Introduction to Visual Odometry

Karel Zimmermann

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
Center for Machine Perception
http://cmp.felk.cvut.cz/~zimmerk, zimmerk@fel.cvut.cz

Some images and codes taken from D.Scaramuzza
Localization sensors I

There are many localization-suitable sensors. Which pros, cons?
Localization sensors I

There are many localization-suitable sensors. Which pros, cons?

- **GPS**: Global Positioning System
 - Inaccurate.
 - Does not work indoor
Localization sensors I

There are many localization-suitable sensors. Which pros, cons?

- **GPS**: Global Positioning System
 - Inaccurate.
 - Does not work indoor

- **IMU**: Accelerometers + Gyroscope + Magnetometers.
 - Fuse all sensors data to get 6DOF (dead-reckoning).
 - Suffers from drift.
Localization sensors I

There are many localization-suitable sensors. Which pros, cons?

- **GPS**: Global Positioning System
 - Inaccurate.
 - Does not work indoor

- **IMU**: Accelerometers + Gyroscope + Magnetometers.
 - Fuse all sensors data to get 6DOF (dead-reckoning).
 - Suffers from drift.

- **Wi-fi**:
 - Map Wi-Fi routers in advance, than guess the location based on IDs and signal strength.
 - Does not work when routers are unavailable.
 - Inaccurate.
Localization sensors II

- **Odometry**: Integrate wheel motion and steering via (kinematic) model.
 - Does not work on slippage terrain.
 - Drift + Inaccurate (show video !!!).
Localization sensors II

- **Odometry**: Integrate wheel motion and steering via (kinematic) model.
 - Does not work on slippage terrain.
 - Drift + Inaccurate (show video !!!).

- **What about camera?**
 - cheap + light
 - every mobile device has a camera.
 - high frame-rate.
Localization sensors II

- **Odometry:** Integrate wheel motion and steering via (kinematic) model.
 - Does not work on slippage terrain.
 - Drift + Inaccurate (show video !!!).

- **What about camera?**
 - cheap + light
 - every mobile device has a camera.
 - high frame-rate.

- **What about depth sensors?** - show video !!!
 - stereo camera
 - structured light approach (e.g. Kinect)
 - time-of-flight approach (e.g. Velodyne)
Task definition

- **Input:** Camera images.
- **Output:** Real-time robot location.
Main principle

- Find correspondences in two consecutive frames.
Main principle

- Find correspondences in two consecutive frames.
- If the world is static and correspondences are correct then estimate camera motion R and t (and 3D reconstruction X) minimizing reprojection error.
Main principle

- Find correspondences in two consecutive frames.
- If the world is **static** and correspondences are **correct** then estimate camera motion R and t (and 3D reconstruction X) minimizing reprojection error.
- Since the world is **dynamic** and most of the correspondences are **incorrect** we need robust method - show RANSAC presentation!!
Algorithm at glance

1. Get image I_k.

2. Compute correspondences between I_{k-1} and I_k (either feature matching or tracking).

3. Find correct correspondences and compute essential matrix E.

4. Decompose E into R_k and t_k.

5. Compute 3D model (points X).

6. Rescale t_k according to relative scale r.

7. $k = k + 1$
Feature point detection

- Which points are suitable?
Feature point detection

Feature points must be well distinguishable from its neighbourhood.

\[
E(u, v) = \sum_{x,y} \left(I(x+u, y+v) - I(x, y) \right)^2 \approx [u \ v] \ M \ [u \ v]
\]

\(\lambda_1 \text{ and } \lambda_2 \text{ are large}\)
Feature point detection

- Feature points must be well distinguishable from its neighbourhood.

\[E(u, v) = \sum_{x, y} \left(I(x + u, y + v) - I(x, y) \right)^2 \approx [u \ v] \ M \ [u \ v] \]

large λ_1, small λ_2
Feature point detection

Feature points must be well distinguishable from its neighbourhood.

\[E(u, v) = \sum_{x, y} \left(I(x + u, y + v) - I(x, y) \right)^2 \approx [u \ v] \mathbf{M} \begin{bmatrix} u \\ v \end{bmatrix} \]
Feature point detection

- Detected feature points
- Show video Vodom_video_Prato_roof.avi
Estimating correspondences

- There are two ways:
 - Tracking - for high **temporal** resolution
 - OpenCV Lucas-Kanade tracker
 - Descriptor and matching - for high **spatial** resolution
 - OpenCV: SIFT, SURF etc ...

- show video vo_ros_PR2.avi
1. Get image I_k.

