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Epipolar Geometry and the Fundamental Matrix

The epipolar geometry is the intrinsic projective geométeyween two views. It is
independent of scene structure, and only depends on theasinrgernal parameters
and relative pose.

The fundamental matrik encapsulates this intrinsic geometry. It i8 a 3 matrix
of rank 2. If a point in 3-spac is imaged ax in the first view, andk’ in the second,
then the image points satisfy the relatidhFx = 0.

We will first describe epipolar geometry, and derive the fameéntal matrix. The
properties of the fundamental matrix are then elucidateth bor general motion of
the camera between the views, and for several commonly wiegigpecial motions. It
is next shown that the cameras can be retrieved fraiqm to a projective transformation
of 3-space. This result is the basis for the projective rstration theorem given in
chapter 10. Finally, if the camera internal calibrationn®Wwn, it is shown that the Eu-
clidean motion of the cameras between views may be comprdaadthe fundamental
matrix up to a finite number of ambiguities.

The fundamental matrix is independent of scene structuosveder, it can be com-
puted from correspondences of imaged scene points aloti@wrirequiring knowl-
edge of the cameras’ internal parameters or relative posges computation is de-
scribed in chapter 11.

9.1 Epipolar geometry

The epipolar geometry between two views is essentially #nangetry of the inter-
section of the image planes with the pencil of planes havwegbiaseline as axis (the
baseline is the line joining the camera centres). This gégneeusually motivated by
considering the search for corresponding points in steraimmg, and we will start
from that objective here.

Suppose a poirX in 3-space is imaged in two views, atin the first, andx’ in the
second. What is the relation between the correspondingarpagtsx andx’? As
shown in figure 9.1a the image pointsandx’, space pointX, and camera centres
are coplanar. Denote this planess Clearly, the rays back-projected fraxnandx’
intersect atX, and the rays are coplanar, lying4n It is this latter property that is of
most significance in searching for a correspondence.
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Fig. 9.1. Point correspondence geometry(a) The two cameras are indicated by their centsnd
C’ and image planes. The camera centres, 3-space pojrEnd its images andx’ lie in a common
planes. (b) An image poink back-projects to a ray in 3-space defined by the first camen&eeC,

andx. This ray is imaged as a link in the second view. The 3-space pdatvhich projects tax must
lie on this ray, so the image & in the second view must lie dh
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Fig. 9.2. Epipolar geometry. (a) The camera baseline intersects each image plane at tipplepe
ande’. Any planer containing the baseline is an epipolar plane, and interseke image planes in
corresponding epipolar lineband!’. (b) As the position of the 3D poiX varies, the epipolar planes
“rotate” about the baseline. This family of planes is knowsman epipolar pencil. All epipolar lines
intersect at the epipole.

Supposing now that we know onk;, we may ask how the corresponding pathis
constrained. The planeis determined by the baseline and the ray defined.ldyrom
above we know that the ray corresponding to the (unknownjtpdilies in 7, hence
the pointx’ lies on the line of intersectiohof 7 with the second image plane. This line
1" is the image in the second view of the ray back-projected fxortt is theepipolar
line corresponding t. In terms of a stereo correspondence algorithm the benefit is
that the search for the point correspondingtoeed not cover the entire image plane
but can be restricted to the lide

The geometric entities involved in epipolar geometry alesttated in figure 9.2.
The terminology is

e Theepipoleis thepoint of intersection of the line joining the camera centres (the
baseline) with the image plane. Equivalently, the epipslthe image in one view
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Fig. 9.3. Converging cameras.(a) Epipolar geometry for converging cameras. (b) and (c)af pf
images with superimposed corresponding points and th@iodgr lines (in white). The motion between
the views is a translation and rotation. In each image, threation of the other camera may be inferred
from the intersection of the pencil of epipolar lines. Instbiase, both epipoles lie outside of the visible
image.

of the camera centre of the other view. It is also the vangpimint of the baseline
(translation) direction.

e An epipolar plane is a plane containing the baseline. There is a one-parameter
family (a pencil) of epipolar planes.

e An epipolar line is the intersection of an epipolar plane with the image plakie
epipolar lines intersect at the epipole. An epipolar plarersects the left and right
image planes in epipolar lines, and defines the correspaedetween the lines.

Examples of epipolar geometry are given in figure 9.3 and éi@u. The epipolar
geometry of these image pairs, and indeed all the examptasathapter, is computed
directly from the images as described in section J1280).

9.2 The fundamental matrix F

The fundamental matrix is the algebraic representatiorpgiatar geometry. In the
following we derive the fundamental matrix from the mapplggween a point and its
epipolar line, and then specify the properties of the matrix

Given a pair of images, it was seen in figure 9.1 that to eacht goin one image,
there exists a corresponding epipolar lihén the other image. Any point’ in the
second image matching the potmust lie on the epipolar ling. The epipolar line
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Fig. 9.4. Motion parallel to the image plane. In the case of a special motion where the translation is
parallel to the image plane, and the rotation axis is pergeunlar to the image plane, the intersection
of the baseline with the image plane is at infinity. Consetjuéime epipoles are at infinity, and epipolar
lines are parallel. (a) Epipolar geometry for motion pasllto the image plane. (b) and (c) a pair of
images for which the motion between views is (approximpaelsanslation parallel to ther-axis, with

no rotation. Four corresponding epipolar lines are supepizsed in white. Note that corresponding
points lie on corresponding epipolar lines.

is the projection in the second image of the ray from the pwititrough the camera
centrecC of the first camera. Thus, there is a map

x — 1

from a point in one image to its corresponding epipolar lim¢hie other image. Itis
the nature of this map that will now be explored. It will turntdhat this mapping
is a (singular)correlation that is a projective mapping from points to lines, which is
represented by a matri the fundamental matrix.

