Table of Contents

Cvičení 11: Objekty, halda, asociativní pole

Přelévání nádob

Mějme tři nádoby o objemu 2, 5, 9. S nádobami můžeme provádět následující akce:

Napište program, který najde nejmenší počet kroků takový, že v poslední nádobě bude objem 6.

Pohyb koně na šachovnici

Naplánujte nejkratší cestu pro šachového koně z políčka 2 na políčko 4. Sudá čísla znamenají volné políčko, lichá čísla obsazené.

m=[[0,0,0,0,0,0,0,0],
   [0,0,0,0,0,0,4,0], 
   [0,0,0,0,1,0,0,0], 
   [1,1,1,0,1,1,0,0], 
   [0,0,0,1,0,1,0,0], 
   [0,2,0,0,0,1,0,0], 
   [0,0,0,0,0,1,0,0], 
   [0,0,0,0,0,1,0,0]]

Binární halda

Binární halda je binární stromová datová struktura. Je tvořena uzly, které mají max. dva potomky (levý a pravý potomek) (odtud přídavné jméno binární), pričemž potomek je opět uzel. Její důležitou vlastností je, že:

Binární haldu lze samozřejmě realizovat i s opačnou vlastností:

Použití binární haldy:

Binární halda: vyjmutí nejmenšího prvku

Předpokládejme, že máme existující binární haldu. Při vyjmutí prvky stačí vzít prvek v kořeni stromu, neboť ten již z definice obsahuje nejmenší hodnotu mezi všemi uzly. Po odebrání prvku je ale nutné zbylé prvky přeskupit a určit nový kořen haldy. Postup je:

Bubble-down:

Binární halda: vložení prvku

Předpokládejme, že máme existující binární haldu. Vložení prvku se provede takto:

Bubble-up

Tento algoritmus se nazývá bubble-up, jelikož při něm procházíme haldu ze spodní úrovně nahoru.

Realizace binární haldy na poli

Nejjednodušší realizací binární haldy je implementaci na poli. Použijeme jednoduchý trik:

Implementace haldy z přednášky

# Implementace haldy
#
# http://interactivepython.org/runestone/static/pythonds/Trees/BinaryHeapImplementation.html
# Jan Kybic, 2016
 
class MinHeap:
  """ binarni halda __init__ konstruktor """
  def __init__(self):
     self.heap = [] # indexujeme od nuly
 
  def bubble_up(self,i):
    """ probubla prvek i nahoru, zajisti splneni podminek haldy """
    while i>0:
      j=(i-1)//2 # index rodice
      if self.heap[i] >= self.heap[j]:
        break
      self.heap[j],self.heap[i]=self.heap[i],self.heap[j]
      i = j
 
  def insert(self,k):
    """ vloz prvek do haldy """    
    self.heap+=[k]
    self.bubble_up(len(self.heap)-1)
 
  def peek(self):
    """ vrati nejmensi prvek """
    return self.heap[0]
 
  def size(self):
    """ vrati pocet prvku v halde """
    return len(self.heap)
 
  def is_empty(self):
    """ je halda prazdna? """
    return self.size()==0 
 
  def bubble_down(self,i):
     """ probublej prvek dolu """
     n=self.size()
     while 2*i+1 < n:
        j=2*i+1 # zjisti index leveho potomka
        if j+1 < n and self.heap[j] > self.heap[j+1]:
          j+=1
        if self.heap[i]>self.heap[j]:
          self.heap[i],self.heap[j]=self.heap[j],self.heap[i]
        i=j
 
  def pop(self):
    """ odebere nejmensi prvek a uprav haldu """
    element=self.heap[0]
    self.heap[0]=self.heap[-1]
    self.heap.pop() # smaz posledni prvek
    self.bubble_down(0)
    return element

Implementace funkce delete

Implementujte metody pro odebrání prvku na pozici i z binární haldy:

Pomocí této funkce smažte z haldy vytvořené z pole všechna sudá čísla (Nejdříve haldu vytvořte se všemi čísly a pak smažte všechna sudá čísla z haldy):

pole=[10,21,7,11,31,6,1,-11,31,42,-12,80,25,-7,-12,9,14]

Karty v haldě

cards = [[0, 'Q'], [2, '6'], [1, 'K'], 
         [1, '8'], [2, '10'], [2, '4'], 
         [3, '4'], [0, '4'], [1, '3'], 
         [2, '5'], [0, 'K'], [3, 'A'], 
         [1, 'J'], [0, '3'], [0, '9']]

Asociativní pole a římská čísla

conv={'I':1,'V':5,'X':10,'L':50,'C':100,'D':500,'M':1000}

Domácí úkol

Lehká úloha Testovací data lehká úloha

Těžká úloha Testovací data těžká úloha