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ABSTRACT 

Chu and Liu, Ecbnonds, and Bock have independently devised 
an ef f ic ient  aZgorYithm to  f i n d  an optimum branching i n  a d i -  
rected haph. 
runs i n  O(m2ogn) time i f  the problem graph has n vertices and 
m edges. A modification for dense graphs gives a running time 

2 of O(n 1. We also show that the unmodified algorithm runs i n  
2 O(n(Zog n)  + m) time on an average graph, asswning a uniform 

probabi Z i t y  distribution. 

We give an impzementation of the algorithm which 

1. INTRODUCTION 

A d i rec t ed  graph G = (VIE)  cons i s t s  of a set of vertices 
Each 

A semipath jo in ing  x1 and 5 i n  G 

V of s i z e  IVl = n and a set of edges E of s i z e  IE1 = m. 
edge is an ordered pair (v ,w)  of d i s t i n c t  vertices v , w ,  called 
t h e  endpoints of the  edge. 

is  a sequence of vertices x ,x ,...,\ such t h a t  (x xi+l) E E 1 2  i' 
or ( X ~ + ~ , X ~ )  E E f o r  each i, 1 - -  < i  < k .  A set of v e r t i c e s  W C V 

i s  weak29 connected i f  t he re  i s  a semipath of v e r t i c e s  i n  W 
jo in ing  any pair of vertices i n  W. A maximal weakly connected 
se t  of vertices i s  a weakly connected component of G.  

A path from x1 t o  x i n  G i s  a sequence of edges 

(x,,x2) (x2,x,) . . . ( x , - ~ , \ ) .  

a r e  d i s t i n c t .  

t i c e s  S C V  is  strongly connected i f  t h e r e  is a pa th  whose edges 
have endpoints i n  S from any ver tex  i n  S t o  any o ther  ver tex  i n  
S. A maximal s t rongly  connected set  i s  a s t rongly  connected 
component of G. 

k 

5- 1 
The pa th  is  simple i f  x1 ,..., 

The path is a cycle i f  x1 = 5. A set of ver- 

Networks, 7: 25-35 
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A bPU?zChing B of G is  a set  of edges such t h a t  

(i) i f  (xl ,yl) ,  (x2 ,y2)  a r e  d i s t i n c t  edges of B then y1 #y2 ;  

(ii) B does no t  conta in  a cycle.  

Given a real value c(v,w) def ined f o r  each edge of G, we  d e s i r e  

a branching B such t h a t  1 c(v,w) is  maximum. Such a set  

B is c a l l e d  an optimum branching. 

dent ly  given e f f i c i e n t  a lgori thms f o r  f ind ing  an optimum branch- 
ing  i n  a graph G. The Chu-Liu and Edmonds algorithms are 
v i r t u a l l y  i d e n t i c a l ;  t he  Bock algorithm is s i m i l a r  b u t  s t a t e d  as 
an algorithm on matrices r a t h e r  than on graphs. 
an e f f i c i e n t  implementation of the Chu-Liu-Edmonds algorithm. 
I f  G has  n vertices and m edges t h e  algorithm runs i n  O(m1ogn) 

time. A modif icat ion f o r  dense graphs g ives  an O(n ) running 
t i m e .  Also, assuming a uniform p r o b a b i l i t y  measure, t h e  algo- 

(vtw) EB 

Chu and Liu [31, Edmonds [51, and Bock [ l l  have indepen- 

This paper g ives  

2 

L r i t h m  runs i n  0 (n ( log  n) + m) t i m e  on t h e  average. These t i m e  
bounds assume m > k n  f o r  some cons tan t  k. ( T h i s  is  no t  a se r ious  
r e s t r i c t i o n ;  anyweakly connected graph has  m - > n-1. 

2 .  AN ALGORITHM FOR OPTIMUM BRANCHINGS 

L e t  G = (V,E) be a weakly connected d i r e c t e d  graph, having 
edge values  c(v,w).. The Chu-Liu-Edmonds algori thm f i n d s  an 
optimum branching i n  G. The algori thm cons t ruc t s  a set  of edges 
H def in ing  a subgraph G (H)  = (V,H) . A t  a l l  t i m e s  dur ing the 
cons t ruc t ion ,  G ( H )  i s  such t h a t  for  each s t rong ly  connected com- 
ponent s, t h e r e  i s  a t  m o s t  one edge (v,w) E H  such t h a t  W E S ,  
veV-S. I f  S i s  such t h a t  no edge (v,w) s H  s a t i s f i e s  w s S ,  
vsV-S w e  c a l l  S a root component of G ( H ) .  