9.2.1 Geometric derivation

We begin with a geometric derivation of the fundamental maftfhe mapping from
a point in one image to a corresponding epipolar line in tieeoimage may be de-
composed into two steps. In the first step, the pgit mapped to some poist in
the other image lying on the epipolar litfe This pointx’ is a potential match for the
pointx. In the second step, the epipolar lihés obtained as the line joining to the
epipolee’.

Step 1: Point transfer via a plane. Refer to figure 9.5. Consider a plamen space

not passing through either of the two camera centres. Ththraygh the first camera
centre corresponding to the pomtmeets the planer in a pointX. This pointX is
then projected to a point’ in the second image. This procedure is known as transfer
via the planer. SinceX lies on the ray corresponding tq the projected poink’
must lie on the epipolar linB corresponding to the image of this ray, as illustrated in
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Fig. 9.5. A pointx in one image is transferred via the plameto a matching poink’ in the second
image. The epipolar line througk’ is obtained by joinings’ to the epipoles’. In symbols one may
write x’ = Hyx andl’ = [e/]xx" = [¢/]xHxx = Fx WhereF = [¢/] H, is the fundamental matrix.

figure 9.1b. The points andx’ are both images of the 3D point lying on a plane.
The set of all such points; in the first image and the corresponding poixfsn the
second image are projectively equivalent, since they arle pajectively equivalent to
the planar point seX;. Thus there is a 2D homographly mapping eack; to x..

Step 2: Constructing the epipolar line. Given the poink’ the epipolar lind’ passing
throughx’ and the epipole’ can be written ab = €’ x x’ = [¢/] X’ (the notatiorie’]
is defined in (4.5p581)). Sincex’ may be written ax’ = H,x, we have

I = [e]«Hxx = Fx
where we defin€ = [¢/]  H,, the fundamental matrix. This shows

Result9.1. The fundamental matrik may be written ag§ = [€/] H,, WhereH, is the
transfer mapping from one image to another via any plan&urthermore, sincée’]
has rank 2 andi, rank 3,F is a matrix of rank 2.

GeometricallyF represents a mapping from the 2-dimensional projectiveeiR?
of the first image to the pencil of epipolar lines through tpgelee’. Thus, it rep-
resents a mapping from a 2-dimensional onto a 1-dimensjanogctive space, and
hence must have rank 2.

Note, the geometric derivation above involves a scene pignigut a plane isiot
required in order foF to exist. The plane is simply used here as a means of defining a
point map from one image to another. The connection betweefuhdamental matrix
and transfer of points from one image to another via a pladea#t with in some depth
in chapter 13.

9.2.2 Algebraic derivation

The form of the fundamental matrix in terms of the two camemjgetion matri-
ces,P, P/, may be derived algebraically. The following formulatiendue to Xu and
Zhang [Xu-96].
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The ray back-projected from by P is obtained by solvindX = x. The one-
parameter family of solutions is of the form given by (6.p362) as

X(A) =Pfx+ AC

whereP* is the pseudo-inverse &f i.e.PP™ = I, andc its null-vector, namely the
camera centre, defined bpc = 0. The ray is parametrized by the scalar In
particular two points on the ray afe'x (at A = 0), and the first camera centre
(at A = o). These two points are imaged by the second carPleabP’P™x andP'C
respectively in the second view. The epipolar line is the joining these two projected
points, namely’ = (P'C) x (P’P*x). The pointP’C is the epipole in the second image,
namely the projection of the first camera centre, and may betdd bye’. Thus,

I = [€/]«(P'PT)x = Fx, whereF is the matrix

F = [e].P'P". (9.1)

This is essentially the same formula for the fundamentatimas the one derived in
the previous section, the homograghyhaving the explicit fornt,, = P’P* in terms
of the two camera matrices. Note that this derivation bretgn in the case where
the two camera centres are the same for, in this gasethe common camera centre
of bothP andP’, and s&P’C = 0. It follows thatF defined in (9.1) is the zero matrix.

Example 9.2. Suppose the camera matrices are those of a calibrated stpreth the
world origin at the first camera

P =K[I| O] P'=K'[R | t].
Then

K—l
P+ - [ OT

and
F = [P'C|]«P'P"
[K't] KRK' =K'~ T[t],RK' =K TR[R"t], K~' = K" TRK' [KRt], (9.2)

where the various forms follow from result 40582). Note that the epipoles (defined
as the image of the other camera centre) are

_nT
e:P< P{t>:KRTt e/:P/<(1)>:K/t. (9.3)

Thus we may write (9.2) as
F = [e]xKBRK ' =K T[t],RK ' = K~ TR[R"t]. K ' = K~ TRK' [e]. (9.4)
A

The expression for the fundamental matrix can be derivedanynways, and indeed
will be derived again several times in this book. In partep(17.3p412) expresses
in terms of4 x 4 determinants composed from rows of the camera matricesafdr e
view.
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9.2.3 Correspondence condition

Up to this point we have considered the map- 1’ defined byF. We may now state
the most basic properties of the fundamental matrix.

Result9.3. The fundamental matrix satisfies the condition that for aay pf corre-
sponding pointk < x’ in the two images

x'TFx = 0.

This is true, because if pointsandx’ correspond, the®’ lies on the epipolar line
' = Fx corresponding to the point. In other words) = x'Tl' = x'TFx. Conversely,
if image points satisfy the relatiad "Fx = 0 then the rays defined by these points are
coplanar. This is a necessary condition for points to cpoed.

The importance of the relation of result 9.3 is that it givesay of characterizing
the fundamental matrix without reference to the cameraiogstyi.e. only in terms of
corresponding image points. This enabife® be computed from image correspon-
dences alone. We have seen from (9.1) thatay be computed from the two camera
matrices,P, P/, and in particular thaF is determined uniquely from the cameras, up
to an overall scaling. However, we may now enquire how mamyespondences are
required to comput€ from x'TFx = 0, and the circumstances under which the ma-
trix is uniquely defined by these correspondences. Theldeththis are postponed
until chapter 11, where it will be seen that in general attl&@asorrespondences are
required to computg.

