Finding Optimum Branchings

R. E. Tarjan

Stanford University
Stanford, California

ABSTRACT

Chu and Liu, Edmonds, and Bock have independently devised
an efficient algorithm to find an optimum branching in a di-
rected Jgraph. We give an implementation of the algorithm which
runs in 0(m logn) time if the problem graph has n vertices and
m edges. A modification for demse graphs gives a running time

of 0(n2). We also show that the unmmodified algorithm runs in

0(n(Zog71)2+-m) time on an average graph, assuming a uniform
probability distribution.

1. TINTRODUCTION

A directed graph G = (V,E) consists of a set of vertices
V of size |V| = n and a set of edges E of size |E| = m. Each
edge is an ordered pair (v,w) of distinct vertices v,w, called
the endpoints of the edge. A gemipath joining x, and x_in G

is a sequence of vertices x rXyre oo r X such that (xi'xi+1) e E

1

or (x, .,X;) €E for each i, 1<i<k. A set of vertices WCV

i+l
is weakly comnected if there is a semipath of vertices in W
joining any pair of vertices in W. A maximal weakly connected
set of vertices is a weakly comnected component of G.

A path from X, to X in G is a sequence of edges

(xl,xz)(§2,x3) ...(xk_l,xk). The path is simple if Xpreeor Xy g
are distinct. The path is a cyecle if X) = X . A set of ver-

tices S C V is strongly connected if there is a path whose edges
have endpoints in S from any vertex in S to any other vertex in
S. A maximal strongly connected set is a strongly connected
component of G.

Networks, 7: 25-35
© 1977 by John Wiley & Sons, Inc. 25

26 TARJAN

A branching B of G is a set of edges such that

(i) if (xl,yl), (x2,y2) are distinct edges of B then y17‘y2;

(ii) B does not contain a cycle.

Given a real value c(v,w) defined for each edge of G, we desire

a branching B such that Z c(v,w) is maximum. Such a set
(v,w)eB
B is called an optimum branching.

Chu and Liu [3], Edmonds [5], and Bock [1] have indepen-
dently given efficient algorithms for finding an optimum branch-
ing in a graph G. The Chu-Liu and Edmonds algorithms are
virtually identical; the Bock algorithm is similar but stated as
an algorithm on matrices rather than on graphs. This paper gives
an efficient implementation of the Chu - Liu - Edmonds algorithm.
If G has n vertices and m edges the algorithm runs in O0(m logn)

. . o . . 2 .
time. A modification for dense graphs gives an 0(n") running
time, Also, assuming a uniform probability measure, the algo-

rithm runs in O(n(loglq)zi-m) time on the average. These time
bounds assume m >kn for some constant k. (This is not a serious
restriction; any weakly connected graph has m>n-1.)

2. AN ALGORITHM FOR OPTIMUM BRANCHINGS

Let G = (V,E) be a weakly connected directed graph, having
edge values c(v,w). The Chu- Liu~ Edmonds algorithm finds an
optimum branching in G. The algorithm constructs a set of edges
H defining a subgraph G(H) = (V,H). At all times during the
construction, G(H) is such that for each strongly connected com-
ponent S, there is at most one edge (v,w) ¢H such that we S,
veVv-S. If S is such that no edge (v,w) ¢ H satisfies weS,

v eV-S we call S a root component of G(H).

Initially H = §; thus initially each vertex in V defines
both a weakly connected and a strongly connected component of
G(H). Here is the algorithm for constructing the set H.

Algorithm BRANCH:

First Step:
Fl: Choose any vertex v with an edge (x,v) of value
c(x,v) > 0.
F2: Select the edge (u,v) of largest value.
F3: Add (u,v) to H.

FINDING OPTIMUM BRANCHINGS 27

General Step:

Gl: Choose any root component S of G(H) having an
unexamined edge (x,v) with ve$S and c(x,v) >0.

G2: Find the largest unexamined edge (u,v) such
that ves.

G3: If ues, discard the edge and stop. Otherwise
go to G4.

G4: ufgS. Let W be the weakly connected component
of G(H) containing v. If ugw add (u,v) to H
and stop. Otherwise go to GS5.

G5: ugsS, ueW. Find the sequence
Sl,(xl,yl),Sz,(x2,y2),...,sk,(xk.yk) such that

each Si is a strongly connected component of

G(H), (xi,yi) € H, Y, € Si' and X, € Si+1 for

all i, Sk =S, (xk,yk) = (u,v), and x £ Sl.

G6: Find the edge (x. ,y) with minimum value among
the (x,,v,)]

G7: For each unexamined edge (x,y) with yeS,_,
modify the value of (x,y) as follows:

clx,y) := clx,y) -c(xi,yi) +c(xj,yj).