2. Compute correspondences between I_{k-1} and I_k (either feature matching or tracking).

3. **Find correct correspondences and compute essential matrix E.**

4. Decompose E into R_k and t_k.

5. Compute 3D model (points X).

6. Rescale t_k according to relative scale r.

7. $k = k + 1$
Compute essential matrix

- Forget for a moment that we have already estimated correspondences.
Compute essential matrix

- Forget for a moment that we have already estimated correspondences.
- Given cameras C_1, C_2 (including their rotations) and point u, where is corresponding point v?
Compute essential matrix

- Forget for a moment that we have already estimated correspondences.
- Given cameras C_1, C_2 (including their rotations) and point u, where is corresponding point v?
- That depends on 3D point X.
Compute essential matrix

- Forget for a moment that we have already estimated correspondences.
- Given cameras C_1, C_2 (including their rotations) and point u, where is corresponding point v?
- That depends on 3D point X.

![Diagram with points u, v, X, X', and camera configurations C1, C2]
Compute essential matrix

- Forget for a moment that we have already estimated correspondences.
- Given cameras C_1, C_2 (including their rotations) and point u, where is corresponding point v?
- That depends on 3D point X.
- All possible correspondences lie on epipolar line $\{v \mid u^T E v = 0\}$.
Compute essential matrix

- Forget for a moment that we have already estimated correspondences.
- Given cameras C_1, C_2 (including their rotations) and point u, where is corresponding point v?
- That depends on 3D point X.
- All possible correspondences lie on epipolar line $\{v \mid u^T E v = 0\}$.
Compute essential matrix

- All possible correspondences lie on epipolar line \(\{ v \mid u^T E v = 0 \} \).

- Note:
 - This holds only if \(K \) is identity matrix (or \(u, v \) are decalibrated).
 - Putting projection rays of all possible 3D points \(X \) together yields epipolar plane (yellow).
Compute essential matrix

- All possible correspondences lie on epipolar line $\{v \mid u^T E v = 0\}$.
- Note:
 - This holds only if K is identity matrix (or u, v are decalibrated).
 - Putting projection rays of all possible 3D points X together yields epipolar plane (yellow).
 - There exist unique decomposition $E = [t] \times R \Rightarrow$ camera motion!
Compute essential matrix

- Let us assume that we have several correspondences.
Compute essential matrix

- Let us assume that we have several correspondences.
- Essential matrix E is just a solution of (overdetermined) homogeneous system of linear equations.
Compute essential matrix

Let us assume that we have several correspondences.

Essential matrix E is just a solution of (overdetermined) homogeneous system of linear equations.

For each correspondence pair u, v, the following holds:

$$u^T E v = u^T \begin{bmatrix} e_1^T \\ e_2^T \\ e_3^T \end{bmatrix} v = u^T \begin{bmatrix} e_1^T v \\ e_2^T v \\ e_3^T v \end{bmatrix} = [u_1 e_1^T v + u_2 e_2^T v + u_3 e_3^T v] =$$
Compute essential matrix

- Let us assume that we have several correspondences.
- Essential matrix E is just a solution of (overdetermined) homogeneous system of linear equations.
- For each correspondence pair u, v, the following holds:
 \[
 u^T E v = u^T \begin{bmatrix} e_1^T \\ e_2^T \\ e_3^T \end{bmatrix} v = u^T \begin{bmatrix} e_1^T v \\ e_2^T v \\ e_3^T v \end{bmatrix} = [u_1 e_1^T v + u_2 e_2^T v + u_3 e_3^T v] = \\
 = [u_1 v^T u_2 v^T u_3 v^T] \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} = 0
 \]
- It must hold for all correspondence pairs u_i, v_i, therefore:
 \[
 \begin{bmatrix}
 u_{11} v_1^T & u_{12} v_1^T & u_{13} v_1^T \\
 u_{21} v_2^T & u_{22} v_2^T & u_{23} v_2^T \\
 \vdots & \vdots & \vdots
 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} = 0
 \]
Compute essential matrix

- It is just homogeneous set of linear equations:

\[
\begin{bmatrix}
 u_{11}v_1^\top & u_{12}v_1^\top & u_{13}v_1^\top \\
 u_{21}v_2^\top & u_{22}v_2^\top & u_{23}v_2^\top \\
 \vdots & \vdots & \vdots
\end{bmatrix}
\begin{bmatrix}
e_1 \\
e_2 \\
e_3
\end{bmatrix}
= 0
\]

\[
A
\]
\[
e
\]

- Again we want to avoid trivial solution \(e_1 = e_2 = e_3 = 0 \).

- We solve the following optimization task (constrained LSQ)

\[
\arg \min_e \| Ae \| \text{ subject to } \| e \| = 1
\]

- the solution is singular vector of matrix \(A \) corresponding to the smallest singular value (can be found via SVD or eigenvectors/eigenvalues of \(AA^\top \))
Compute essential matrix

- Since L2 is sensitive to outliers, RANSAC is used to find inliers (i.e. correct correspondences).