9.2.4 Properties of the fundamental matrix

Definition 9.4. Suppose we have two images acquired by cameras with nooideit
centres, then thiindamental matrix F is the unique} x 3 rank 2 homogeneous matrix
which satisfies

xX'TFx =0 (9.5)
for all corresponding points < x’.

We now briefly list a number of properties of the fundamentakn®. The most
important properties are also summarized in table 9.1.

(i) Transpose If F is the fundamental matrix of the pair of camefasP’), then
FT is the fundamental matrix of the pair in the opposite ordef;P).

(i) Epipolar lines: For any pointx in the first image, the corresponding epipolar
lineisl" = Fx. Similarly,1 = F'x’ represents the epipolar line corresponding
to x’ in the second image.

(iii) The epipole for any pointx (other thane) the epipolar lind’ = Fx contains
the epipolee’. Thuse’ satisfies’" (Fx) = (¢/TF)x = 0 for all x. It follows that
e'TF = 0, i.e. €’ is the left null-vector of. Similarly Fe = 0, i.e.e is the right
null-vector ofF.
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e Fisarank 2 homogeneous matrix with 7 degrees of freedom.
e Point correspondence If x andx’ are corresponding image points, then
x'TFx = 0.

e Epipolar lines:
¢ I = Fx is the epipolar line correspondingo
o 1 =FTx’is the epipolar line corresponding%o.
e Epipoles
o Fe=0.
o Fle/ = 0.
e Computation from camera matricesP, P':

o General cameras,
F = [€/]«xP’PT, wherePt is the pseudo-inverse 8f ande’ = P'C, with PC = 0.

o Canonical cameras,= [I | 0], P’ = [M | m],
F = [e/]xM =M T[e]x, wheree’ = m ande = M~ 'm.

o Cameras not at infinity = K[I | 0], P =K'[R Lrt]’
F =K "T[t]xRK™! = [K't]xK'BK~! = K'"TRKT[KR"t].

Table 9.1. Summary of fundamental matrix properties.

(iv) Fhas seven degrees of freedons:>a3 homogeneous matrix has eight indepen-
dent ratios (there are nine elements, and the common sasinag significant);
howeverF also satisfies the constraitit F = 0 which removes one degree of
freedom.

(v) Fis acorrelation a projective map taking a point to a line (see definition 2.29
(p59)). In this case a point in the first imagedefines a line in the second
I' = Fx, which is the epipolar line ok. If 1 andl’ are corresponding epipolar
lines (see figure 9.6a) then any poinbn1 is mapped to the same lide This
means there is no inverse mapping, a&nd not of full rank. For this reasorm,
is not a proper correlation (which would be invertible).

9.2.5 The epipolar line homography

The set of epipolar lines in each of the images forms a peftihes passing through
the epipole. Such a pencil of lines may be considered as anérdiional projective
space. ltis clear from figure 9.6b that corresponding epiplahes are perspectively
related, so that there is a homography between the pengilipblar lines centred at
in the first view, and the pencil centrededin the second. A homography between two
such 1-dimensional projective spaces has 3 degrees obireed

The degrees of freedom of the fundamental matrix can thusieted as follows: 2
for e, 2 fore’, and 3 for the epipolar line homography which maps a lineughe to a
line throughe’. A geometric representation of this homography is giveretisn 9.4.
Here we give an explicit formula for this mapping.
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Fig. 9.6. Epipolar line homography. (a) There is a pencil of epipolar lines in each image centnetha
epipole. The correspondence between epipolar lihes; 1, is defined by the pencil of planes with axis
the baseline. (b) The corresponding lines are related byrapeetivity with centre any point on the
baseline. It follows that the correspondence between dqifioes in the pencils is a 1D homography.

Result9.5. Supposd and 1’ are corresponding epipolar lines, aridis any line not
passing through the epipote thenl andl’ are related byl’ = Flk]|, 1. Symmetrically,
1=FT[K].I.

Proof. The expressiofk].1 = k x 1is the point of intersection of the two lin&sand
1, and hence a point on the epipolar linecall itx. HenceF[k|.l = Fx is the epipolar
line corresponding to the poirt namely the lind'. O

Furthermore a convenient choice foiis the linee, sincek’e = e'e # 0, so that
the linee does not pass through the poias is required. A similar argument holds
for the choice ok’ = €. Thus the epipolar line homography may be written as

I'=Fle|],] 1=F"[e].] .

9.3 Fundamental matrices arising from special motions

A special motion arises from a particular relationship lewthe translation direction,
t, and the direction of the rotation axis, We will discuss two casegure translation
where there is no rotation; argure planar motionwheret is orthogonal tca (the
significance of the planar motion case is described in se&i4.1077)). The ‘pure’
indicates that there is no change in the internal parame$ersh cases are important,
firstly because they occur in practice, for example a camiesging an object rotating
on a turntable is equivalent to planar motion for pairs ofwdpand secondly because
the fundamental matrix has a special form and thus additimoperties.

9.3.1 Pure translation

In considering pure translations of the camera, one mayidenthe equivalent situ-
ation in which the camera is stationary, and the world unolesca translation-t. In
this situation points in 3-space move on straight lineslpr® t, and the imaged in-
tersection of these parallel lines is the vanishing peiimt the direction oft. This is
illustrated in figure 9.7 and figure 9.8. It is evident thas the epipole for both views,
and the imaged parallel lines are the epipolar lines. Thebalgc details are given in
the following example.
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Fig. 9.7. Under a pure translational camera motion, 3D points appeesltde along parallel rails. The
images of these parallel lines intersect in a vanishing poorresponding to the translation direction.
The epipole: is the vanishing point.

Fig. 9.8. Pure translational motion. (a) under the motion the epipole is a fixed point, i.e. has tmes
coordinates in both images, and points appear to move aloves Iradiating from the epipole. The
epipole in this case is termed tl®cus of Expansio(FOE). (b) and (c) the same epipolar lines are
overlaid in both cases. Note the motion of the posters on tlewhich slide along the epipolar line.

