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Iris recognition process

. Input: image of the eye
. Iris Segmentation

. Projection

. Feature extraction

. Encoding

. Comparison / matching



Iris recognition process
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Acquiring IRIS image




Visible or Infrared

Visible light
. Layers visible
. Less texture information
. Melanin absorbs visible light

(Near) Infrared light

. (NIR)
Melanin reflects most infrared light
More texture is visible
Specular reflections suppressed
Preferred for iris recognition systems




Iris Image acquisition: requirements

At least 70 pixels per iris radius (typically
100-140px)

. Monochrome CCD camera 640x480 px
with NIR filter usually sufficient

Getting the detailed view of the iris:

1. Another wider-angle “face” camera used to
steer the Iris camera to the direct spot

2. User asked to move to desired position




Segmentation

Aim: find the region of clean
Iris image

. Annular area between
pupil and sclera

. Occlusions by eyelids and
eyelashes need to be
eliminated

. Easiest modelled by 2
circles




Intra-class variations

The segmentation algorithm has to address following problems:

pre

pupil dilation inconsistent iris size eye rotation

(lighting changes) (distance from the camera) (head tilt)



Detected Curvilinear boundaries

limbic boundary pupilary boundary



Curvilinear detector

Assumption: both the pupilary and limbic boundary can be
approximated by (non-concentric) circles

(problem: off-axis gaze and specific cases)
%} I(x,
Ga(r)*—f (x,7) ds‘
r,Xo Y

ar 21T
0

Daugman's approach  maxg, x,y,

. searching circle parameters (x,,y,,r) that maximize
blurred integro-differential function of the iris image.
This maximum is gained when the circle parameters
meet either the pupil or limbic properties.

Other possibility
. Hough transform

. RANSAC

. Active contours...




#1 Daugman’s circular detector

0 [(x,
Gy(r) * —3€ (x,y) ds
r, Xo, Yo

max
(T, X0,¥0) or 27T

I(x,y)—imag,  G(r)— 1D Gaussian smoothing,
X0, Yo, — circle center coordinates + radius Cy C

Idea: for given center x,,y, and defined range of radius values <r

Moo

min’ ' max

1. ¢, =mean of image values over a circular path (x,,Yo," min)

2. change radius by 1px (until r._,), compute and store c, using 1.

3. Compute difference d = dif f(¢)



#1 Daugman’s circular detector

C

max(’f”: X0,Y0)
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#2 Hough transform

We search for most likely values of the circle
parameters: (X,,Y,,")

The Hough procedure:

1. Edges are found in the image using edge detector
 Threshold on local gradient in smoothed image

2. Projection to parametric space
3. Repeated for different circle sizes

4. Search the parameter space for maxima (the circle <%
center and radius) e




Hough transform 2: known radius

example

. A circle of given radius is drawn
around each edge point in the

original
image parameter space.
. Intersecting circles sum up.
. The most probable center for
detected given radius is where most circles
edges

in the parameter space intersect =
maximum value

“drawing” circles
in the
parameter space

resulting
parameter space

Source: http://www.aishack.in/tutorials/circle-hough-transform/



Hough transform 3: known radius

Parameter space
Here: intensity ~ value
(brighter = higher number)

Source: http://www.aishack.in/tutorials/circle-hough-transform/



Hough transform: unknown radius

. Similar procedure

Slice of parameter space created for each radius

Searching global maximum

Computationally intensive

video: http://www.aishack.in/static/img/tut/hough circle.flv

(slices of the parameter space for different value of diameter r are shown)


http://www.aishack.in/static/img/tut/hough_circle.flv




Segmentation: Other options

RANSAC for circles (RANdom SAmple Consensus)

Operates on edge points (i.e. Canny detector)

1.

> W N

5.

Randomly pick minimal necessary subset of all original edge points (i.e. 3)
Fit candidate circle to the subset (= circumcircle of the triangle)
Throw away outliers — the points “far” from current candidate circle

Compute the number of inliers, if max. so far, name the current model the optimal
solution

Repeat #1-4 N times (or until convergence)

Active contours (“snakes”)

Can be used to improve non-circular iris segmentation from initial circular solution

CAREFUL PARAMETER SETTING CRITICAL FOR ALL
ALGORITHMS!