G8: Add (u,v) to H. (This combines S.,...,S, into

1 k
a single strongly connected component which is
a root component of G(H).)

Repeat the general step until there is no root component S of
G(H) having an unexamined edge (u,v) with ve$S and c(u,v) >0.

Suppose this algorithm is applied to a graph G. The fol-
lowing results are implicit in the work of Edmonds and Karp
[5,8). Let G(H) = (V,H).

Lemma 1: Each strongly connected component S of G(H) has at
most one edge (u,v) € Hwith veS, u € V-S. Each weakly con-
nected component W of G(H) contains exactly one root component.

Lemma 2: Let S be any root component of G(H), let W be the
weakly comnected component containing S, and let v eS. Then
for any weW there is a unique simple path in G(H) from v to w.

28 TARJAN

These lemmas follow easily by induction on the number of
edges added to H. When the algorithm is completed, H contains an
optimum branching, which we can extract with the help of Lemma
2. All we need to do is determine a unique vertex v in the
root component of each weakly connected component of G(H); these
vertices determine a branching consisting of the simple paths
given by Lemma 2. If we determine these vertices using the
following algorithm, the resultant branching is optimum [5,8].

Algorithm ROOT:

Rl: Find a root component R in G(H) containing more than
one vertex.
R2: PFind the sequence Sl,(xl,yl) "'Sk'(xk'yk) determined

in BRANCH, Step G5, such that edge (xk.yk) was added
to H to form R.

R3: Find the edge (x.,y.) of minimum value among the
(x;,y,). 1)

R4: Delete (xj,yj) from H (this step makes Sj a root

component) .

Repeat Steps Rl - R4 until every root component consists of a
single vertex.

If BRANCH keeps track of each minimum edge (xj,yj) found

in Step G6 and of each strongly connected component formed in
Step G8, then we do not need to actually carry out ROOT; BRANCH
can explicitly keep track of the root vertex which would be re-
turned by ROOT for any given root component. Our implementation
uses this observation.

3. EFFICIENT IMPLEMENTATION

We need several bookkeeping mechanisms to implement BRANCH
efficiently. We must keep track of (a) the weakly connected
components of G(H), (b) the strongly connected components of
G(H), and (c¢) the unexamined edges entering each strongly con-
nected component. For (a) and (b) we use a disjoint set union
algorithm described in [7,13]. Given a collection of disjoint
sets, the set union algorithm implements two operations:

FINDING OPTIMUM BRANCHINGS 29

(1) FIND(x) returns the name of the set containing element
X;

(ii) UNION(A,B) adds the elements of set A to set B, destroy-
ing set B.

The time required for O(m) FINDs and O(n) UNIONs is O(n log* n+m)
[13], where log* n = min{i llog log ... log n<l}. We use one

e =™

i times

collection of sets, manipulated by WFIND and WUNION, to repre-
sent the weakly connected components, and another collection of
sets, manipulated by SFIND and SUNION, to represent the strongly
connected components.

To keep track of the edges entering each strongly connected
component, we use a priority queue mechanism described in [2,9].
Given a collection of elements, each with a value, and a collec-
tion of disjoint sets (called queues) of elements, the mechanism
implements four operations:

(iii) OQUNION(C,D) adds the elements in queue D to queue C.
Time required: O0(log |C|-+log IDI).

(iv) MAX(C) returns the largest element in queue C, deleting
this element from the gqueue. (If C is empty, MAX(C)
returns a dummy element with value -«.)

Time required: O(log |C|).

(v) INIT(C,L) initializes a queue C to contain all elements
in the list L.
Time required: O(ILI).

(vi) aDD(a,C) adds a constant a to the value of all elements
in queue C.

Time required: O0(1).

Here is an implementation of the optimum branching algo-
rithm, expressed in Algol-like notation. In the program, the
set roots gives the root components of G(H) which may have en-
tering edges of positive value. The set rset gives the root
components of G(H) with no entering edges of positive value.

For each i, enter(i) gives the unique edge in H entering strongly
connected component i. (If there is no such entering edge,
enter (i) = (0,0).)

The array min(i) gives, for each i, the root vertex which
algorithm ROOT will select if applied to root component i. The
variable val and vertexr are used to select and record the mini-
mum edge found in Step G6. The algorithm assumes that the graph
G = (V,E) has vertex set V = {1,2,...,n}, and that, for each j,
I(j) = {(i,j) €E} is an incidence list for vertex j.

