TEMPORAL LOGIC & PLANNING

Quick Review of First Order Logic

First Order Logic (FOL):
constant symbols, function symbols, predicate symbols
logical connectives (v, A, =, =, <), quantifiers (V,), punctuation
Syntax for formulas and sentences on(A,B) A on(B,C)
dx on(x,A)
Vx (ontable(x) = clear(x))
First Order Theory T:
“Logical” axioms and inference rules — encode logical reasoning in general
Additional “nonlogical” axioms — talk about a particular domain
Theorems: produced by applying the axioms and rules of inference

Model: set of objects, functions, relations that the symbols refer to
For our purposes, a model is some state of the world s
In order for s to be a model, all theorems of T must be true in s
s |= on(A,B) read “s satisfies on(A,B)” or “s models on(A,B)”
means that on(A,B) is true in the state s

Linear Temporal Logic

Modal logic: FOL plus modal operators
Linear Temporal Logic (LTL):
Purpose: to express a limited notion of time
An infinite sequence (0, 1, 2, ...) of time instants
An infinite sequence M= (s, s,, ...) of states of the world

Modal operators to refer to the states in which formulas are true:

Of - nextf - f holds in the next state, e.g., O on(A,B)
Of - eventually f - f either holds now or in some future state
f - always f - f holds now and in all future states

f,uf, - f, untilf, - f, either holds now or in some future state,

and f,; holds until then

Propositional constant symbols TRUE and FALSE

Linear Temporal Logic (continued)

Quantifiers cause problems with computability
Suppose f(x) is true for infinitely many values of x
Problem evaluating truth of Vx f(x) and dx f(x)

Bounded quantifiers

Let g(x) be such that {x : g(x)} is finite and easily computed
Vx:g(x)] f(x)

means Vx (g(x) = f(x))

expands into f(x;) A f(x,) A ... A f(x,)
3[x:g(x)] f(x)

means dx (g(x) A f(x))

expands into f(x;) v f(x,) Vv ... Vv f(x,)

Models for LTL

A model is a triple (M, s, v)
M = (sy, sy, .-.) is a sequence of states
s; is the I’th state in M,

v is a variable assignment function
a substitution that maps all variables into constants

Write (M,s,,v) |=f

to mean that v(f) is true in s.

Always require that
(M, s,v) |= TRUE
(M, s;,v) |= —FALSE

Examples

Suppose M= (sg, sy, ...)

(M,so,v) |= OO on(A,B) means A ison Bins,
Abbreviations:
(M,s5) |= OO on(A,B)no free variables, so v is irrelevant:
M |= OO on(A,B) if we omit the state, it defaults to s,
Equivalently,
(M,s,,v) | = on(A,B) same meaning with no modal operators
s, |= on(A,B) same thing in ordinary FOL

M | = O—holding(C)

in every state in M, we aren’t holding C

M |= Oon(B, C) = (on(B, C) U on (A, B)))

whenever we enter a state in which B is on C, B remains on C until A is on B.

Where We're Going

Basic idea:
TLPLan does a forward search, using LTL to do pruning tests
Input includes a current state s, and a control formula f written in LTL
If fisn’t satisfied, then s is unacceptable => backtrack

Else keep going

We’'ll need to augment LTL to include a way to refer to goal states

Include a GOAL operator such that GOAL(f) means f is true in every goal state
((M,s,V),9) |= GOAL(f) iff (Ms,V) |= f foreverys g

Next, some examples of control formulas

Example: Blocks World

unstack(x,y)
. Precond: on(x,y), clear(x), handempty

holding(x), clear(y)

pickup(x)
Precond: ontable(x), clear(x), handempty
Effects: —ontable(x), —clear(x),

—handempty, holding(x)

putdown(x)
Precond: holding(x)
Effects: —holding(x), ontable(x),
clear(x), handempty

Effects: —on(x,y), —clear(x), =handempty,

stack(x,y)
Precond: holding(x), clear(y)
Effects: —holding(x), —clear(y),
on(x,y), clear(x), handempty

C |_b_|
a
cl

Supporting Axioms

Woant to define conditions under which a stack of blocks will never need to be
moved

If x is the top of a stack of blocks, then we want goodtower(x) to hold if
x doesn’t need to be anywhere else
None of the blocks below x need to be anywhere else

Definitions to support this:

goodtower(x) < clear(x) A = GOAL(holding(x)) A goodtowerbelow(x)
goodtowerbelow(x) <

[ontable(x) A —3d[y:GOAL(on(x,y)]]
v d[y:on(x,y)] {-GOAL(ontable(x)) A —GOAL(holding(y))
A —GOAL(clear(y)) A V[z:GOAL(on(x,z))] (z = y)

A V[z:GOAL(on(z,y))] (z = x) A goodtowerbelow(y)}
badtower(x) < clear(x) A —goodtower(x)

Blocks World Example (continued)

Three different control formulas:

(1) Every goodtower must always remain a goodtower:

0 (V[a::clear(a:)] goodtower(z) = O(clear(z) V A[y:on(y, z)] gaodtawer(y)))

(2) Like (1), but also says never to put anything onto a badtower:

O (V[m:clear(;c)] goodtower(z) = O(clear(z) V A[y:on{y, z)] goodtower(y)
A badtower(z) = O(—3[y:on(y, z)]))

(3) Like (2), but also says never to pick up a block from the table unless you can
put it onto a goodtower:

O (‘v’[z:clear(m)] goodtower(z) = O(clear(z) V J[y:on(y, x)] goodtower(y))
A badtower(z) = O(—3[y:on(y, z)])
A {ontable(z) A I[y:GOAL{on(z,y))] ~goodtower(y))
= O(—nholding(a:)))

Qutline of How TLPlan Works

Recall that TLPLanN’s input includes a current state s, and a control formula f written in
LTL

How can TLPLan determine whether there exists a sequence of states M beginning
with s, such that M |=f 2

We can compute a formula f * such that for every sequence M = (s, s™, s7,...),
M |=f T iff MT = (s%, s77,...) satisfies f *

f * is called the progression of f through s

If f ¥ = FALSE then no M™ can satisfy f *
Thus no M can satisfy f, so TLPLan can backtrack
Otherwise, need to determine whether there is an M* that satisfies f *

For every child s* of s, call TLPLan recursively on s™ and f *

How to compute the progression of f through s¢

Procedure Progress(f,s)
Case
1. f contains no temporal operators:
f* := TRUE if S' | f, FALSE otherwise.

2. f=FfAfa ft :=Progress(fi, S) AProgress(fz, S)

3. f=-fi: ft := —Progress(fi, S)

4. f=0h: ff==~nh

5. f=hHUf ft :=Progress(fz, s) V (Progress(fi, s) A f)
6. =< ft :=Progress(fi, S) V f

7. f=0f: ft :=Progress(fy, S) A f

8. fF=Ven(z)lfir ft:=Ai, .Progress(f,s)

9. f=3=v(=)lfi: ft:=Vo_ ,Progress(f; s)

where {C;, ..., ¢} ={X: s |=y(X)}, and f; = f with X replaced by c;
Boolean simplification rules:

1. [FALSE A ¢|¢p A FALSE] ++ FALSE, 3. -TRUE > FALSE,

2. [TRUE A ¢|¢ A TRUE] — ¢, 4. —FALSE — TRUE.

Examples

Suppose f = [on(a,b)
f * = Progress(on(a,b), s) A Ldon(a,b)
If on(a,b) is true in s then
* = TRUE A L on(a,b)
simplifies to [1 on(a,b)
If on(a,b) is false in s then
* = FALSE A O on(a,b)
simplifies to FALSE

Summary:
L] generates a test on the current state
If the test succeeds, L1 propagates it to the next state

Examples (continued)

Suppose f = [(on(a,b) =Oclear(a))
f* = Progress[(on(a,b) =Oclear(a)), s]
= Progress[on(a,b) =Oclear(a), s] A O(on(a,b) =Oclear(a))
If on(a,b) is true in s, then
f+* = clear(a) A O(on(a,b) =Oclear(a))

Since on(a,b) is true in s,
s must satisfy clear(a)

The “always” constraint is propagated to s*
If on(a,b) is false in s, then
f * = O(on(a,b) = Oclear(a))

The “always” constraint is propagated to s*

Example c
‘ a ‘ b
s = {ontable(Q), ontable(b), clear(a), clear(c), on(c,b)}
g = {on(b, &)}
f= 0V[x:clear(x)] {(ontable(x) A =3[y:GOAL(on(x,y))]) = O—holding(x)}
never pick up a block x if x is not required to be on another block y

f =Progress(f;s) A f

Progress(f,s)

= Progress(V[x:clear(x)]
{(ontable(x) A —3[y:GOAL(on(x,y))]) = O—holding(x)},s)

= Progress((ontable(a) A —3[y:GOAL(on(a,y))]) = O—holding(a)},s)
A Progress((ontable(b) A —3[y:GOAL(on(b,y))]) = O—holding(b)},s)
= —holding(a) A TRUE

f* =—holding(a) A TRUE A f
= —holding(a) A
LIV [x:clear(x)] {(ontable(x) A —3[y:GOAL(on(x,y))]) = O—holding(x)}

Pseudocode for TLPlan

Nondeterministic forward search
Input includes a control formula f for the current state s
When we expand a state s, we progress its formula f through s
If the progressed formula is false, s is a dead-end

Otherwise the progressed formula is the control formula for s’s children

Procedure TLPIlan (s, /. g, n)
f+ <« Progress (f, s)
If f+ = FALSE then return failure
If s satisfies g then return «t
A « {actions applicable to s}
If A =empty then return failure
nondeterministically choose a € A
S* <« y(s,a)
return TLPlan (s*, f*, g, w.a)

Discussion

2000 International Planning Competition
TALplanner: same kind of algorithm, different temporal
logic

received the top award for a “hand-tailored” (i.e., domain-
configurable) planner

TLPlan won the same award in the 2002 International
Planning Competition

Both of them:

Ran several orders of magnitude faster than the “fully
automated” (i.e., domain-independent) planners

especially on large problems

Solved problems on which the domain-independent planners
ran out of time /memory