- Since algebraic error is minimized (instead of geometric error), coordinates have to be normalized.
Algorithm at glance

1. Get image I_k.

2. Compute correspondences between I_{k-1} and I_k (either feature matching or tracking).

3. Find correct correspondences and compute essential matrix E.

4. Decompose E into R_k and t_k.

5. Compute 3D model (points X).

6. Rescale t_k according to relative scale r.

7. $k = k + 1$
Decompose E into R and t

- Once you find E, you can estimate camera motion by decomposing $E = [t]_\times R$ via SVD ($E = U\Sigma V^T$) as follows: $[t]_\times = VW\Sigma V^T$, $R = UW^{-1}V^T$, but !!!:
Decompose E into R and t

Once you find E, you can estimate camera motion by decomposing $E = [t] \times R$ via SVD ($E = U\Sigma V^\top$) as follows: $[t] \times = VW\Sigma V^\top$, $R = UW^{-1}V^\top$, but !!!:

- Scale is unknown (if something is equal to zero, then any scalar multiplication of it is equal to zero as well).
Once you find E, you can estimate camera motion by decomposing $E = [t] \times R$ via SVD ($E = U\Sigma V^T$) as follows: $[t] \times = VW\Sigma V^T$, $R = UW^{-1}V^T$, but !!!: Scale is unknown (if something is equal to zero, then any scalar multiplication of it is equal to zero as well).
Estimating camera motion

- Once you find E, you can estimate camera motion by decomposing $E = [t] \times R$ via

- SVD ($E = U \Sigma V^\top$) as follows: $[t] \times = VW\Sigma V^\top$, $R = UW^{-1}V^\top$, but !!!:
 - Scale is unknown (if something is equal to zero, then any scalar multiplication of it is equal to zero as well).
 - We search for 8 unknowns ($\dim(e) = 9$ minus scale) \Rightarrow at least 8 correspondences needed \Rightarrow 8-point algorithm.
Estimating camera motion

- Once you find E, you can estimate camera motion by decomposing $E = [t]_\times R$ via SVD ($E = U\Sigma V^\top$) as follows: $[t]_\times = VW\Sigma V^\top$, $R = UW^{-1}V^\top$, but !!!:
 - Scale is unknown (if something is equal to zero, then any scalar multiplication of it is equal to zero as well).
 - We search for 8 unknowns ($\dim(e) = 9$ minus scale) \Rightarrow at least 8 correspondences needed \Rightarrow 8-point algorithm.
 - However you want to find only camera translation (3 DoFs) and rotation (3 DoFs) minus scale \Rightarrow 5-point algorithm [Nister 2003].
Estimating camera motion

- Once you find E, you can estimate camera motion by decomposing $E = [t] \times R$ via SVD ($E = U \Sigma V^\top$) as follows: $[t] \times = VW \Sigma V^\top$, $R = UW^{-1}V^\top$, but !!!:
 - Scale is unknown (if something is equal to zero, then any scalar multiplication of it is equal to zero as well).
 - We search for 8 unknowns ($\text{dim}(e) = 9$ minus scale) \Rightarrow at least 8 correspondences needed \Rightarrow 8-point algorithm.
 - However you want to find only camera translation (3 DoFs) and rotation (3 DoFs) minus scale \Rightarrow 5-point algorithm [Nister 2003].
 - Why is it such a big deal???
Estimating camera motion

- Once you find E, you can estimate camera motion by decomposing $E = [t] \times R$ via

- SVD ($E = U \Sigma V^\top$) as follows: $[t] \times = V W \Sigma V^\top$, $R = U W^{-1} V^\top$, but !!!:

 - Scale is unknown (if something is equal to zero, then any scalar multiplication of it is equal to zero as well).

 - We search for 8 unknowns ($\text{dim}(e) = 9$ minus scale) \Rightarrow at least 8 correspondences needed \Rightarrow 8-point algorithm.

 - However you want to find only camera translation (3 DoFs) and rotation (3 DoFs) minus scale \Rightarrow 5-point algorithm [Nister 2003].

 - Why is it such a big deal???