Example 9.6. Suppose the motion of the cameras is a pure translation witbtation
and no change in the internal parameters. One may assunthehmio cameras are
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P =K[I | o] andP’ =K]I | t]. Then from (9.4) (usin@ = I andK =K')
F=[e].KK' = [¢]]..
If the camera translation is parallel to theaxis, thene’ = (1,0,0)", so

00 O
F=10 0 -1
01 0
The relation between corresponding point§iFx = 0, reduces ta; = v/, i.e. the

epipolar lines are corresponding rasters. This is thetsmughat is sought by image
rectification described in section 11.p302). A

Indeed if the image point is normalized ax = (z,,1)", then from
x = PX = K[I | 0]X, the space point’s (inhomogeneous) coordinateare, z)T =
ZK~1x, wherez is the depth of the poirx (the distance ok from the camera centre
measured along the principal axis of the first camera). i fbows fromx’ = P'X =
K[I | t|X that the mapping from an image poiato an image poink’ is

x' =x+Kt/z. (9.6)

The motionx’ = x + Kt/z of (9.6) shows that the image point “starts”>atind then
moves along the line defined lryand the epipole = ¢’ = v. The extent of the motion
depends on the magnitude of the translati@which is not a homogeneous vector here)
and the inverse depth so that points closer to the camera appear to move faster tha
those further away — a common experience when looking outraiiwindow.

Note that in this case of pure translatibr= [e'],. is skew-symmetric and has only
2 degrees of freedom, which correspond to the position okghipole. The epipolar
line of x is' = Fx = [e]«x, andx lies on this line since'[e],x = 0, i.e.x, x" and
e = € are collinear (assuming both images are overlaid on top di ether). This
collinearity property is termeduto-epipolar and does not hold for general motion.

General motion. The pure translation case gives additional insight intogéeeral
motion case. Given two arbitrary cameras, we may rotatedaheeca used for the first
image so that it is aligned with the second camera. Thisiostahay be simulated
by applying a projective transformation to the first image fufther correction may
be applied to the first image to account for any differencénendalibration matrices
of the two images. The result of these two corrections is geptioe transformation
H of the first image. If one assumes these corrections to hase tmade, then the
effective relationship of the two cameras to each other as ¢l a pure translation.
Consequently, the fundamental matrix corresponding tactmeected first image and
the second image is of the forin= [¢/],, satisfyingx’'TFx = 0, wherex = Hx is the
corrected point in the first image. From this one deducesxtat’] Hx = 0, and so
the fundamental matrix corresponding to the initial poiotrespondences <« x’ is

F = €| <H. This is illustrated in figure 9.9.
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Fig. 9.9. General camera motion. The first camera (on the left) may be rotated and corrected to
simulate a pure translational motion. The fundamental m&tr the original pair is the producF =
[€']«H, where[e']« is the fundamental matrix of the translation, akds the projective transformation
corresponding to the correction of the first camera.

Example 9.7. Continuing from example 9.2, assume again that the two casrane
P =X[I | o] andP’ = K'[R | t|. Then as described in section 8.49204) the requisite
projective transformation i§ = K'RK~! = H,,, whereH,, is the infinite homography
(see section 13.4838)), andF = [€/] «Ho.

If the image pointx is normalized ax = (x,y,1)7, as in example 9.6, then
(X,v,2)T = zK~'x, and fromx’ = P’X = K'[R | t]X the mapping from an image
pointx to an image poink’ is

x' =KRK 'x +K't/z. (9.7)

The mapping is in two parts: the first term depends on the inpagéion alone, i.e.

x, but not the point’'s depthl, and takes account of the camera rotation and change
of internal parameters; the second term depends on the,dagtimot on the image
positionx, and takes account of camera translation. In the case oftpamslation
(R=1I,K =K/)(9.7) reduces to (9.6). A

9.3.2 Pure planar motion

In this case the rotation axis is orthogonal to the trarmtatiirection. Orthogonality
Imposes one constraint on the motion, and it is shown in tleeceses at the end of
this chapter that ik’ = K thenFs, the symmetric part of, has rank 2 in this planar
motion case (note, for a general motion the symmetric parthads full rank). Thus,
the condition thatlet Fs = 0 is an additional constraint dnand reduces the number
of degrees of freedom from 7, for a general motion, to 6 degoéé&reedom for a pure
planar motion.

9.4 Geometric representation of the fundamental matrix

This section is not essential for a first reading and the readay optionally skip to
section 9.5.

In this section the fundamental matrix is decomposed isteytnmetric and skew-
symmetric parts, and each part is given a geometric repiasem The symmetric and
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skew-symmetric parts of the fundamental matrix are

Fs :(F+FT)/2 Faz(F—FT)/Q

so thatF = Fs + Fa.

To motivate the decomposition, consider the poixiten 3-space that map to the
same point in two images. These image points are fixed unéecdmera motion
so thatx = x’. Clearly such points are corresponding and thus sati$fix = 0,
which is a necessary condition on corresponding points., fmvany skew-symmetric
matrix A the formxTAx is identically zero. Consequently only the symmetric pért o
F contributes tax"Fx = 0, which then reduces te"Fsx = 0. As will be seen below
the matrixtFs may be thought of as a conic in the image plane.

Geometrically the conic arises as follows. The locus of aihgs in 3-space for
whichx = x’ is known as théoroptercurve. Generally this is a twisted cubic curve in
3-space (see section 3p36)) passing through the two camera centres [Maybank-93].
The image of the horopter is the conic definedHgy We return to the horopter in
chapter 22.

Symmetric part. The matrixFs is symmetric and is of rank 3 in general. It has 5
degrees of freedom and is identified with a point conic, dallee Steiner coniqthe
name is explained below). The epipokeande’ lie on the conicFs. To see that the
epipoles lie on the conic, i.e. thatFse = 0, start fromFe = 0. Thene'Fe = 0 and
soe'Fse + e'Fge = 0. Howevere'Fge = 0, since for any skew-symmetric matrix
S, x'Sx = 0. Thuse'Fse = 0. The derivation for’ follows in a similar manner.