30 TARJAN

algorithm BRANCH:
begin
roots : :

INIT(i,I(i)):
initialize an S-set named i containing i as its
only element;
initialize a W-set named i containing i as its
only element;
enter (i) := (0,0);
roots := roots U {i};
min (i) := i;
end;
H := @;
rget := @;
while roots # @ do
begin
delete some entry k from roots;
(1,3) := MAX(k);
Af v(i,3) < 0 then rset := rset U {k}
else if SFIND(i) = k then roots := roots U {k}
else begin
H:=HUI{,i)};
Af WFIND (i) # WFIND(j) then

begin
WUNION (WFIND (i) ,WFIND (3));
enter(k) := (i,3):
end
else
begin
val := LoH

(er) = (irj)7
while (x,y) # (0,0) do
begin
L§ c(x,y) < val then
begin
val := c{x,y);
vertex := SFIND(y);
end;
(x,y) := enter(SFIND(x));
end;
ADD (val - c(i,j) ,k);
min (k) := min(vertex);
(x,y) := enter(SFIND(i));
while (x,y) # (0,0) do

FINDING OPTIMUM BRANCHINGS 31

beg.in
ADD (val - c(x,y) ,SFIND(y));
QUNION (k,SFIND(y));
SUNION (k,SFIND(y));
(x,y) := enter(SFIND(x));
end;

roots := roots U{k};
end end end end BRANCH;

After BRANCH is executed, the set of vertices
R = {min(i) |i e rset} defines an optimum branching, which may
be found in O0(n+m) time by using a search [12] to find the set
of simple paths from the vertices in R to all other vertices.
The operations in algorithm BRANCH are of three types:

(a) priority dqueue operations;
(b) disjoint set operations;
{(c) other operations.

The priority queue operations required are: O0(n) INIT op-
erations, one for each vertex; 0(m) MAX operations, 0(n) QUNION
operations, and O(n) ADD operations. Thus the total time for the
priority queue operations is O(m log n). The disjoint set opera-
tions required are: O0{(m) WFINDs, O(m) SFINDs, O(n) WUNIONs, and
0(n) SUNIONs (the set H contains at most 2n-2 edges). Thus

the total time for the set operations is O(nlog*n+m). The
total time for other operations is clearly O(n+m). Thus the
total time required to find an optimum branching is 0(m logn)
(assuming m > kn for some constant k). The space required is
0(m).

4. A MODIFICATION FOR DENSE GRAPHS

The time bound given in Section 2 for the optimum branch-
ing algorithm is O(nzlogn) if the graph G is dense; i.e., m
is Q(nz). However, by changing the priority queue representa-
tion, we can get the algorithm to run in 0(n2) time. This

modification is analogous to that used in a well-known 0(n2)
minimum spanning tree algorithm [4,10].

We use a different mechanism to represent the priority
queues. For each strongly connected component S, we have a
list of edges (i,j), at most one for each i, such that if¢s,
jes, and for all edges (i,k) such that keS, c(i,k) < c(i,]).
This list is ordered on i, and takes the place of the priority
queue for component S. Associated with each edge (i,j) in the
list is its current value c(i,j).

32 TARJAN

Since such a list has length at most n, a MAX operation re-
quires O(n) time. FPurthermore, since every edge (i,j) on such
a list has i £ S, algorithm BRANCH executes only 0(n) MAX opera-

tions, and O(n2) time total is required for the MAX operations.
A QUNION(C,D) operation requires O(n) time plus time for
0(n) SFINDs. Thus the total time for the QUNION operations is

0(n2). (0(n2) SFINDs plus O(n) SUNIONs require 0(n2) time [13].)
An INIT(ILI) operation requires 0(n) time since ILI < n (the
edges (i,j) € L may be sorted on the value of i in O(ILI + n)
time by using a radix sort [9]). Thus the total time for the

2 . . ‘e
INIT operations is O(n), and the running time of the modified

version of BRANCH is 0(n2). The space required is still 0(m).
5. AVERAGE TIME ANALYSIS

In this section we show that the average running time of

2
the unmodified version of BRANCH is O(n(log n) + m) assuming a
uniform probability measure. The analysis is analogous to that
used in [11] to show the existence of an all-pairs shortest path

algorithm with an average running time of 0(01logn)2).
Let G be selected accérding to some probability distribu-

ne (n-1)
m

tion from among the ()} labelled graphs having vertex set

{1,2,...,n} and m edges. Assume that, for all j, the probabil-
ity of the existence of an edge (i,j) in G is the same for each
i. For each j, 1 < j < n, let pj be a real-valued probability

distribution, and let the values of the edges (i,j) in G be in-
dependent variables with probability distribution pj.

With this definition of a random graph, the probability
that there exists an edge (i,j) € E and that (i,j) has maximum
value among edges in the set { (k,j) |(k,j) e E} is the same for
each i, Furthermore, at any time during the execution of BRANCH,
the probability that there exists an edge (i,j) € E and that
(i,j) has maximum value among unexamined edges in the set
{(,3) I(k,j) £¢E} is the same for each i such that (i,j) has not
yet been returned by a call on MAX. This follows from the fact
that the only information known about (i,3j) is that if (i,j) is
an edge in G then its value must be greater than that of all
edges returned by previous MAX calls on queues corresponding to
root components containing vertex j; and this information is
independent of i.