 - Because, usually you have 80% outliers and you need to use RANSAC (explain in the end of the lecture).
Algorithm at glance

1. Get image I_k.

2. Compute correspondences between I_{k-1} and I_k (either feature matching or tracking).

3. Find correct correspondences and compute essential matrix E.

4. Decompose E into R_k and t_k.

5. Compute 3D model (points X).

6. Rescale t_k according to relative scale r.

7. $k = k + 1$
Compute 3D model

- Scene point \(X \) is observed by two cameras \(P \) and \(Q \).
- Let \(\mathbf{u} = [u_1 \ u_2]^{\top} \) and \(\mathbf{v} = [v_1 \ v_2]^{\top} \) are projections of \(X \) in \(P \) and \(Q \).
- Then

\[
u_1 = \frac{\mathbf{p}_1^{\top} \mathbf{X}}{\mathbf{p}_3^{\top} \mathbf{X}} \quad \Rightarrow \quad u_1 \mathbf{p}_3^{\top} \mathbf{X} - \mathbf{p}_1^{\top} \mathbf{X} = 0
\]
Compute 3D model

- Scene point \(X \) is observed by two cameras \(P \) and \(Q \).

- Let \(u = [u_1 \ u_2]^\top \) and \(v = [v_1 \ v_2]^\top \) are projections of \(X \) in \(P \) and \(Q \).

- Then

\[
\begin{align*}
 u_1 &= \frac{p_1^\top X}{p_3^\top X} \implies u_1 p_3^\top X - p_1^\top X = 0 \\
 u_2 &= \frac{p_2^\top X}{p_3^\top X} \implies u_2 p_3^\top X - p_2^\top X = 0 \\
 v_1 &= \frac{q_1^\top X}{q_3^\top X} \implies v_1 q_3^\top X - q_1^\top X = 0 \\
 v_2 &= \frac{q_2^\top X}{q_3^\top X} \implies v_2 q_3^\top X - q_2^\top X = 0
\end{align*}
\]
Compute 3D model

- Which is 4×4 homogeneous system of linear equations:

$$
\begin{bmatrix}
u_1 p_3^\top - p_1^\top \\
u_2 p_3^\top - p_2^\top \\
v_1 q_3^\top - q_1^\top \\
v_2 q_3^\top - q_2^\top
\end{bmatrix} \times = 0
$$
Compute 3D model

- Which is 4×4 homogeneous system of linear equations:

$$\begin{bmatrix}
u_1 p_3^\top - p_1^\top \\
u_2 p_3^\top - p_2^\top \\
u_1 q_3^\top - q_1^\top \\
u_2 q_3^\top - q_2^\top \\
\end{bmatrix} X = 0$$

- Algebraic error is minimized (it often yields small geometric error).

- To obtain a better 3D model, the reprojection (geometric) error is locally minimized by Levenberg-Marquardt method:

$$\arg \min_{p^i, X_j} \sum_{i,j} d(P^i X_j, u_j^i)^2$$

- It is often called the bundle adjustment.
Algorithm at glance

1. Get image I_k.

2. Compute correspondences between I_{k-1} and I_k (either feature matching or tracking).

3. Find correct correspondences and compute essential matrix E.

4. Decompose E into R_k and t_k.

5. Compute 3D model (points X).

6. Rescale t_k according to relative scale r.

7. $k = k + 1$
Estimating camera motion - relative scale

1. You cannot get absolute scale (without calibration object).
Estimating camera motion - relative scale

1. You cannot get absolute scale (without calibration object).

2. If you estimate motion (and 3D model) from C_1, C_2
1. You cannot get absolute scale (without calibration object).

2. If you estimate motion (and 3D model) from C_1, C_2 and then from C_2, C_3 you can have completely different scale.
Estimating camera motion - relative scale

1. You cannot get absolute scale (without calibration object).
2. If you estimate motion (and 3D model) from C_1, C_2 and than from C_2, C_3 you can have completely different scale.
3. You want to keep the same relative scale r by rescaling t (and 3D)

\[r = \frac{d_k}{d_{k-1}} = \frac{\|X_k - Y_k\|}{\|X_{k-1} - Y_{k-1}\|} \]
Drift

- Error accumulates over time \Rightarrow drift \Rightarrow loop-closure needed.

- Keyframe detection (avoid motion estimation for small motion or pure rotation) - show video vo_ros_PR2.avi
Visual Odometry (VO), Structure from Motion (SFM),
Visual Simultaneous Localisation and Mapping (VSLAM)

- SFM (3D from unordered set of images) show video sfm_colloseum.avi
Visual Odometry (VO), Structure from Motion (SFM), Visual Simultaneous Localisation and Mapping (VSLAM)

- SFM (3D from unordered set of images) show video sfm_colloseum.avi
- VO sequential and real-time camera motion estimation.
Visual Odometry (VO), Structure from Motion (SFM), Visual Simultaneous Localisation and Mapping (VSLAM)

- SFM (3D from unordered set of images) show video sfm_colloseum.avi
- VO sequential and real-time camera motion estimation.
- VSLAM is VO with loop closer (bundle adjustment) - show video vo_kinect.avi

Before loop closing

After loop closing