I n i t i a l l y  H = 53; thus  i n i t i a l l y  each ve r t ex  i n  V def ines  
both a weakly connected and a s t rongly  connected component of 
G ( H ) .  Here i s  t h e  algorithm for cons t ruc t ing  t h e  set  H. 

A Zgozvithm BRANCh: 

First Step: 
F1: Choose any ver tex  v w i t h  an edge (x,v)  of value 

F2: Se lec t  t h e  edge (u,v)  of l a r g e s t  value.  
F3: Add (u,v)  t o  H. 

c ( x , v )  > 0. 
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General Step: 
GI: 

G2 : 

G3 : 

G4 : 

G5 : 

G6 : 

G7 : 

G8 : 

Choose any root component S of G(H) having an 
unexamined edge (x,v) with v E S and c (x,v) > 0. 
Find the largest unexamined edge (u,v) such 
that v E S. 
If UES, discard the edge and stop. Otherwise 
go to G4. 
u $ s .  Let W be the weakly connected component 
of G(H) containing v. If ukW add (u,v) to H 
and stop. Otherwise go to G5. 
u$S, UEW. Find the sequence 
sl, (x IY 1 ,S2, (X2,YZ) , - #Sk’ (\,y,) such that 
each S. is a strongly connected component of 

G(H)t (Xi,Yi) E: H, Yi E Sit and Xi E Si+l for 

1 1  

1 

k ’1’ all i, sk = s, (\,yk) = (u,v), and x 

the (xi,yi) j i  
Find the edge (x ,y.) with minimum value among 

For each unexamined edge (x,y) with yesi, 
modify the value of (x,y) as follows: 

c(x,y) := c(x,y) -c(xi,yi) +c(x ,y.). 
j i  

Add (u,v) to H. (This combines S1, ... ,S into 
a single strongly connected component which is 
a root component of G(H). 

k 

Repeat the general step until there is no root component S of 
G(H) having an unexamined edge (u,v) with v E S and c(u,v) > 0. 

Suppose this algorithm is applied to a graph G. The fol- 
lowing results are implicit in the work of Ewnds and Karp 
[5,81. Let G(H) = (V,H). 

Lema 1: 
most one edge ( u , ~ )  E H with v ES, u E V-S. 
nected component W of G ( H )  contains exactly one root component. 

Each strongly connected component S of G ( H )  has a t  
Each weakly con- 

Lema 2: 
weakly connected component containing S, and l e t  v sS.  
for  any w E: W there i s  a unique simple path i n  G ( H )  from v to  w. 

Let S be any root component of G ( H ) ,  l e t  W be the 
Then 
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These lemmas follow easily by induction on the number of 
edges added to H. When the algorithm is completed, H contains an 
optimum branching, which we can extract with the help of Lemma 
2. All we need to do is determine a unique vertex v in the 
root component of each weakly connected component of G(H); these 
vertices determine a branching consisting of the simple paths 
given by Lemma 2. 
following algorithm, the resultant branching is optimum [5,81. 

If we determine these vertices using the 

A l g o s t h m  ROOT: 

R1: 

R2: 

Find a root component R in G(H) containing more than 
one vertex. 
Find the sequence S 1, (xl,yl) . . . Sk, (x,,yk) determined 

in BRANCH, Step G5, such that edge (\,yk) was added 
to H to form R. 

R3: Find the edge (x ,y.) of minimum value among the 

R4: Delete (x.,y.) from H (this step makes S a root 

(Xi,Yi). j i  

7 7  j 
component). 

Repeat Steps R1-R4 until every root component consists of a 
single vertex. 

