
Finding Optimum Branchings
R. E. Tarjan
Stanford University
Stanford, California

ABSTRACT

Chu and Liu, Ecbnonds, and Bock have independently devised
an ef f ic ient aZgorYithm to f i n d an optimum branching i n a d i -
rected haph.
runs i n O(m2ogn) time i f the problem graph has n vertices and
m edges. A modification for dense graphs gives a running time

2 of O(n 1. We also show that the unmodified algorithm runs i n
2 O(n(Zog n) + m) time on an average graph, asswning a uniform

probabi Z i t y distribution.

We give an impzementation of the algorithm which

1. INTRODUCTION

A d i rec t ed graph G = (VIE) cons i s t s of a set of vertices
Each

A semipath jo in ing x1 and 5 i n G

V of s i z e IVl = n and a set of edges E of s i z e IE1 = m.
edge is an ordered pair (v ,w) of d i s t i n c t vertices v , w , called
t h e endpoints of the edge.

is a sequence of vertices x ,x ,...,\ such t h a t (x xi+l) E E 1 2 i'
or (X ~ + ~ , X ~) E E f o r each i, 1 - - < i < k . A set of v e r t i c e s W C V

i s weak29 connected i f t he re i s a semipath of v e r t i c e s i n W
jo in ing any pair of vertices i n W. A maximal weakly connected
se t of vertices i s a weakly connected component of G.

A path from x1 t o x i n G i s a sequence of edges

(x,,x2) (x2,x,) . . . (x , - ~ , \) .

a r e d i s t i n c t .

t i c e s S C V is strongly connected i f t h e r e is a pa th whose edges
have endpoints i n S from any ver tex i n S t o any o ther ver tex i n
S. A maximal s t rongly connected set i s a s t rongly connected
component of G.

k

5- 1
The pa th is simple i f x1 ,...,

The path is a cycle i f x1 = 5. A set of ver-

Networks, 7: 25-35
@ 1977 by John Wiley & Sons, Inc. 25

26 TARJAN

A bPU?zChing B of G is a set of edges such t h a t

(i) i f (xl ,yl) , (x2 ,y2) a r e d i s t i n c t edges of B then y1 #y2 ;

(ii) B does no t conta in a cycle.

Given a real value c(v,w) def ined f o r each edge of G, we d e s i r e

a branching B such t h a t 1 c(v,w) is maximum. Such a set

B is c a l l e d an optimum branching.

dent ly given e f f i c i e n t a lgori thms f o r f ind ing an optimum branch-
ing i n a graph G. The Chu-Liu and Edmonds algorithms are
v i r t u a l l y i d e n t i c a l ; t he Bock algorithm is s i m i l a r b u t s t a t e d as
an algorithm on matrices r a t h e r than on graphs.
an e f f i c i e n t implementation of the Chu-Liu-Edmonds algorithm.
I f G has n vertices and m edges t h e algorithm runs i n O(m1ogn)

time. A modif icat ion f o r dense graphs g ives an O(n) running
t i m e . Also, assuming a uniform p r o b a b i l i t y measure, t h e algo-

(vtw) EB

Chu and Liu [31, Edmonds [51, and Bock [l l have indepen-

This paper g ives

2

L r i t h m runs i n 0 (n (log n) + m) t i m e on t h e average. These t i m e
bounds assume m > k n f o r some cons tan t k. (T h i s is no t a se r ious
r e s t r i c t i o n ; anyweakly connected graph has m - > n-1.

2 . AN ALGORITHM FOR OPTIMUM BRANCHINGS

L e t G = (V,E) be a weakly connected d i r e c t e d graph, having
edge values c(v,w).. The Chu-Liu-Edmonds algori thm f i n d s an
optimum branching i n G. The algori thm cons t ruc t s a set of edges
H def in ing a subgraph G (H) = (V,H) . A t a l l t i m e s dur ing the
cons t ruc t ion , G (H) i s such t h a t for each s t rong ly connected com-
ponent s, t h e r e i s a t m o s t one edge (v,w) E H such t h a t W E S ,
veV-S. I f S i s such t h a t no edge (v,w) s H s a t i s f i e s w s S ,
vsV-S w e c a l l S a root component of G (H) .

I n i t i a l l y H = 53; thus i n i t i a l l y each ve r t ex i n V def ines
both a weakly connected and a s t rongly connected component of
G (H) . Here i s t h e algorithm for cons t ruc t ing t h e set H.

