. Splay tree, 2-3-4 tree ‘

Marko Berezovsky
Radek Marik
PAL 2012

To read

[1] Weiss M. A., Data Structures and Algorithm Analysis in C++, 3 Ed., Addison Wesley, §4.5,
pp.149-58.

[2] Daniel D. Sleator and Robert E. Tarjan, "Self-Adjusting Binary Search Trees", Journal of the ACM
32 (3), 1985, pp.652-86.

[3] Ben Pfaff: Performance Analysis of BSTs in System Software, 2004, Stanford University,
Department of Computer Science, http://benpfaff.org/papers/libavl.pdf
_

(See also PAL webpage for references)—/

Pokrogila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

Splay Tree - Description

O
(N
AVL trees and red-black trees are binary search trees with

logarithmic height. This ensures all operations are O(In(n))
An alternative idea is to make use of an old maxim:
Data that has been recently accessed is more likely to
be accessed again in the near future.

Accessed nodes are splayed (= moved by one or more rotations)
to the root of the tree:

Find: Find the node like in a BST and then splay it to the root.
Insert: Insert the node like in a BST and then splay it to the root.
Delete: Splay the node to the root and then delete it like in a BST.

Invented in 1985 by Daniel Dominic Sleator and Robert Endre Tarjan.
. J

Pokrogila Algoritmizace, AdM33PAL, ZS 2012/2013, FEL CVUT, 12/14

Splay Tree - Description Properties overview

[N\

Splay tree

- A binary search tree.

- No additional tree shape description (no additional memory!) is used.
- Each node access or insertion splays that node to the root.

- Rotations are zig, zig-zig and zig-zag, based on BST single rotation.
- All operations run times are O(n), as the tree height can be 0(n).

- Amortized run times of all operations are O(In(n)).

Pokrogila Algoritmizace, AdM33PAL, ZS 2012/2013, FEL CVUT, 12/14

Splay Tree - rotation

Step-by-step scheme

Zig rotation is
the same as a
rotation (L or R)
in AVL tree.

)

Afected nodes
and edges

The terms "Zig" and "Zag" are not chiral, that is,
they do not describe the direction (left or right) of the actual rotations.

\,

Pokrogila Algoritmizace, AdM33PAL, ZS 2012/2013, FEL CVUT, 12/14

Splay Tree - rotation

Step-by-step scheme

({Zig - zig rotation)

\, y

Note that the topmost node might be either the tree root or the left or the right child
of its parent. Only the left child case is shown. The other cases are analogous.

Pokrogila Algoritmizace, AdM33PAL, ZS 2012/2013, FEL CVUT, 12/14

Splay Tree - rotation Step-by-step scheme

a {Zig - zig rotation)

Both simple rotations are performed at the top of the current subtree,
the splayed node (with key A) is not involved in the first rotation.

Pokrogila Algoritmizace, AdM33PAL, ZS 2012/2013, FEL CVUT, 12/14

Splay Tree - rotation

Step-by-step scheme

r {Zig - zag rotation)

\ g \d

Note that the topmost node might be either the tree root or the left or the right child
of its parent. Only the left child case is shown. The other cases are analogous.

Pokrogila Algoritmizace, AdM33PAL, ZS 2012/2013, FEL CVUT, 12/14

Splay Tree - rotation Step-by-step scheme

é {Zig - zag rotation)

[Zig-Zag rotation is identical to the double (LR or RL) rotation in AVL tree.]

Pokrogila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

[Splay Tree - Insert (Example P8

© G P o P @gi?;;?-

7~

Note the extremely inefficient 4)
shape of the resulting tree.

’SZ:)
\ J

Pokroéila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

Splay Tree - Find E 1
B y

| Find 1 l (12 Find operation D
Key 1 is the deepest :f] ?;SQSZOQP'(?XIWJ
key in the tree. -\

Splay Tree - Insert
m y

&

Scheme - Result of the most
e unfavourable Find operation s

—

Q

°

Q
O

%

O

O

—— Note that the tree heigth is
_roughly halved. H — (H + 3) / 2

]:

Pokrogila Algoritmizace, AdM33PAL, ZS 2012/2013, FEL CVUT, 12/14

Splay Tree - Find Example 11
m y

()
| Find 3 l Key 3 is the deepest The Find operation would be
key in the tree. again of ~n complexity. :-(

@

Splay Tree - Find (Example 12
O

’ % \

Smm——— Note the relatively favourable shape of the resulting tree.