If BRANCH keeps track of each minimum edge (x ,y,) found 

in Step G6 and of each strongly connected component formed in 
Step G8, then we do not need to actually carry out ROOT; BRANCH 
can explicitly keep track of the root vertex which would be re- 
turned by ROOT for any given root component. 
uses this observation. 

j i  

Our implementation 

3 .  EFFICIENT IMPLEMENTATION 

We need several bookkeeping mechanisms to implement BRANCH 
efficiently. we must keep track of (a) the weakly connected 
components of G(H), (b) the strongly connected components of 
G(H), and (c) the unexamined edges entering each strongly con- 
nected component. For (a) and (b) we use a disjoint set union 
algorithm descrl.bed in [7,131. Given a collection of disjoint 
sets, the set union algorithm implements two operations: 



FINDING OPTIMUM BRANCHINGS 29 

(i) FIND(X) returns the name of the set containing element 

(ii) UNION(A,B) adds the elements of set A to set B, destroy- 
x; 

ing set B. 

The time required for 0 (m) FINDS and 0 (n) UNIONS is O(n log* n+m) 

[131, where log n = minIi 1 log log . . . log n<l). - 

collection of sets, manipulated by WIND and WUNION, to repre- 
sent the weakly connected components, and another collection of 
sets, manipulated by SFIND and SUNION, to represent the strongly 
connected components. 

To keep track of the edges entering each strongly connected 
component, we use a priority queue mechanism described in [2,91. 
Given a collection of elements, each with a value, and a collec- 
tion of disjoint sets (called queues) of elements, the mechanism 
implements four operations: 

* 
We use one . 

i times 

(iii) QUNION(C,D) adds the elements in queue D to queue C. 
Time required: 0 (log ICl + log ID1 ) . 

(iv) MAX(C) returns the largest element in queue C, deleting 
this element from the queue. (If C is empty, MAX(C) 
returns a dummy element with value -a.) 
Time required: 

in the list L. 
Time required: 

in queue C. 
Time required: 0 (1) . 

0 (log IC 1 1. 
(v) INIT(C,L) initializes a queue C to contain all elements 

0 ( I L 1 ) . 
(vi) ADD(a,C) adds a constant a to the value of all elements 

Here is an implementagion of the optimum branching algo- 
rithm, expressed in Algol-like notation. In the program, the 
set roots gives the root components of G(H) which may have en- 
tering edges of positive value. The set rset  gives the root 
components of G(H) with no entering edges of positive value. 
For each i, enter(i) gives the unique edge in H entering strongly 
connected component i. 
enter(i) = ( 0 , O )  .) 

algorithm ROOT will select if applied to root component i. The 
variable U a Z  and vertez are used to select and record the mini- 
mum edge found in Step G6. 
G = (V,E) has vertex set V = (1,2,. . . ,n), and that, for each j , 
I ( j )  = ((i,j) EE) is an incidence list for vertex j .  

(If there is no such entering edge, 

The array mh(i) gives, for each i, the root vertex which 

The algorithm assumes that the graph 
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&Ok&%m BRANCH: 

roots := 8;  

begin  

begin 

60k i := 1 u n t i l  n do 

I N I T ( i , I  ( i l l ;  
i n i t i a l i z e  an S-set named i containing i as i ts  
only element; 
i n i t i a l i z e  a W-set named i containing i as i t s  
only element; 
e n t e r ( i )  := (0,O); 
roots  := roots  u { i l i  
min( i )  := i; 

end ; 
H := 8; 
r s e t  := 8; 
wkiee roots  # do 

d e l e t e  some e n t r y  k from roots; 
( i , j )  := MAX(k); 

i d  v ( i , j )  < 0 Xthen rset := r s e t  U { k )  
e&e i d  SFykD(i) = k lthen roots := POOtsU {k) 

begin  

e h e  begin  
H := H U { ( i , j ) } i  
.id WFIND(~) #  WIND(^) ,then 

begin  

end 

begin  

WUNION (WIND (i) ,WIND (j ) ) ; 
en ter (k )  := ( i , j ) i  

&he 

vaZ := 01; 

(x,y) := ( i , j ) ;  
lokiee (x,y) # (0~0) do 

begin  

end i 

begin  
id c(x ,y)  < vaZ t h e n  

vaZ := c (x ,y )  i 
vertex := SFIND (y) ; 

(x,y) := enter (SFIND (x) 1 ; 
end; 

ADD(VaZ - c ( i , j )  , k ) ;  
min ( k )  := min (ver tex)  i 
(x,y) := enter (SFIND (i) ) ; 
wkiee (x,y) # (0,O) do 
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begin 
ADD ( V a l  - c (x,y) ,SFIND (y) ) ; 
QUNION (k, SFIND (y) ) ; 
SUNION (k, SFIND (y ) ) ; 
(x,y) := enter(sFrND(x)); 

end; 
roots := roots u ( k } ;  

end end end end BRANCH; 

After BRANCH i s  executed, the s e t  of ver t ices  
R = (min(i)  I i E: P S e t )  defines an optimum branching, which may 
be found i n  O(n+m) time by using a search [121 t o  f ind the s e t  
of simple paths from the ver t ices  i n  R t o  a l l  other ver t ices .  

