IRIS recognition

Eduard Bakštein,

edurard.bakstein@fel.cvut.cz 14.11.2019

acknowledgement: Andrzej Drygajlo, EPFL Switzerland

Outline

- Introduction
- Basics
- Iridology
- Iris in biometry
- Properties of the Iris
- Sensing
- Applications
- Processing

Morpheus and Iris, GUÉRIN, Pierre-Narcisse, 1811 (neoclassicissm), Hermitage

Ethymology

Iris: late 14c., flowering plant (Iris germanica), also "prismatic rock crystal," from L. iris (pl. irides) "iris of the eye, iris plant, rainbow," from Greek iris (gen. iridos) a rainbow; the lily; iris of the eye,

originally "messenger of the gods," personified as the rainbow. The eye region was so called (early 15c. in English) for being the colored part; the Greek word was used of any brightly colored circle, "as that round the eyes of a peacock's tail" [Liddell and Scott]

source: http://ethymonline.com

skive vitreous humor ockní mok

duhovka zornice lens čočka cornea rohovka sclera bělma

The IRIS (Basics II)

- most of the structure formed in 3rd 8th month of gastation (prenatal periode)
- pigmentation can continue after birth
- iris color: mostly melanin pigment (blue iris = absence of pigment)

Distinctive features: furrows, ridges, crypts, rings, corona, freckles etc.

Eye color

http://en.wikipedia.org/wiki/Eye_color

History of Iris recognition

- Ancient civilizations Ancient Egypt (~3000 B.C.), Ancient China Chaldea in Babylonia (~700 B.C.), Ancient Greece (~300 B.C.) - divination from iris
- 19th century Ignaz von Peczely: iridology
- 1885 Alphonse Bertillon: idea of using iris for personal identification (color and pattern type)
- 1949 James Doggart: examined the complexity of iris patterns. Iris could be used instead of fingerprints
- 1987 Flom, Safir: patented Doggart's concept
- 1989 John Daugman invented and patented iris recognition system (basis of all commercially available systems)

Iridology

- Branch of alternative medicine
- Basics: Systematic changes in the iris pattern reflect the state of health of each of the organs in the body
- Matching observer properties of the iris pattern to *iris* charts (below)

Iridology (2)

Iridology (epilogue)

Iridologists:

- Eye = "window to the soul"
- "Modern medicine neglects true roots of medical problems"

Medical experts:

- Iridology = medical fraud
- Supported by scientific tests
 - Berggren, L. (1985), "Iridology: A critical review", ActaOphthalmologica, 63(1): 1-8

IRIS for biometry

- Well protected (internal organ of the eye, cornea)
- Externally visible from a distance
- Unique, highly complex pattern
- Stable over the lifetime (except pigmentation)

iris

IRIS vs Other biometric techniques

accuracy

Biometric characteristics

- Biological traces
 - DNA (DeoxyriboNucleicAcid), blood, saliva, etc.
- Biological(physiological) characteristics
 - fingerprints, eye irises and retinas, hand and palms geometry, facial geometry
- Behavioral characteristics
 - dynamic signature, gait, keystroke dynamics, lip motion
- Combined
 - voice

Genotypic vs Phenotypic

Genotypic - based on genetic makeup of a cell

• DNA, blood type, gender

Phenotype - all observable properties of a living organism.

• fingerprints, iris (except eye color)

Phenotype = genotype + environment

Every biometric feature somewhere inbetween

Iris pattern is a phenotypic feature

Proof: monozygotic twins

Genetically identical eyes have iris patterns that are uncorrelated in detail:

Monozygotic Twins B (18 year-old women)

04 05 08 07

Hamming Distance

R ₽.