Skew-symmetric part. The matrixFa is skew-symmetric and may be written as
Fa = [xalx, wherexg is the null-vector ofFg. The skew-symmetric part has 2
degrees of freedom and is identified with the poigt

The relation between the poirg and conicFs is shown in figure 9.10a. The polar
of xg intersects the Steiner cortig at the epipoles ande’ (the pole—polar relation is
described in section 2.2&0)). The proof of this result is left as an exercise.

Epipolar line correspondence. Itis a classical theorem of projective geometry due
to Steiner [Semple-79] that for two line pencils related blgamography, the locus
of intersections of corresponding lines is a conic. Thisrecsely the situation here.
The pencils are the epipolar pencils, one throeghnd the other through’. The
epipolar lines are related by a 1D homography as describgelition 9.2.5. The locus
of intersection is the coniEs.

The conic and epipoles enable epipolar lines to be detethbgea geometric con-
struction as illustrated in figure 9.10b. This constructi®iased on the fixed point
property of the Steiner conits. The epipolar lind = x x e in the first view defines
an epipolar plane in 3-space which intersects the horoptarpoint, which we will
call X.. The pointX. is imaged in the first view at., which is the point at which
intersects the coniEs (sinceFs is the image of the horopter). Now the imagexpfis
alsox. in the second view due to the fixed-point property of the hteosox. is the
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b

Fig. 9.10. Geometric representation off. (a) The coniFs represents the symmetric partgfand the
pointxg the skew-symmetric part. The comig is the locus of intersection of corresponding epipolar
lines, assuming both images are overlaid on top of each othisrthe image of the horopter curve. The
line 15 is the polar ofxg with respect to the coniEs. It intersects the conic at the epipoleande’.

(b) The epipolar lind’ corresponding to a point is constructed as follows: intersect the line defined by
the pointse andx with the conic. This intersection pointis. Thenl’ is the line defined by the points
x. ande’.

image in the second view of a point on the epipolar plane.dt follows thatx. lies
on the epipolar lind of x, and consequently may be computed d5= x. x €.

The conic together with two points on the conic account fertldegrees of freedom
of F: 5 degrees of freedom for the conic and one each to specifinthepipoles on
the conic. Giverr, then the coni€s, epipoles, e’ and skew-symmetric pointg are
defined uniquely. HoweveFs andxg do not uniquely determine since the identity
of the epipoles is not recovered, i.e. the polaxgfdetermines the epipoles but does
not determine which one isand which one’.

9.4.1 Pure planar motion

We return to the case of planar motion discussed above iiloeexB.2, wheré's has
rank 2. It is evident that in this case the Steiner conic isedegate and from section
2.2.3p30) is equivalent to two non-coincident lines:

Fs = L,1] + 11}

as depicted in figure 9.11a. The geometric construction @fethipolar linel’ corre-
sponding to a poink of section 9.4 has a simple algebraic representation ircHss.
As in the general motion case, there are three steps, dhaestin figure 9.11b: first
the linel = e x x joining e andx is computed; second, its intersection point with the
“conic” x. = I, x 1is determined,; third the epipolar lire= €’ x x. is the join ofx,
ande’. Putting these steps together we find

I'=¢ x[I; x (e x x)] = [€]«[ls] x [€] xx.
It follows thatF may be written as
F=[e]«[L]«[e]«- (9.8)

The 6 degrees of freedom 8Bfare accounted for as 2 degrees of freedom for each of
the two epipoles and 2 degrees of freedom for the line.
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image image
a b

Fig. 9.11. Geometric representation ofF for planar motion. (a) The linesl; and1;, constitute the
Steiner conic for this motion, which is degenerate. Comphi® figure with the conic for general
motion shown in figure 9.10. (b) The epipolar litlecorresponding to a poink is constructed as
follows: intersect the line defined by the poiertandx with the (conic) lind,. This intersection point
is x.. Thenl’ is the line defined by the points ande’.

The geometry of this situation can be easily visualized:hiv@pter for this motion
Is a degenerate twisted cubic consisting of a circle in taag@bf the motion (the plane
orthogonal to the rotation axis and containing the camen&res), and a line parallel
to the rotation axis and intersecting the circle. The linthes screw axis (see section
3.4.1p77)). The motion is equivalent to a rotation about the screi8 with zero
translation. Under this motion points on the screw axis awedfi and consequently
their images are fixed. The lirlg is the image of the screw axis. The lihgis the
intersection of the image with the plane of the motion. Tlaemetry is used for auto-
calibration in chapter 19.

9.5 Retrieving the camera matrices

To this point we have examined the properties @nd of image relations for a point
correspondence < x’. We now turn to one of the most significant properties of
that the matrix may be used to determine the camera matri¢he bwo views.

9.5.1 Projective invariance and canonical cameras

It is evident from the derivations of section 9.2 that the Map Fx and the correspon-
dence conditionx’"Fx = 0 areprojectiverelationships: the derivations have involved
only projective geometric relationships, such as the gsetion of lines and planes, and
in the algebraic development only the linear mapping of tioggetive camera between
world and image points. Consequently, the relationshipgde only on projective co-
ordinates in the image, and not, for example on Euclidearsareanents such as the
angle between rays. In other words the image relationshéprajectively invariant:
under a projective transformation of the image coordinatestx, X’ = H'x/, there is a
corresponding maﬁ = Fx with ¥ = #'~TFH ! the corresponding rank 2 fundamental
matrix.

Similarly, F only depends on projective properties of the camer&s The camera
matrix relates 3-space measurements to image measureamneih$® depends on both
the image coordinate frame and the choice of world coordifi@@me. F does not
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depend on the choice of world frame, for example a rotationvofld coordinates
change®, P/, but notF. In fact, the fundamental matrix is unchanged by a projectiv
transformation of 3-space. More precisely,

Result9.8.If His a4 x 4 matrix representing a projective transformation of 3-spac
then the fundamental matrices corresponding to the pairsaofiera matricegp, P’)
and (PH, P’'H) are the same.