A Zgozvithm BRANCh:

First Step:
F1: Choose any ver tex v w i t h an edge (x,v) of value

F2: Se lec t t h e edge (u,v) of l a r g e s t value.
F3: Add (u,v) t o H.

c (x , v) > 0.

FINDING OPTIMUM BRANCHINGS 27

General Step:
GI:

G2 :

G3 :

G4 :

G5 :

G6 :

G7 :

G8 :

Choose any root component S of G(H) having an
unexamined edge (x,v) with v E S and c (x,v) > 0.
Find the largest unexamined edge (u,v) such
that v E S.
If UES, discard the edge and stop. Otherwise
go to G4.
u $ s . Let W be the weakly connected component
of G(H) containing v. If ukW add (u,v) to H
and stop. Otherwise go to G5.
u$S, UEW. Find the sequence
sl, (x IY 1 ,S2, (X2,YZ) , - #Sk’ (\,y,) such that
each S. is a strongly connected component of

G(H)t (Xi,Yi) E: H, Yi E Sit and Xi E Si+l for

1 1

1

k ’1’ all i, sk = s, (\,yk) = (u,v), and x

the (xi,yi) j i
Find the edge (x ,y.) with minimum value among

For each unexamined edge (x,y) with yesi,
modify the value of (x,y) as follows:

c(x,y) := c(x,y) -c(xi,yi) +c(x ,y.).
j i

Add (u,v) to H. (This combines S1, ... ,S into
a single strongly connected component which is
a root component of G(H).

k

Repeat the general step until there is no root component S of
G(H) having an unexamined edge (u,v) with v E S and c(u,v) > 0.

Suppose this algorithm is applied to a graph G. The fol-
lowing results are implicit in the work of Ewnds and Karp
[5,81. Let G(H) = (V,H).

Lema 1:
most one edge (u , ~) E H with v ES, u E V-S.
nected component W of G (H) contains exactly one root component.

Each strongly connected component S of G (H) has a t
Each weakly con-

Lema 2:
weakly connected component containing S, and l e t v sS.
for any w E: W there i s a unique simple path i n G (H) from v to w.

Let S be any root component of G (H) , l e t W be the
Then

28 TARJAN

These lemmas follow easily by induction on the number of
edges added to H. When the algorithm is completed, H contains an
optimum branching, which we can extract with the help of Lemma
2. All we need to do is determine a unique vertex v in the
root component of each weakly connected component of G(H); these
vertices determine a branching consisting of the simple paths
given by Lemma 2.
following algorithm, the resultant branching is optimum [5,81.

If we determine these vertices using the

A l g o s t h m ROOT:

R1:

R2:

Find a root component R in G(H) containing more than
one vertex.
Find the sequence S 1, (xl,yl) . . . Sk, (x,,yk) determined

in BRANCH, Step G5, such that edge (\,yk) was added
to H to form R.

R3: Find the edge (x ,y.) of minimum value among the

R4: Delete (x.,y.) from H (this step makes S a root

(Xi,Yi). j i

7 7 j
component).

Repeat Steps R1-R4 until every root component consists of a
single vertex.

If BRANCH keeps track of each minimum edge (x ,y,) found

in Step G6 and of each strongly connected component formed in
Step G8, then we do not need to actually carry out ROOT; BRANCH
can explicitly keep track of the root vertex which would be re-
turned by ROOT for any given root component.
uses this observation.

j i

Our implementation

3 . EFFICIENT IMPLEMENTATION

We need several bookkeeping mechanisms to implement BRANCH
efficiently. we must keep track of (a) the weakly connected
components of G(H), (b) the strongly connected components of
G(H), and (c) the unexamined edges entering each strongly con-
nected component. For (a) and (b) we use a disjoint set union
algorithm descrl.bed in [7,131. Given a collection of disjoint
sets, the set union algorithm implements two operations:

FINDING OPTIMUM BRANCHINGS 29

(i) FIND(X) returns the name of the set containing element

(ii) UNION(A,B) adds the elements of set A to set B, destroy-
x;

ing set B.

The time required for 0 (m) FINDS and 0 (n) UNIONS is O(n log* n+m)

[131, where log n = minIi 1 log log . . . log n<l). -

collection of sets, manipulated by WIND and WUNION, to repre-
sent the weakly connected components, and another collection of
sets, manipulated by SFIND and SUNION, to represent the strongly
connected components.