C

All bit

Baree

0.0 0.1 0.2 0.3

546 eyes in 824 Right/Left pairs

8.0

All bits

disagree

0.9 1.0

Monozygotic twins (2)

Genetically identical eyes have iris patterns that are uncorrelated in detail:

Monozygotic Twins C (78 year-old men)

Monozygotic twins (3)

Genetically identical eyes have iris patterns that are uncorrelated in detail:

Monozygotic Twins A (6 year-old boys)

Genetically Identical Eyes Have Uncorrelated IrisCodes

Advantages of the iris in biometry

- Iris patterns possess a high degree of randomness and uniqueness set by combinatorial complexity
- Encoding and matching are reliable and fast
- Iris codes very compact to store (hundreds of bytes)
- Changing pupil size can confirm it is a real iris

iris code

Iris scan

Image size is, say, 256 x 256 = 65536 bytes and the iris code is 8 x 32 = 256 bytes

Visible x Infrared light

Visible light

- Little texture in dark eyes
- causes pupil dilation
- reflection from the ambient light

Near infrared (NIR) light

- Similar results for dark and light eyes
- solves the problems above

NIR illumination

Consider: absorbed heat depends on wavelength ANSI certified range for illumination:

spectrum. This low power, low frequency light source causes no tissue heating in the anatomy of the eye. For a given power, the higher the frequency, the more tissue heating will occur.

Common IR LEDs: 880nm, 940nm...

Iris image acquisition: requirements

- At least 70 pixels per iris radius (typically 100-140px)
- Monochrome CCD camera 640x480 px with NIR filter usually sufficient
- Getting the detailed view of the iris:
 - 1. Another wider-angle "face" camera used to steer the Iris camera to the direct spot
 - 2. User asked to move to desired position

Difficulties in IRIS biom. recog.

- Acquire small target (~1 cm) from (~1 m) distance
- Moving target
- Located behind a curved, wet, reflecting surface
- Curvature of the cornea causes wide-angle reflections
- Obscured by lashes, lenses, reflecting eyeglasses
- Partially occluded by eyelids, often drooping
- Some ethnic groups show less than half of each iris
- Iris deforms non-elastically as pupil changes size
- Illumination should not be visible or bright

Difficulties: Eyelashes

- Iris often partially covered by eyelashes
- Occlusions need to be detected (marked white)

Difficulties: iris shape

- Pupils often non-circular
- Pupil and iris often nonconcentric

Difficulties: defocusing

- It is often hard to achieve perfect focus, especially at longer distance or with moving subject
- Motion blur may be an issue too
- Iris code from such image: such as from random noise

Attacks: fake iris

- Presentation of fake (printed on paper or contact lens, LCD) iris to the camera
- Problem for systems without surveillance (e.g. access systems)

:)

cosmetic contact lenses

Contact lenses

Fake iris attack solutions

Natural Irls

2D Fourier spectrum of natural Irls

Fake Irls printed on a contact lens

2D Fourier spectrum of fake Irls

- Checking for pupildilation effect (swithing visible light intensity)
- FFT transform of the iris image shows artefacts caused by printing halftone patterns
- (frequency: radial, direction:angle)

Fake iris attack solutions (2)

- Iris displayed on an LCD sceen
 - Observation of temporal properties of the image (intensity peaks in LCD image)
- Identification of reflections
- Verification of pupil dilation reflex
 - pupil diameter measured for different light intensities

Iris scan: devices

Iris capturing devices

wall mounted Entry access control Panasonic ET300

IrisGuard IG/H100

PIER 2.3, Hand-held, SecuriMetricsInc.,

IrisGuard IG - AD 100

Iris capturing at long distance

- Distance 2m
- Adaptive Optics technology automatically finds the eye, then locks in with its closed-loop control subsystem to capture a series of highquality iris images.
- Subjects merely need to glance at the target for a short period of time once inside the capture zone.

The instruction set is extraordinarily simple: step into the capture volume, look at theimager, and open your eyes.