Proof. Observe thaPX = (PH)(H 'X), and similarly forP’. Thus ifx < x’ are
matched points with respect to the pair of camérag’), corresponding to a 3D point
X, then they are also matched points with respect to the patanferasPH, P'H),
corresponding to the poiit 'X. O

Thus, although from (9.35244) a pair of camera matricéB, P’) uniquely determine a
fundamental matri¥, the converse is not true. The fundamental matrix detersrtime
pair of camera matrices at best up to right-multiplicatigrel’3D projective transfor-
mation. It will be seen below that this is the full extent o @ambiguity, and indeed the
camera matrices are determined up to a projective transtawvmby the fundamental
matrix.

Canonical form of camera matrices. Given this ambiguity, it is common to define
a specificcanonical formfor the pair of camera matrices corresponding to a given
fundamental matrix in which the first matrix is of the simpterf [I | o], whereI is
the3 x 3 identity matrix andd a null 3-vector. To see that this is always possible, let
P be augmented by one row to make & 4 non-singular matrix, denoteef. Now
lettingH = P*~!, one verifies thakH = [I | 0] as desired.

The following result is very frequently used

Result9.9. The fundamental matrix corresponding to a pair of camerarivasP =
[I| 0] andP’ = [M | m] is equal tojm]|, M.

This is easily derived as a special case of (p244).

9.5.2 Projective ambiguity of cameras giverr

It has been seen that a pair of camera matrices determinégueedandamental matrix.
This mapping is not injective (one-to-one) however, singiegoof camera matrices that
differ by a projective transformation give rise to the samedamental matrix. It will
now be shown that this is the only ambiguity. We will show taaiven fundamental
matrix determines the pair of camera matrices up to rightiplidation by a projective
transformation. Thus, the fundamental matrix capturegptiogective relationship of
the two cameras.

Theorem 9.10. LetF be a fundamental matrix and &, P’) and (P, P') be two pairs of
camera matrices such thatis the fundamental matrix corresponding to each of these
pairs. Then there exists a non-singulax 4 matrixH such tha® = PH andP’ = P'H.
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Proof. Suppose that a given fundamental magigorresponds to two different pairs
of camera matrice$P, P') and (P,P'). As a first step, we may simplify the problem
by assuming that each of the two pair of camera matrices ismomical form with

P = P = [I] 0], since this may be done by applying projective transforomatito
each pair as necessary. Thus, supposefrhatP = [I|0] and that’ = [A | a]
andP’ = [A | a]. According to result 9.9 the fundamental matrix may then bigten

F = [a] A = [a],A.

We will need the following lemma:

Lemma9.11. Suppose the rank 2 matrixcan be decomposed in two different ways
asF = [a],A andF = [a].A; thena = ka andA = k(A + av") for some non-zero
constantt and 3-vectow.

Proof. First, note that'F = a'[a],A = 0, and similarly,a’F = 0. SinceF has
rank 2, it follows thata = ka as required. Next, fronl], A = [a],A it follows that
la]. (kA —A) = 0, and sokk — A = av' for somev. Hence = k~'(A + av') as
required. O
Applying this result to the two camera matric&sandp’ shows thaP’ = [A | a] and
P' = [k~1(A+avT) | ka] if they are to generate the sameit only remains now to show
—1
that these camera pairs are projectively related Hlos the matrid = [ kkileT 2 ] :
Then one verifies thai = k~![I | 0] = £~'P, and furthermore,
PH=[A|ai=[k""(A+av')|ka] =[] =F
so that the pairs, P’ andp, P’ are indeed projectively related. O

This can be tied precisely to a counting argument: the twoectagP andP’ each
have 11 degrees of freedom, making a total of 22 degrees edldra. To specify a
projective world frame requires 15 degrees of freedom i@e&.1{65)), so once the
degrees of freedom of the world frame are removed from thechmoera2 — 15 =7
degrees of freedom remain — which corresponds to the 7 degfefeeedom of the
fundamental matrix.

9.5.3 Canonical cameras giveR

We have shown that determines the camera pair up to a projective transformaiio
3-space. We will now derive a specific formula for a pair of eaas with canonical
form givenF. We will make use of the following characterization of thedamental
matrix F corresponding to a pair of camera matrices:

Result9.12. A non-zero matri¥ is the fundamental matrix corresponding to a pair of
camera matrice® andp’ if and only ifP’TFP is skew-symmetric.

Proof. The condition thaP’TFP is skew-symmetric is equivalent t0"P'TFPX = 0
for all X. Settingx’ = P'X andx = PX, this is equivalent t&c’ TFx = 0, which is the
defining equation for the fundamental matrix. O
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One may write down a particular solution for the pairs of ceamaatrices in canon-
ical form that correspond to a fundamental matrix as foltows

Result9.13.LetF be a fundamental matrix arglany skew-symmetric matrix. Define
the pair of camera matrices

P=[I]o] and P =|[SF|é€],

wheree’ is the epipole such that TF = 0, and assume that' so defined is a valid
camera matrix (has rank 3). Thenis the fundamental matrix corresponding to the
pair (P, P).

To demonstrate this, we invoke result 9.12 and simply venét

F'STF 0 ] B l F'STF 0 ]

e/TF 0 OT 0 (99)

57 | &"F[x o] = |
which is skew-symmetric.

The skew-symmetric matrix may be written in terms of its null-vector 8s= [s].
Then[[s]<F | €] has rank 3 provided'e’ # 0, according to the following argument.
Sincee’F = 0, the column space (span of the columnsk ag perpendicular te’. But
if sTe’ # 0, thens is not perpendicular te’, and hence not in the column spacerof
Now, the column space ]« F is spanned by the cross-products efith the columns
of F, and therefore equals the plane perpendiculat t80[s|F has rank 2. Since’
is not perpendicular ts, it does not lie in this plane, and §8|.F | €] has rank 3, as
required.