Pokroéila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

Splay Tree - Delete

O

-, [Delete(k) \
1. Find(k); I/ This splays k to the root
2. Remove the root; I/ Splits the tree into L and R subtree of the root.

1 3. y = Find max in L subtree; // This splays y to the root of L subtree)

4. y.right = R subtree;

A y

1.Find k 2. Split = remove root
0 & /R\
[y = maximum key in L]
= closest smaller value to k

3. FindMax(L) (y) 4. yright=R
> O :
A

Pokrogila Algoritmizace, AdM33PAL, ZS 2012/2013, FEL CVUT, 12/14

n Splay Tree - Performance Summary = |R14

4 N

It is difficult to demonstrate the amortized logarithmic behaviour of splay
trees using only small trees with few nodes.

The original ACM article [2] proves the balance theorem:
The run time of performing a sequence of m operations
on a splay tree with n nodes is O(m(1 + In(n)) + n In(n)).

Therefore, the run time for a splay tree is comparable to any balanced tree
assuming at least n operations.

Pokrogila Algoritmizace, AdM33PAL, ZS 2012/2013, FEL CVUT, 12/14

n Splay Tree - Performance (Summary = @15

é)

From the time of introducing splay trees (1985) up till today
the following conjecture (among others) remains unproven.

Dynamic optimality conjecturel?

Consider any sequence of successful accesses on an n-node search
tree. Let A be any algorithm that carries out each access by traversing
the path from the root to the node containing the accessed item, at a
cost of one plus the depth of the node containing the item, and that
between accesses A performs an arbitrary number of rotations
anywhere in the tree, at a cost of one per rotation.

Then the total time to perform all the accesses by splaying is no more
than O(n) plus a constant times the time required by algorithm A.

Pokrogila Algoritmizace, AdM33PAL, ZS 2012/2013, FEL CVUT, 12/14

Splay Tree - Performance Comparisons

Advantages:

— The amortized run times are similar to that of AVL trees and red-
black trees

— The implementation is easier
— No additional information (height/colour) is required

Disadvantages:
— The tree will change with read-only operations

Pokrogila Algoritmizace, AdM33PAL, ZS 2012/2013, FEL CVUT, 12/14

2-3-4 tree Shave 18
5

N
A 2-3-4 search tree is structurally a B-tree of min degree 2 and max degree 4.

A node is a 2-node or a 3-node or a 4-node.
If a node is not a leaf it has the corresponding number (2, 3, 4) of children.
All leaves are at the same distance from the root, the tree is perfectly balanced.

, J
@ s\ r _
2-node _..-*” 3-node _,.-**’ 4-node _-*”
30 2133 T58]62[71
\. J /< | /</\ |
 Example _ T

67

37 58/62]71 \7_95
}33 36 %39|4o 4*60 64| [68 é 85|86\92

Pokrogila Algoritmizace, AdM33PAL, ZS 2012/2013, FEL CVUT, 12/14

2525

[234 tree 19

-
Find: As in B-tree J

_

4)

Insert: As in B-tree: Find the place for the inserted key x in a leaf and store it
there. If necessary, split the leaf and store the median in the parent.

Splitting strategy

Additional insert rule (like single phase strategy in B-trees):

In our way down the tree, whenever we reach a 4-node (including a leaf),

we split it into two 2-nodes, and move the middle element up to the parent node.
This strategy prevents the following from happening:

After inserting a key it might be necessary to split all the nodes going from
inserted key back to the root. Such outcome is considered to be time consuming.

Splitting 4-nodes on the way down results in sparse occurence of 4-nodes in the
tree, thus the nodes never have to be split recursively bottom-up.