• Reduced need of subjects cooperation

Iris on the move

- Capturing IRIS images while the subject is walking through a gate
- The subject only has to look straight at given point (the camera)
- 3m distance, works through sunglasses (!), 30 people/min
- supports iris code calculation
- stand-alone (including enrollment)

Applications (current and future)

- computer login: the iris as a living password
- national border controls: the iris as a living passport
- secure access to bank cash machine accounts
- ticket-less, document-free, air travel
- premises access control (home, office, laboratory, etc)
- driving licenses, and other **personal certificates**
- entitlements and benefits authentication
- forensics; birth certificates; tracing missing or wanted persons
- credit-card authentication
- automobile ignition and unlocking; anti-theft devices
- anti-terrorism (e.g. security screening at airports)
- secure **financial transactions** (electronic commerce, banking)
- Internet security; control of access to privileged information
- "Biometric-Key Cryptography" for encrypting/decrypting messages
- any existing use of keys, cards, PINs, or passwords

Usage of IRIS at Airports

- 'Iris as Passport': Expedited immigration clearance for arriving passengers
 - Amsterdam Schiphol, Frankfurt, 10 UK airport terminals and 8 Canadian airports in 2004
- Expedited processing and check-in of departing passengers
 - Tokyo Narita (1'000 frequent travelers)
- Airline crew facility access and expedited security clearance
 - Charlotte Douglas Airport (1'200 transactions per day)
- Airport employee access to tarmac and other restricted areas (80 access control points)
 - New York JFK, Amsterdam Schiphol (72'000 airport employees)
- 'WatchList' screening of all arriving passengers (505'000 expellees in WatchList
 - 7 airports

United Arab Emirates

- Iris recognition system
- Fully operational since April 2003
- 36 land, air and sea ports
- 12,000 passengers each day
- 1 central database
 - Watchlistof expelled persons
 - Fully networked
 - Enrolment centres: prisons and deportation centres
 - More than 1 million enrolments (150+ nationalities)
 - Exhaustive search takes <2 seconds
- 12 billion comparisons each day (12,000 passengers against 1 million enrolments)
- About 60,000 persons caught since launch in 2005

United Arab Emirates

Usage in the UK

- UK's IRIS (Iris Recognition Immigration System) replaces passport control
- Available at several airports in the UK
- Automatic counters for registered travellers
- Over 1 000 000 registered frequent flyers

The Netherlands

- Similar to the UK system (frequent flyers' programme to avoid queues)
- Paid service

Access systems

Residential Access to Condominium (and Lift Calling), Tokyo.

IRIS in humanitary projects

Takhtabaig Voluntary Repatriation Centre, Pakistan-Afghan border. United Nations (UN) cash grants for returnees are administered by Iris identification

Motivation: NG story

VOL. 167, NO. 6 NATIONAL GEOGRAPHIC

GREAT SALT LAKE: THE FLOODING DESERT 604

U. S.- MEXICAN BORDER: LIFE ON THE LINE 720

JAVA'S WILDLIFE RETURNS 750

llong Afghanistan's Var-torn Frontier 773

FAIR SKIES FOR THE CAYMAN ISLANDS 298

SEE NATIONAL GEOGRAPHIC EXPLORER EVERY SUNDAY ON NICKELODEON CABLE TV

faunted eyes tell of an Victory refugee's fears

- National Geograpic cover story: a girl refugee in Pakistanian refugee camp after her city in Afghanistan was bombed by USSR army.
- One of the most recognized pictures in the history of NG ("Afghan girl")
- Photographed by S.
 McCurry in 1984

"Afghan girl" story continued

- McCurry tried to located the girl 17 years later in 2001
- Several women claimed they were the girl in the picture
- Several men claimed the girl was their wife...
- Iris recognition matched Sharbat Gula to the original picture

John Daugman

Core Technology Patent:"Biometric Personal Identification System Based on Iris Analysis", U.S. Patent No. 5 291 560 issued March 1, 1994 (J. Daugman)

- Iris: stable and very individual property
- Highly suitable for biometric identification/verification
- Iris image rather difficult to capture (focusing, motion-blur, lighting, reflections, pupil dilation...)
- Iris recognition systems in operation in large-scale border and access control systems

Overview of the next lecture

 Iris recognition process (Basic J. Daugmann approach and some modalities)

0.3 0.4 0.5 0.6 0.7 0.8 0.9

result of iris code comparison

OUT

Thank you for your attention