As suggested by Luong and Viéville [Luong-96] a good chddees is S = [€'], for
in this casee’Te’ # 0, which leads to the following useful result.

Result9.14. The camera matrices corresponding to a fundamental matmiay be
chosen a® = [I | o] andP’ = [[e/|(F | €'].

Note that the camera matriX has left3 x 3 submatrix[e’] «F which has rank 2. This
corresponds to a camera with centreron. However, there is no particular reason to
avoid this situation.

The proof of theorem 9.10 shows that the four parameter yaaficamera pairs in
canonical formP = [T | 0], B’ = [A + av" | ka] have the same fundamental matrix as
the canonical pai? = [I | 0], P’ = [A | a]; and that this is the most general solution.
To summarize:

Result9.15. The general formula for a pair of canonic camera matricesesponding
to a fundamental matrik is given by

P=[I|0] P =[] F+ev' |Ae] (9.10)

wherev is any 3-vector, and a non-zero scalar.
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9.6 The essential matrix

The essential matrix is the specialization of the fundardemiatrix to the case of
normalized image coordinates (see below). Historicaflg, ¢ssential matrix was in-
troduced (by Longuet-Higgins) before the fundamental maénd the fundamental
matrix may be thought of as the generalization of the esslemiatrix in which the
(inessential) assumption of calibrated cameras is remoVé@ essential matrix has
fewer degrees of freedom, and additional properties, coeda the fundamental ma-
trix. These properties are described below.

Normalized coordinates. Consider a camera matrix decomposed®as X[R | t],
and letx = PX be a point in the image. If the calibration matkxs known, then we
may apply its inverse to the poistto obtain the poink = K~'x. Thenx = [R | tX,
wherex is the image point expressednormalized coordinatedt may be thought of
as the image of the poit with respect to a camera | t| having the identity matrix
as calibration matrix. The camera matkix'P = [R | t] is called anormalized camera
matrix, the effect of the known calibration matrix having been reet

Now, consider a pair of normalized camera matriges I | o] andP’ = [R | t]. The
fundamental matrix corresponding to the pair of normalizatheras is customarily
called theessential matrixand according to (9.25244) it has the form

E = [t|,R =R[R"t],.
Definition 9.16. The defining equation for the essential matrix is
X TEX =0 (9.11)
in terms of the normalized image coordinates for correspgnplointsx « x’.

Substituting fork andx’ givesx’'TK’"TEK~!x = 0. Comparing this with the relation
x'TFx = 0 for the fundamental matrix, it follows that the relationsltietween the
fundamental and essential matrices is

E = K'TFK. (9.12)

9.6.1 Properties of the essential matrix

The essential matrix = [t] <R, has only five degrees of freedom: both the rotation
matrix R and the translatiom have three degrees of freedom, but there is an overall
scale ambiguity — like the fundamental matrix, the essentérix is a homogeneous
guantity.

The reduced number of degrees of freedom translates inta eatstraints that are
satisfied by an essential matrix, compared with a fundarherd#ix. We investigate
what these constraints are.

Result9.17. A3 x 3 matrix is an essential matrix if and only if two of its singwalues
are equal, and the third is zero.
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Proof. This is easily deduced from the decompositiorE@fs[t|.R = SR, wheres is
skew-symmetric. We will use the matrices

0 -1 0 0 10
W=|1 0 0| andz=|-10 0. (9.13)
0 0 1 0 00

It may be verified thaw is orthogonal and. is skew-symmetric. From Result 4.1-
(p581), which gives a block decomposition of a general skemrsgtric matrix, the
3 x 3 skew-symmetric matrig may be written a§ = kUZUT whereU is orthogonal.
Noting that, up to sigrz = diag(1, 1, 0)W, then up to scales = Udiag(1, 1,0)WUT, and

E = SR = Udiag(1, 1, 0)(WUTR). This is a singular value decompositionffith two
equal singular values, as required. Conversely, a mattixtwio equal singular values
may be factored a3R in this way. O

SinceE = Udiag1,1,0)VT, it may seem thak has six degrees of freedom
and not five, since botly and Vv have three degrees of freedom. However, be-
cause the two singular values are equal, the SVD is not uniquefact there is
a one-parameter family of SVDs f@&. Indeed, an alternative SVD is given by
E = (Udiag(Raxo, 1)) diag1, 1,0)(diagR. ., 1))V' for any2 x 2 rotation matrix.

9.6.2 Extraction of cameras from the essential matrix

The essential matrix may be computed directly from (9.11n@isormalized image
coordinates, or else computed from the fundamental masimgu(9.12). (Methods
of computing the fundamental matrix are deferred to chapi@r Once the essential
matrix is known, the camera matrices may be retrieved E@®will be described next.
In contrast with the fundamental matrix case, where theagi®jective ambiguity, the
camera matrices may be retrieved from the essential magiriw scale and a four-fold
ambiguity. That is there are four possible solutions, ekéepoverall scale, which
cannot be determined.

We may assume that the first camera matrik is [I | 0]. In order to compute the
second camera matri®;, it is necessary to factd into the produciSk of a skew-
symmetric matrix and a rotation matrix.