To keep track of the edges entering each strongly connected
component, we use a priority queue mechanism described in [2,91.
Given a collection of elements, each with a value, and a collec-
tion of disjoint sets (called queues) of elements, the mechanism
implements four operations:

*
We use one .

i times

(iii) QUNION(C,D) adds the elements in queue D to queue C.
Time required: 0 (log ICl + log ID1) .

(iv) MAX(C) returns the largest element in queue C, deleting
this element from the queue. (If C is empty, MAX(C)
returns a dummy element with value -a.)
Time required:

in the list L.
Time required:

in queue C.
Time required: 0 (1) .

0 (log IC 1 1.
(v) INIT(C,L) initializes a queue C to contain all elements

0 (I L 1) .
(vi) ADD(a,C) adds a constant a to the value of all elements

Here is an implementagion of the optimum branching algo-
rithm, expressed in Algol-like notation. In the program, the
set roots gives the root components of G(H) which may have en-
tering edges of positive value. The set rset gives the root
components of G(H) with no entering edges of positive value.
For each i, enter(i) gives the unique edge in H entering strongly
connected component i.
enter(i) = (0 , O) .)

algorithm ROOT will select if applied to root component i. The
variable U a Z and vertez are used to select and record the mini-
mum edge found in Step G6.
G = (V,E) has vertex set V = (1,2,. . . ,n), and that, for each j ,
I (j) = ((i,j) EE) is an incidence list for vertex j .

(If there is no such entering edge,

The array mh(i) gives, for each i, the root vertex which

The algorithm assumes that the graph

30 TARJAN

&Ok&%m BRANCH:

roots := 8;

begin

begin

60k i := 1 u n t i l n do

I N I T (i , I (i l l ;
i n i t i a l i z e an S-set named i containing i as i ts
only element;
i n i t i a l i z e a W-set named i containing i as i t s
only element;
e n t e r (i) := (0,O);
roots := roots u { i l i
min(i) := i;

end ;
H := 8;
r s e t := 8;
wkiee roots # do

d e l e t e some e n t r y k from roots;
(i , j) := MAX(k);

i d v (i , j) < 0 Xthen rset := r s e t U { k)
e&e i d SFykD(i) = k lthen roots := POOtsU {k)

begin

e h e begin
H := H U { (i , j) } i
.id WFIND(~) # WIND(^) ,then

begin

end

begin

WUNION (WIND (i) ,WIND (j)) ;
en ter (k) := (i , j) i

&he

vaZ := 01;

(x,y) := (i , j) ;
lokiee (x,y) # (0~0) do

begin

end i

begin
id c(x ,y) < vaZ t h e n

vaZ := c (x ,y) i
vertex := SFIND (y) ;

(x,y) := enter (SFIND (x) 1 ;
end;

ADD(VaZ - c (i , j) , k) ;
min (k) := min (ver tex) i
(x,y) := enter (SFIND (i)) ;
wkiee (x,y) # (0,O) do

FINDING OPTIMUM BRANCHINGS 31

begin
ADD (V a l - c (x,y) ,SFIND (y)) ;
QUNION (k, SFIND (y)) ;
SUNION (k, SFIND (y)) ;
(x,y) := enter(sFrND(x));

end;
roots := roots u (k } ;

end end end end BRANCH;

After BRANCH i s executed, the s e t of ver t ices
R = (min(i) I i E: P S e t) defines an optimum branching, which may
be found i n O(n+m) time by using a search [121 t o f ind the s e t
of simple paths from the ver t ices i n R t o a l l other ver t ices .

(a) p r i o r i t y queue operations;
(b) d i s jo in t s e t operations;
(c) other operations.

The p r i o r i t y queue operations required are: O(n) I N I T op-
erat ions, one fo r each vertex; O(m) MAX operations, O(n) QUNION
operations, and O(n) ADD operations. Thus the t o t a l t i m e fo r the
p r io r i ty queue operations is O (m log n). The d i s jo in t set opera-
t ions required are: O(m) WINDS, O(m) SFINDs, O(n) WUNIONs, and
O h) SUNIONs (the s e t H contains a t most 2n-2 edges). Thus

the t o t a l t i m e fo r the set operations is O(n log n+m). The
t o t a l t i m e f o r other operations is c lear ly O(n+m). Thus the
t o t a l t i m e required t o f ind an optimum branching i s O(m1ogn)
(assuming m - > kn f o r some constant k). The space required is
0 (m) .