Evelid boundaries

Similar procedures to annular iris region detection can
be used. Many methods exist, e.g.:

. Typical: Daugman's integro-differential operator
with splines in place of circles




Detected eyelid boundaries

, i. ‘°', ot ¥ ‘ "f'}g.‘.}},'f" \ o
. Similar algorithm is used to detect eyelid
boundaries

‘».' O - . . ”
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Projection

. The model has to be invariant to iris
size (distance from camera), pupil
size (amount of light)

. Invariance to rotation (head tilt) is

addressed later in the recognition
process

Solution: transformation to (pseudo)radial
coordinates _———_

P \
B
jj
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Radial coordinates

AN
(x rﬂ r;-l :> l ‘ |
\‘x / 0 ]

* Each point remapped to a pair of po-I'a:r'éoordinates (p,9),
where p€(0,1), 6€(0, 2m)

* The model compensates pupil dilation and size
inconsistencies in size and translation invariant coordinate

system

e Rotational inconsistencies not compensated



Anomalous eye shape

* The polar transform assumes circular iris boundary
 This may not be true especially for off-axis gaze

* Individual deviations can also play role




. 2048-bit iris code

Feature extraction

. Processing the unwrapped image to extract
information

. 2D Gabor wavelet filtering

. Phase quantization




Gabor wavelet filtering

1D equivalent illustration

¢ Original 1D signal
il * The unwrapped iris image is
1IN ,..“".."‘“.Ij, filtered using two 2D Gabor
B L L wavelet filters using multiple
@ e parameter settings.
* The demodulating wavelets

1D Gabor Filter

Ji ﬂ are parameterized with four

degrees-of-freedom: size,

g orientation, and two
, il b WL g positional coordinates. They
. | o (T span several octaves in size, in
| . S order to extract iris structure

Phae Quentistion (01] _——__ [L1] at many different scales of

/ analysis
[0,61\ //[1,9]

S~

Iris Template

01000010111101010010101111010100101011010101010100
101001110001111011101000100110001101101100010111 10




Encoding: Phase quantization

imaginary

real

1101110001101001001110...011100010010001011

 The phase of resulting

complex numbers is
observed and coded into 2
bits according to the figure

Phase quantization -
continuous phase to 2 bits

2048 such phase bits (256
bytes) are computed for
each iris.



Masking

. Areas with noise (eyelids, eyelashes...) need to be
excluded

. A binary mask of the same size as the iris code is
calculated. 1 in the areas of useful signal, 0
elsewhere




Iris code

Projection: doubly-dimensionless polar coordinate system

. invariant to the size of the iris (imaging distance and the optical
magnification factor) and pupil dilation (lighting)

Filtering: only phase information used

. invariant to contrast, absolute image function value (camera
gain), and illumination level (unlike correlation methods)

Very compact

. Typically just 256 bytes + 256 bytes mask (depends on settings of
the Gabor wavelet filtering) - small for storage

. Thanks to phase quantization.




Example iris codes




Iris code comparison

. Different eyes’ Iris
Codes are
compared by
vector Exclusive-
OR’ing in order to
detect the fraction
of their bits that
disagree.




Iris code comparisons

Iris code bits are all of equal importance

Hamming distance:
. Distance between 2 binary vectors (strings)
. Number of differing bits (characters)

. “Number of substitutions required to change one string to
the other”

. Sequence of XOR and norm operators (number of ones in
XOR'ed sequences)

Examples:
. hockey and soccer, H=3

. 1001011 and 1100011, H=2



Code comparison

codeA ® codeB) N maskA NmaskB||

ol
|maskA N maskB)|

. ® - XOR operator - one for each bit that disagrees

. codeA codeB - iris codes,

. M -AND - keep only bits unmasked by both masks

. maskA maskB - noise masking templates for respective iris

codes

| | - norm operator - calculate number of bits = 1

Normalized by the number of bits that are available in both
codes (denominator)



prpbability
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Comparison properties

Left distribution: different images of the same eye are compared;
typically about 10% of the bits may differ.

Right distribution: IrisCodes from different eyes compared, with rotations
(best match - min HD). Tightly packed around 45%

Very narrow right-hand distribution (different irises), it is possible to
make identification decisions with astronomic levels of confidence.