Result9.18. Suppose that the SVD &fis Udiag(1,1,0)v". Using the notation of
(9.13), there are (ignoring signs) two possible factoriaasE = SR as follows:

S=UZU'" R=UWV' or UW'v' . (9.14)
Proof. That the given factorization is valid is true by inspectiorhat there are no
other factorizations is shown as follows. SuppBse SR. The form ofS is determined

by the fact that its left null-space is the same as that.oHenceS = UZU'T. The
rotationR may be written a¥Xv', whereX is some rotation matrix. Then

Udiag(1,1,0)V" = E = SR = (UzU")(UXV'") = U(ZX)V'

from which one deduces thax = diag(1, 1,0). SinceX is a rotation matrix, it follows
thatX = WworX = W', as required. O
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The factorization (9.14) determines thgart of the camera matriX/, up to scale,
from s = [t].. However, the Frobenius norm &f = UZUT is v/2, which means
that if S = [t] including scalethen ||t|| = 1, which is a convenient normaliza-
tion for the baseline of the two camera matrices. Sifte= 0, it follows that
t =U(0,0,1)" = us, the last column of. However, the sign df, and consequenthy,
cannot be determined. Thus, corresponding to a given eakenatrix, there are four
possible choices of the camera matixbased on the two possible choiceskadnd
two possible signs of. To summarize:

Result9.19. For a given essential matrig = Udiag(1, 1,0)VT, and first camera matrix
P = [I | o], there are four possible choices for the second camera rtrnamely

P/ = [UWV' | +ug] or [UWV' | —us] or [UW'V" | 4us] or [UW'VT | —ug).

9.6.3 Geometrical interpretation of the four solutions

It is clear that the difference between the first two solugimsimply that the direction
of the translation vector from the first to the second cameraversed.

The relationship of the first and third solutions in resuli®is a little more compli-
cated. However, it may be verified that

[UWTVT | ug) = [UWV' | ug]

l VwTwTvT
1

andvW™wTvT = vdiag—1,—1,1)vT is a rotation through80° about the line joining
the two camera centres. Two solutions related in this waykaoevn as a “twisted
pair”.

The four solutions are illustrated in figure 9.12, where gtiswn that a reconstructed
pointX will be in front of both cameras in one of these four solutionly. Thus, testing
with a single point to determine if it is in front of both carasris sufficient to decide
between the four different solutions for the camera matix
Note. The point of view has been taken here that the essentiabostrihomogeneous
quantity. An alternative point of view is that the essentmaltrix is defined exactly by
the equatiorE = [t]|«R, (i.e. including scale), and is determined only up to indete
nate scale by the equatieti’Ex = 0. The choice of point of view depends on which
of these two equations one regards as the defining propetiye @ssential matrix.

9.7 Closure
9.7.1 The literature

The essential matrix was introduced to the computer vismmmunity by Longuet-
Higgins [LonguetHiggins-81], with a matrix analogous REoappearing in the pho-
togrammetry literature, e.g. [VonSanden-08]. Many prapsrof the essential matrix
have been elucidated particularly by Huang and Faugeraang9], [Maybank-93],
and [Horn-90].

The realization that the essential matrix could also beiagph uncalibrated situa-
tions, as it represented a projective relation, developdtie early part of the 1990s,
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@) (b)

(c) (d)

Fig. 9.12. The four possible solutions for calibrated reconstructionfrom E. Between the left and
right sides there is a baseline reversal. Between the toptenithm rows camera B rotatds0° about
the baseline. Note, only in (a) is the reconstructed poirfitant of both cameras.

and was published simultaneously by Faugeras [FaugelasFafigeras-92a], and
Hartleyet al.[Hartley-92a, Hartley-92c].

The special case of pure planar motion was examined by [MdyB&] for the
essential matrix. The corresponding case for the fundashematrix is investigated
by Beardsley and Zisserman [Beardsley-95a] and Viéville laingrand [Vieville-95],
where further properties are given.

9.7.2 Notes and exercises

(i) Fixating cameras. Suppose two cameras fixate on a point in space such that
their principal axes intersect at that point. Show that & tlnage coordinates
are normalized so that the coordinate origin coincides tighprincipal point
then theF;; element of the fundamental matrix is zero.

(i) Mirror images. Suppose that a camera views an object and its reflection in a
plane mirror. Show that this situation is equivalent to tvi®ans of the object,
and that the fundamental matrix is skew-symmetric. Comgredundamental
matrix for this configuration with that of: (a) a pure trantgla, and (b) a pure
planar motion. Show that the fundamental matrix is aut@@r (as is (a)).

(i) Show that if the vanishing line of a plane contains tipgp®le then the plane is
parallel to the baseline.

(iv) Steiner conic. Show that the polar oty intersects the Steiner coriig at the
epipoles (figure 9.10a). Hint, start frofe = Fse + Fge = 0. Sincee lies on



(v)

(vi)
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the conicFs, thenl; = Fse is the tangent line at, andl, = Fae = [xalxe =
xa X e is aline throughkg ande.

The affine type of the Steiner conic (hyperbola, ellipsparabola as given in
section 2.8.3¢59)) depends on the relative configuration of the two cameras
For example, if the two cameras are facing each other theStiaer conic
is a hyperbola. This is shown in [Chum-03] where further ltsson oriented
epipolar geometry are given.

Planar motion. It is shown by [Maybank-93] that if the rotation axis direxti
is orthogonal or parallel to the translation direction thie®a symmetric part of
the essential matrix has rank 2. We assume herethak’. Then from (9.12),
F=K TEK™!, and so

Fs = (F+F")/2=K "(E4+E)K /2 =K TEgk~ ..

It follows from det(Fs) = det(K~')? det(Es) that the symmetric part df is
also singular. Does this result holdkif£ K'?

(vii) Any matrix F of rank 2 is the fundamental matrix corresponding to someggai

camera matrice@, P’) This follows directly from result 9.14 since the solution
for the canonical cameras depends only on the rank 2 propgrty

(viii) Show that the 3D points determined from one of the agwloius reconstructions

(ix)

obtained fromE are related to the corresponding 3D points determined from
another reconstruction by either (i) an inversion throulgl $econd camera
centre; or (i) a harmonic homology of 3-space (see sectigpg29)), where
the homology plane is perpendicular to the baseline andigirdghe second
camera centre, and the vertex is the first camera centre.

Following a similar development to section 9.2.2, derthe form of the fun-
damental matrix for two linear pushbroom cameras. Detdithie matrix are
given in [Gupta-97] where it is shown that affine reconsiarcis possible from

a pair of images.