The operations i n algorithm BRANCH are of three types:

*

4. A MODIFICATION FOR DENSE GRAPHS

The time bound given i n Section 2 f o r the optimum branch-
2 ing algorithm is O(n logn) i f the graph G is dense; i.e., m

is n(n) . However, by changing the p r io r i ty queue representa-

t ion, we can ge t the algorithm t o run i n O(n t i m e . This

modification is analogous t o t h a t used i n a well-known O(n 1
m i n i m u m spanning t r ee algorithm [4,101.

We use a d i f fe ren t mechanism t o represent the p r io r i ty
queues. For each strongly connected component S, we have. a
list of edges (i , j) , a t most one f o r each i, such t h a t i t s ,
j E S , and for a l l edges (i , k) such t h a t kES , c (i , k) L c (i , j) .
This l i s t is ordered on i, and takes the place of the p r io r i ty
queue for component S. Associated with each edge (i , j) i n the
l i s t is i t s current value c (i , j) .

2

2

2

32 TARSAN

Since such a l ist has length a t m o s t n , a MAX operation re-
quires O(n) t i m e . Furthermore, s ince every edge (i , j) on such
a l i s t has i j! S, algorithm BRANCH executes only O(n) MAX opera-

t ions , and O(n) time t o t a l is required f o r the MAX operations.

O h) SFINDs. Thus the t o t a l t i m e f o r the QUNION operations is

O(n 1. (O(n) SFINDs plus O(n) SUNIONs require O(n) t i m e [131.)
A n I N I T (IL1) operation requires 0 (n) t i m e since ILI < n (the
edges (i , j) E L may be sorted on the value of i in OTlLl + n)
t i m e by using a radix s o r t [91) . Thus the t o t a l t i m e f o r the

I N I T operations i s O(n 1 , and the running t i m e of the modified

version of BRANCH i s O(n 1 . The space required is s t i l l O (m) .

2

A QUNION(C,D) operation requires O(nt t i m e p lus t i m e f o r

2 2 2

2

2

5. AVERAGE TIME ANALYSIS

In this sect ion w e show t h a t the average running t i m e of
2 the unmodified version of BRANCH i s O(n(1og n) + m) assuming a

uniform probabi l i ty measure. The analysis is analogous t o t h a t
used i n [l l l to show the existence of an a l l -pa i r s shor tes t path

algorithm with an average running t i m e of O((n1ogn) 1 .

t ion from among the ((n-l)) label led graphs having vertex set m
{1,2, ..., n} and m edges. A s s u m e t h a t , f o r a l l j , the probabil-
i t y of the existence of an edge (i , j) i n G is the same f o r each
i. For each j , 1 < j < n, l e t p be a real-valued probabi l i ty

d is t r ibu t ion , and l e t the values of the edges (i , j) i n G be in-
dependent var iables with probabi l i ty d is t r ibu t ion p

t h a t there e x i s t s a n edge (i , j) E E and t h a t (i , j) has maximum
value among edges i n the set { (k , j) I (k , j) E El is the same f o r
each i. Furthermore, a t any t i m e during the execution of BRANCH,
the probabili ty t h a t there e x i s t s an edge (i , j) E E and t h a t
(i , j) has maximum value among unexamined edges i n the set
{ (k , j) 1 (k , j) E E) i s the same f o r each i such t h a t (i , j) has not
ye t been returned by a cal l on MAX. This follows from the f a c t
t h a t the only information known about (i , j) is t h a t i f (i , j) i s
an edge i n G then i t s value must be grea te r than t h a t of a l l
edges returned by previous MAX calls on queues corresponding t o
root components containing vertex j ; and t h i s information i s
independent of i.

2

L e t G be selected according t o some probabi l i ty dis t r ibu-

j - -

j '
With t h i s def in i t ion of a random graph, the probabi l i ty

FINDING OPTIMUM BRANCHINGS 33

W e now der ive an upper bound on the average number of MAX
c a l l s used by BRANCH and hence on the average running t i m e of
BRANCH. Suppose MAX(k) is executed f o r some root component k
containing m vertices. Then t h e p robab i l i t y of MAX(k) return-

i ng an edge (i , j) with i outside component k i s a t least - .
Thus an upper bound on 4, t he average number of MAX(k) opera-

t i o n s before a new edge is added t o H , is

n-m
n

The maximum number of edges which can be added to H after some
r o o t component
upper bound on
i s

reaches s ize m is 2(n-m). It follows t h a t an
M, t he average t o t a l number of executions of M a x ,

and t h e average t i m e required by a l l t h e MAX
2 O(n(1og n) 1 . Combining t h i s with t h e worst

on the o the r p a r t s of the algorithm gives an

operations is

case t i m e bounds

O(n(log n) 2 + m)
bound on the average running time of t h e algorithm.