[Delete: As in B-tree]

Pokrogila Algoritmizace, AdM33PAL, ZS 2012/2013, FEL CVUT, 12/14

. 2-3-4 tree Splitting strategy 20

f

4 Yy
Split node is the root.

Only the root splitting
Lincreases the tree height

[W
Split node is the leftmost or

the rightmost child of either
a 2-node or a 3-node.
(Only the leftmost case is
shown, the righmost case
Lis analogous)

Split node is the middle
child of a 3-node.

[The node being split cannot be a child of a 4-node, due to the splitting strategy.]

Pokrogila Algoritmizace, AdM33PAL, ZS 2012/2013, FEL CVUT, 12/14

. Insert example |

[Insert keys into initially empty 2-3-4tree:. SEARCHINGKLM

r

[Insert S J (Insert E J Insert A }

(
B — s — EES

(Insert R } E (Insert C } E
ﬁth — ﬁE\R S

[Insert H} E [Insert I) TEF
A[C] \.F? Alc] T[H S

g L

Pokrogila Algoritmizace, AdM33PAL, ZS 2012/2013, FEL CVUT, 12/14

Insert example Il

nsert || %ETR (Insert N | -)
%:} T/ H[1] [s I:> Tﬁ H|I[N| [S

{nsert GJ (Insert K}
E[1[R

\T —> =

Alc| |6[H] IN] Ts N

(Insert L } /E Insert MJ/E\
AC\GH KLN\TSI:>(E\GH Tﬁ M[N| |S

[Note the seemingly unnecessary split of E,I,R 4-node during insertion of K.]

Pokrogila Algoritmizace, AdM33PAL, ZS 2012/2013, FEL CVUT, 12/14

2-3-4 Tree

(Size oxample _____R24

r

Results of an experiment with N uniformly distributed random keys from range
{1, ..., 10° } inserted into initially empty 2-3-4 tree:

.

()

N| Tree depth 2-nodes 3-nodes 4-nodes

10 2 6 2 0

100 4 39 29 1

1000 7 414 257 24

10 000 10 4 451 2 425 233

100 000 13 43 583 24 871 2 225

1 000 000 15 434 671 248 757 22 605
L 10 000 000 18 4 356 849 2 485 094 224 321 y

Pokrogila Algoritmizace, AdM33PAL, ZS 2012/2013, FEL CVUT, 12/14

Relation to R-B tree

[Relation of a 2-3-4 tree to a red-black tree

r

X

Pokrogila Algoritmizace, AdM33PAL, ZS 2012/2013, FEL CVUT, 12/14

n Trees comparison Example = [B26

Ben Pfaff. Performance Analysis of BSTs in System Software, 2004, [3]

Conclusions:

...Unbalanced BSTs are best when randomly ordered input can be relied upon,;

« if random ordering is the norm but occasional runs of sorted order are
expected, then red-black trees should be chosen.

« On the other hand, if insertions often occur in a sorted order, AVL trees excel
when later accesses tend to be random,

« and splay trees perform best when later accesses are sequential or clustered.

Some conseqguences:

Managing virtual memory areas in OS kernel:

... Many kernels use BSTs for keeping track of virtual memory areas (VMAS) :
Linux before 2.4.10 used AVL trees, OpenBSD and later versions of Linux use
red-black trees, FreeBSD uses splay trees, and so does Windows NT for its VMA
equivalents...

_ /

Pokrogila Algoritmizace, AdM33PAL, ZS 2012/2013, FEL CVUT, 12/14

[Trees comparison 27

e 3) N
tree /7 time 1n msec / order

Memory management supporting web browser
BST AVL RB splay
15.67 3.65 3.78 2.63
4 2 3 1

Artificial uniformly random data
BST AVL RB splay
1.63 1.67 1.64 1.94
1 3 2 4

Secondary peer cache tree
BST AVL RB splay
3.94 4.07 3.78 7.19
2 3 1 4

Compilation identifiers cross-references
BST AVL RB splay
4.97 4.47 4.33 4.00
4 3 2 1

Pokrogila Algoritmizace, AdM33PAL, ZS 2012/2013, FEL CVUT, 12/14

