech segments the speech detectors or the Praat framework can be used.

$$ext{SNR}_{ ext{dB}} = 10 \log_{10} igg(rac{P_{ ext{signal}}}{P_{ ext{noise}}}igg).$$

MAMA AI Text-to-Speech

Motivation (Why do it on our own?)

- It is not only the latest tech
- Training pipeline
 - Data preprocessing and cleaning
 - Data validation
 - Custom voices (incl. recording)
- Model management and provisioning
- APIs for serving the model
- Deployments beyond Cloud
 - Variability in access and pricing per customer needs

MAMA AI Text-to-Speech

Architecture

- Data segmentation
- Text normalization
- Phonetization
- Forced alignment
- mel-spectrogram generator <u>FastPitch</u>
- Vocoder <u>HiFi-GAN</u>: <u>Generative Adversarial Networks for Efficient and High Fidelity</u>
 <u>Speech Synthesis</u>

Samples:

We *are* passionate about Al

Conversational AI

Assistants and chatbots, design for voice and text, deflection of common tasks, customer sentiment

Speech

Call center transcriptions, call logs analytics, speaker id and verification, mood detection, agent guidance

Edge/IoT/Hybrid

NLP and Voice on embedded platforms (gaming, automotive, remote/offline use)

Omni-Channel Interaction

Interactive customer notifications, upsell/cross-sell, user profiles

Natural Language Processing

Natural Language Understanding, written or spoken reports from structured data

Applied AI

Acoustic monitoring and prediction, predictive maintenance, AlOps

The MAMA Al

https://themama.ai mama@themama.ai

The non-linguistic speaker attributes from voice - BACKUP

- Apha
- Beta

The non-linguistic speaker attributes from voice - Log-Mel features

Signal -> [Hamming] -> [FFT] -> [abs()^2] -> [x*Mel] -> [log()] -> log-mel