W e a l s o have

and

2 2 n-l 4n

m = l (n-m)
= O(n 1 . 2 var(M) - < 1

Thus the standard deviation of M is O h) , and t h e probabil-
i t y t h a t the number of executions M of MAX is g rea t e r than

is O(1/k2). Thus the p robab i l i t y t h a t t he running t i m e of

i s no t O(n(1og n l 2 + m) is o 1

((l o g n l2) .

M + k n

BRANCH

34 TARJAN

6. REMARKS

W e have presented an implementation of Edmonds' optimum
branching algorithm which has a worst-case running t i m e of

O(m l o g n) , an average running time of 0 (n (log n) + m) , and can

be modified t o run i n O(n) t i m e , which i s an improvement i f
the graph is dense. One n a t u r a l l y wonders i f these r e s u l t s are
best poss ib le . Recently discovered algorithms f o r f ind ing mini-
mum spanning trees i n undirected graphs achieve a t i m e bound of
0 (m l og log n) 12,141 ; they can be used t o f i n d minimum spanning
trees i n O(n l o g log n + m) time on t h e average, using r e s u l t s
i n 161. These r e s u l t s suggest t h e following research questions:

2

2

Can optimum branchings be found i n o(m1ogn) time?

If not, how can one prove that rmy optimum branching algo-
rithm requi res R (m l og n) t i m e i n t h e worst case?

1. Bock, F., "An Algorithm t o Construct a Minimum Directed
Spanning Tree i n a Directed Network," Devezopments i n
Operations Research, Gordon and Breach, New York, 1971,
pp. 29-44.

2. Cheriton, D. and R. Tarjan, "Finding Minimum Spanning
Trees," SIAMJ. Cornput., 5, 1976, PP- 724-742.

3. Chu, Y. J. and T. H. Liu, "On t h e Shor tes t Arborescence
of a Directed Graph," S c i . Sinica, 14, 1965, pp. 1396-1400.

4. D i jks t r a , E. W., "A Note on Two Problems i n Connection
with Graphs," NwneKsche Mthematik, 1, 1959, pp. 269-271.

5. Edmonds, J., " O p t i m u m Branchings," Jour. of Research of
the NationaZ Bureau of Standurds, 71B, 1967, pp. 233-240.

6. Erdijs, P. and A. Renyi, "On t h e Evolution of Random Graphs,"
Pub. of the Math. Inst . of the Hung. Acad. of Sciences, 5 ,
1960, pp. 17-60.

7. Hopcroft, J. and J. D. Ullman, "Set-Merging Algorithms,"
SIAM J . Coqut . , 2, 1973, pp. 294-303.

8. Karp, R. M. , "A Simple Derivation of Edmonds' Algorithm
f o r Optimum Branchings," Networks, 1, 1971, pp. 265-272.

FINDING OPTIMUM BRANCHINGS 35

9.

10.

11.

12.

13.

14.

Knuth, D., The A r t o f Computer Programring, VoZ. 3: Sort-
ing and Searching, Addison-Wesley, Reading, Massachusetts,
1973.

Prim, R. C., "Shortest Connection Networks and Some Gener-
aIizations," Be22 System Tech. J . , 1957, pp. 1389-1401.

Spira, P., "A New Algorithm for Finding All Shortest Paths
in a Graph of Positive Arcs in Average Time O(n log n),"
SIAM J . Cornput., 2, 1973, pp. 28-32.

2 2

Tarjan, R., "Depth-First Search and Linear Graph Algo-
rithms," SIAM J . Comput., l, 1972, pp. 146-160.

Tarjan, R., "Efficiency of a Good but Not Linear Set Union
Algorithm," J . ACM, 1975, pp. 215-225.

Yao, A., "An 0 (I E 1 log log I Vl 1 Algorithm for Finding
Minimum Spanning Trees," Info. P O C . Letters, 4, 1975,
pp. 21-23.

Research sponsored by National Science Foundation Grant
GJ-35604x1; KZZer Research Fellowship a t the University
o f California, BerkeZey; National Science Foundation
G r a n t DCR72-03572 A02; and by the Office of Naval Research
Contract NR 044-402 a t Stanford University, Stanford,
Ca Z i fornia.

Paper received March 26, 1975.