(a) p r i o r i t y  queue operations; 
(b) d i s jo in t  s e t  operations; 
(c) other  operations. 

The p r i o r i t y  queue operations required are:  O(n) I N I T  op- 
erat ions,  one fo r  each vertex; O(m)  MAX operations, O(n) QUNION 
operations, and O(n) ADD operations. Thus the t o t a l  t i m e  fo r  the 
p r io r i ty  queue operations is O ( m  log n). The d i s jo in t  set opera- 
t ions required are: O(m)  WINDS, O(m) SFINDs, O(n) WUNIONs, and 
O h )  SUNIONs (the s e t  H contains a t  most 2n-2 edges). Thus 

the t o t a l  t i m e  fo r  the set  operations is O(n log n+m). The 
t o t a l  t i m e  f o r  other operations is  c lear ly  O(n+m). Thus the 
t o t a l  t i m e  required t o  f ind an optimum branching i s  O(m1ogn) 
(assuming m - > kn f o r  some constant k). The space required is  
0 (m) . 

The operations i n  algorithm BRANCH are  of three types: 

* 

4. A MODIFICATION FOR DENSE GRAPHS 

The time bound given i n  Section 2 f o r  the optimum branch- 
2 ing algorithm is  O(n logn)  i f  the graph G is dense; i.e., m 

is  n(n ) .  However, by changing the p r io r i ty  queue representa- 

t ion,  we can ge t  the algorithm t o  run i n  O(n t i m e .  This 

modification is  analogous t o  t h a t  used i n  a well-known O(n 1 
m i n i m u m  spanning t r ee  algorithm [4,101. 

We use a d i f fe ren t  mechanism t o  represent the p r io r i ty  
queues. For each strongly connected component S, we have. a 
list of edges ( i , j ) ,  a t  most one f o r  each i, such t h a t  i t s ,  
j E S ,  and for  a l l  edges ( i , k )  such t h a t  kES ,  c ( i , k )  L c ( i , j ) .  
This l i s t  is ordered on i, and takes the place of the p r io r i ty  
queue for  component S. Associated with each edge ( i , j )  i n  the 
l i s t  is  i t s  current value c ( i , j ) .  

2 

2 

2 
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Since such a l ist  has length a t  m o s t  n ,  a MAX operation re- 
quires  O(n) t i m e .  Furthermore, s ince  every edge ( i , j )  on such 
a l i s t  has i j! S, algorithm BRANCH executes only O(n) MAX opera- 

t ions ,  and O(n ) time t o t a l  is required f o r  the MAX operations. 

O h )  SFINDs. Thus the t o t a l  t i m e  f o r  the QUNION operations is  

O(n 1. (O(n ) SFINDs plus O(n) SUNIONs require O(n ) t i m e  [131.) 
A n  I N I T (  IL1) operation requires 0 (n) t i m e  since ILI < n (the 
edges ( i , j )  E L may be sorted on the value of i in  OTlLl + n) 
t i m e  by using a radix s o r t  [91) .  Thus the t o t a l  t i m e  f o r  the 

I N I T  operations i s  O(n 1 ,  and the running t i m e  of the modified 

version of BRANCH i s  O(n 1 .  The space required is  s t i l l  O ( m ) .  

2 

A QUNION(C,D) operation requires O(nt t i m e  p lus  t i m e  f o r  

2 2 2 

2 

2 

5. AVERAGE TIME ANALYSIS 

In  this sect ion w e  show t h a t  the average running t i m e  of 
2 the unmodified version of BRANCH i s  O(n(1og n) + m) assuming a 

uniform probabi l i ty  measure. The analysis  is analogous t o  t h a t  
used i n  [ l l l  to  show the existence of an a l l -pa i r s  shor tes t  path 

algorithm with an average running t i m e  of O((n1ogn)  1 .  