FINDING OPTIMUM BRANCHINGS 33

We now derive an upper bound on the average number of MAX
calls used by BRANCH and hence on the average running time of
BRANCH. Suppose MAX(k) is executed for some root component k
containing m vertices. Then the probability of MAX(k) return-
ing an edge (i,j) with i outside component k is at least Eiﬁ .
Thus an upper bound on ﬁk' the average number of MAX (k) opera-

tions before a new edge is added to H, is

e () L) -

The maximum number of edges which can be added to H after some
root component reaches size m is 2(n-m). It follows that an
upper bound on M, the average total number of executions of Max,
is
_ _ n-1 on
M= ZMk < z s O0(n logn)
m=1

and the average time required by all the MAX operations is
O0(n(log n)2). Combining this with the worst case time bounds

on the other parts of the algorithm gives an O(n(log n)2 + m)
bound on the average running time of the algorithm.
We also have

and

Thus the standard deviation of M is 0(n), and the probabil-
ity that the number of executions M of MAX is greater than M+ kn

. 2 .
is 0(1/k”). Thus the probability that the running time of BRANCH

is not O0(n(log n)2 + m) is()(-———l———-) .
2
(log n)

34 TARJAN

6. REMARKS

We have presented an implementation of Edmonds' optimum
branching algorithm which has a worst-case running time of

O(m logn), an average running time of 0(n(log n)2-+m), and can

be modified to run in O(n2) time, which is an improvement if

the graph is dense. One naturally wonders if these results are
best possible. Recently discovered algorithms for finding mini-
mum spanning trees in undirected graphs achieve a time bound of
O(m log log n) [2,14]); they can be used to find minimum spanning
trees in O(n log log n + m) time on the average, using results
in [6]. These results suggest the following research questions:

Can optimum branchings be found in o(m logn) time?

If not, how can one prove that any optimum branching algo-
rithm requires £ (m logn) time in the worst case?

REFERENCES

1. Bock, F., "An Algorithm to Construct a Minimum Directed
Spanning Tree in a Directed Network," Developments in
Operations Research, Gordon and Breach, New York, 1971,
pp. 29-44.

2. Cheriton, D. and R. Tarjan, "Finding Minimum Spanning
Trees," SIAM J. Comput., 5, 1976, pp. 724-742.

3. Chu, Y. J. and T. H. Liu, "On the Shortest Arborescence
of a Directed Graph," Sei. Sinieca, 14, 1965, pp. 1396-1400.

4. Dijkstra, E. W., "A Note on Two Problems in Connection
with Graphs," Numerische Mathematik, 1, 1959, pp. 269-271.

5. Edmonds, J., "Optimum Branchings," Jour. of Research of
the National Bureau of Standards, 71B, 1967, pp. 233-240.

6. Erdds, P. and A. Rényi, "On the Evolution of Random Graphs,"
Pub. of the Math. Inst. of the Hung. Acad. of Seiences, 5,
1960, pp. 17-60.

7. Hopcroft, J. and J. D. Ullman, "Set-Merging Algorithms,"
SIAM J. Comput., 2, 1973, pp. 294-303.

8. Karp, R. M., "A Simple Derivation of Edmonds' Algorithm
for Optimum Branchings," Networks, 1, 1971, pp. 265-272.

FINDING OPTIMUM BRANCHINGS 35

9. Knuth, D., The Art of Computer Programming, Vol. 3: Sort-
ing and Searching, Addison-Wesley, Reading, Massachusetts,
1973.

10. Prim, R. C., "Shortest Connection Networks and Some Gener-
alizations," Bell System Tech. J., 1957, pp. 1389-1401.

11. Spira, P., "A New Algorithm for Finding All Shortest Paths

in a Graph of Positive Arcs in Average Time O(n2 log2 n),"
SIAM J. Comput., 2, 1973, pp. 28-32.

12. Tarjan, R., "Depth-First Search and Linear Graph Algo-
rithms," SIAM J. Comput., 1, 1972, pp. 146-160.

13. Tarjan, R., "Efficiency of a Good but Not Linear Set Union
Algorithm," J. ACM, 1975, pp. 215-225.

14. Yao, A., "An O(IEI log log |V|) Algorithm for Finding
Minimum Spanning Trees," Info. Proc. Letters, 4, 1975,
pp. 21-23.

Research sponsored by National Science Foundation Grant
GJ-35604X1; Miller Research Fellowship at the University
of Califormia, Berkeley; National Secience Foundation

Grant DCR72-03572 A02; and by the Office of Naval Research
Contract NR 044-402 at Stanford University, Stanford,
California.

Paper recetived March 26, 1975.