Probability of two different irises agreeing just by chance in more than
75% of their IrisCode bits (HD<0.25) is only 1 in 10**

Extremely low probabilities of False Match enable the iris recognition
algorithms to search through extremely large databases (1010) scale
despite many opportunities to make a false match |

aaaaaaaaaaaaaaa



Density

Comparisons: system quality

same different | same different
mean = 0.019 mean = 0.456 ] [ ] mean = 0.110 mean = 0.458
stnd.dev. = 0.039 stnd.dev, = 0.020 » 7 stnd.dev. = 0.065 stnd.dev. = 0.0197

d =141 | d=73
mL 482,600 comparisons 2.3 million comparisons

0.0 0.1 02 03 04 05 06 07 08 09
Hamming Distance

Density

1.0 00 01 02 03 04 05 06 07 08 09
Hamming Distance

1.0

ideal imaging non-ideal imaging

Comparing distributions for the same and different irises says a
lot about the identification system




Comparison: false match rate

Observed False Match Rates in 200 billion comparisons

HD Criterion Policy | Observed False Match Rate
0.220 0 (theor: 1in 5 x1017)
0.225 0 (theor: 1 in 1 x10%7)
0.230 0 (theor: 1in 3 x10%)
0.235 0 (theor: 1 in 9 x10%%)
0.240 0 (theor: 1 in 3 x101%)
0.245 0 (theor: 1 in & x10'%)
0.250 0O (theor: 1 in 2 x101*%)
0.255 0 (theor: 1 in 7 x10')
0.262 1 in 200 billion
0.267 1 in 50 billion
0.272 1 in 13 billion
0.277 1 in 2.7 billion
0.282 1 in 284 million
0.287 1 in 96 million
0.292 1 in 40 million
0.297 1 in 18 million
0.302 1 in 8 million
0.307 1 in 4 million
0.312 1 in 2 million
0.317 1 in 1 million




IrisCode statistics: Bernoulli trlals
Jacob Bernoulli (1645-1705) an-

alyzed coin-tossing and derived
the binomial distribution. If the
probability of “heads” is p, then
the likelihood that a fraction
r = m/N out of N tosses will
turn up “heads’ is

ad (N—m) -
m!( N — m)! p (1 p) *’w“::;cwm

'[Jnlversﬁy' of Groningen

< 200 Bilhan Ins Cross-Compansons, 0 Rotahons . UAE Datai base
=4

P(z) =




Code comparisons: masking

. In case of differing iris parts occluded in the two compared

iris images, the number of effective bits can be very low.

. The probability of false match increases.

. Renormalization of HD by the number of available bits is
necessary, as well as is the decision criterion

HD  =0.5-(0.5-HD_ ) \/ k
typical
. N is typical number of available bits in given database

typical

. Formula based on Bernoulli distribution



irisCode comparisons: rotation

. To account for iris rotation, the codes are shifted one
against another in selected range

. Minimum HD is calculated

Template 1 10001100 1001
y | HD=0.83
Templated | 00 11 00 1001 10

+—— Shift 2 bits left

Templatel | 00 11001001 10
y [ HD=0.00
Templated | 00 11001001 10

— Shift 2 bits right

Templatel | 01 10 00 11 00 10
y | HD =0.33
Templated | 00 1100 1001 10




irisCode comparison Performance
. On a 300MHz PC (long ago):

Operatior

Assessing image focus

Scrubbing specular
reflections

Localizing the eye and iris

Fitting the pupillary boundary

Detecting and fitting both the
eyelids

Removing eyelashes and
contact lens artifacts

Demodulation and IrisCode
creation

XOR comparison of any two
IrsCodes




Key messages

1. Iris region found by circular detector

2.Image unwrapped in a polar coordinate system

3. Image filtered using Gabor wavelet filters

4.0Only phase information is used (phase quantization)

5. Phase quantization converts filtered image to binary code

6. Binary mask showing noise, eyelids and eyelashes stored
along with the code

7.lris codes compared using hamming distance

8. Iris recognition has extremely low false accept rate



Iris recognition summary

Strengths

|t has the potential for
exceptionally high levels of
accuracy

*|t is capable of reliable

identification as well as verification

*Believed to be the most reliable
metric

Stability of characteristic over a
lifetime

*Distant cameras — less obtrusive

Weaknesses

Acquisition of the image requires
moderate training and
attentiveness

It is biased for false rejection
(better for identification)

A proprietary acquisition device
is necessary for deployment -
expensive

There is some user discomfort
with eye-based technology

Sunglasses, ambient light etc



Thank you for your attention
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