t ion from among the ( (n-l) ) label led graphs having vertex set m 
{1,2, ..., n} and m edges. A s s u m e  t h a t ,  f o r  a l l  j ,  the  probabil- 
i t y  of the existence of an edge ( i , j )  i n  G is the same f o r  each 
i. For each j ,  1 < j < n, l e t  p be a real-valued probabi l i ty  

d is t r ibu t ion ,  and l e t  the values of the edges ( i , j )  i n  G be in- 
dependent var iables  with probabi l i ty  d is t r ibu t ion  p 

t h a t  there  e x i s t s  a n  edge ( i , j )  E E and t h a t  ( i , j )  has maximum 
value among edges i n  the set  { (k , j )  I ( k , j )  E El is  the same f o r  
each i. Furthermore, a t  any t i m e  during the execution of BRANCH, 
the probabili ty t h a t  there  e x i s t s  an edge ( i , j )  E E and t h a t  
( i , j )  has maximum value among unexamined edges i n  the set 
{ ( k , j )  1 ( k , j )  E E )  i s  the same f o r  each i such t h a t  ( i , j )  has not 
ye t  been returned by a cal l  on MAX. This follows from the f a c t  
t h a t  the only information known about ( i , j )  is  t h a t  i f  ( i , j )  i s  
an edge i n  G then i t s  value must be grea te r  than t h a t  of a l l  
edges returned by previous MAX calls on queues corresponding t o  
root components containing vertex j ;  and t h i s  information i s  
independent of i. 

2 

L e t  G be selected according t o  some probabi l i ty  dis t r ibu-  

j - -  

j '  
With t h i s  def in i t ion  of a random graph, the probabi l i ty  



FINDING OPTIMUM BRANCHINGS 33 

W e  now der ive  an upper bound on the  average number of MAX 
c a l l s  used by BRANCH and hence on the  average running t i m e  of 
BRANCH. Suppose MAX(k) is  executed f o r  some root  component k 
containing m vertices. Then t h e  p robab i l i t y  of MAX(k) return- 

i ng  an edge ( i , j )  with i outside component k i s  a t  least - . 
Thus an upper bound on 4, t he  average number of MAX(k) opera- 

t i o n s  before a new edge is added t o  H ,  is  

n-m 
n 

The maximum number of edges which can be added to  H after some 
r o o t  component 
upper bound on 
i s  

reaches s ize  m is 2(n-m). It follows t h a t  an 
M, t he  average t o t a l  number of executions of M a x ,  

and t h e  average t i m e  required by a l l  t h e  MAX 
2 O(n(1og n )  1 .  Combining t h i s  with t h e  worst 

on the  o the r  p a r t s  of the  algorithm gives an 

operations is 

case t i m e  bounds 

O(n(log n ) 2  + m) 
bound on the  average running time of t h e  algorithm. 

W e  a l s o  have 

and 

2 2 n-l 4n 

m = l  (n-m) 
= O(n 1 .  2 var(M) - < 1 

Thus the  standard deviation of M is O h ) ,  and t h e  probabil- 
i t y  t h a t  the  number of executions M of MAX is g rea t e r  than 

is  O(1/k2). Thus the  p robab i l i t y  t h a t  t he  running t i m e  of 

i s  no t  O(n(1og n l 2  + m) is  o 1 

( ( l o g  n l2 )  . 

M + k n  

BRANCH 
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6. REMARKS 

W e  have presented an implementation of Edmonds' optimum 
branching algorithm which has  a worst-case running t i m e  of 

O(m l o g n )  , an average running time of 0 (n (log n) + m )  , and can 

be modified t o  run i n  O(n ) t i m e ,  which i s  an improvement i f  
the  graph is dense. One n a t u r a l l y  wonders i f  these  r e s u l t s  are 
best poss ib le .  Recently discovered algorithms f o r  f ind ing  mini- 
mum spanning trees i n  undirected graphs achieve a t i m e  bound of 
0 (m l og  log  n )  12,141 ; they can be used t o  f i n d  minimum spanning 
trees i n  O(n l o g  log  n + m) time on t h e  average, using r e s u l t s  
i n  161. These r e s u l t s  suggest t h e  following research questions: 

2 

2 

Can optimum branchings be found i n  o(m1ogn) time? 

If not,  how can one prove that  rmy optimum branching algo- 
rithm requi res  R (m l og  n)  t i m e  i n  t h e  worst case? 
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