
OPPA European Social Fund
Prague & EU: We invest in your future.

TEMPORAL LOGIC & PLANNING

kopriva@agents.felk.cvut.cz

Quick Review of First Order Logic

 First Order Logic (FOL):

 constant symbols, function symbols, predicate symbols

 logical connectives (, , , , ), quantifiers (, ), punctuation

 Syntax for formulas and sentences on(A,B)  on(B,C)

x on(x,A)

x (ontable(x)  clear(x))

 First Order Theory T:

 “Logical” axioms and inference rules – encode logical reasoning in general

 Additional “nonlogical” axioms – talk about a particular domain

 Theorems: produced by applying the axioms and rules of inference

 Model: set of objects, functions, relations that the symbols refer to

 For our purposes, a model is some state of the world s

 In order for s to be a model, all theorems of T must be true in s

 s |= on(A,B) read “s satisfies on(A,B)” or “s models on(A,B)”

 means that on(A,B) is true in the state s

Linear Temporal Logic

 Modal logic: FOL plus modal operators

 Linear Temporal Logic (LTL):

 Purpose: to express a limited notion of time

 An infinite sequence 0, 1, 2, … of time instants

 An infinite sequence M= s0, s1, … of states of the world

 Modal operators to refer to the states in which formulas are true:

 f - next f - f holds in the next state, e.g.,  on(A,B)

♢ f - eventually f - f either holds now or in some future state

⃞ f - always f - f holds now and in all future states

f1  f2 - f1 until f2 - f2 either holds now or in some future state,

and f1 holds until then

 Propositional constant symbols TRUE and FALSE

Linear Temporal Logic (continued)

 Quantifiers cause problems with computability

 Suppose f(x) is true for infinitely many values of x

 Problem evaluating truth of x f(x) and x f(x)

 Bounded quantifiers

 Let g(x) be such that {x : g(x)} is finite and easily computed
[x:g(x)] f(x)

 means x (g(x)  f(x))

 expands into f(x1)  f(x2)  …  f(xn)

[x:g(x)] f(x)
 means x (g(x)  f(x))

 expands into f(x1)  f(x2)  …  f(xn)

Models for LTL

 A model is a triple (M, si, v)

 M = s0, s1, … is a sequence of states

 si is the i’th state in M,

 v is a variable assignment function
 a substitution that maps all variables into constants

 Write (M,si,v) |= f

to mean that v(f) is true in si

 Always require that
(M, si,v) |= TRUE

(M, si,v) |= FALSE

Examples
 Suppose M= s0, s1, …

(M,s0,v) |=  on(A,B) means A is on B in s2

 Abbreviations:

(M,s0) |=  on(A,B)no free variables, so v is irrelevant:

M |=  on(A,B) if we omit the state, it defaults to s0

 Equivalently,

(M,s2,v) |= on(A,B) same meaning with no modal operators

s2 |= on(A,B) same thing in ordinary FOL

 M |= holding(C)

 in every state in M, we aren’t holding C

 M |= (on(B, C)  (on(B, C)  on (A, B)))

 whenever we enter a state in which B is on C, B remains on C until A is on B.

Where We’re Going

 Basic idea:

 TLPLan does a forward search, using LTL to do pruning tests

 Input includes a current state s, and a control formula f written in LTL

 If f isn’t satisfied, then s is unacceptable => backtrack

 Else keep going

 We’ll need to augment LTL to include a way to refer to goal states

 Include a GOAL operator such that GOAL(f) means f is true in every goal state

 ((M,si,V),g) |= GOAL(f) iff (M,si,V) |= f for every si  g

 Next, some examples of control formulas

Example: Blocks World
unstack(x,y)

Precond: on(x,y), clear(x), handempty

Effects: on(x,y), clear(x), handempty,

holding(x), clear(y)

stack(x,y)

Precond: holding(x), clear(y)

Effects: holding(x), clear(y),

on(x,y), clear(x), handempty

pickup(x)

Precond: ontable(x), clear(x), handempty

Effects: ontable(x), clear(x),

handempty, holding(x)

putdown(x)

Precond: holding(x)

Effects: holding(x), ontable(x),

clear(x), handempty

c

a b

c
a b

c

a b

c

a
b

c

a b

Supporting Axioms

 Want to define conditions under which a stack of blocks will never need to be
moved

 If x is the top of a stack of blocks, then we want goodtower(x) to hold if

 x doesn’t need to be anywhere else

 None of the blocks below x need to be anywhere else

 Definitions to support this:

 goodtower(x)  clear(x)   GOAL(holding(x))  goodtowerbelow(x)

 goodtowerbelow(x) 

[ontable(x)  [y:GOAL(on(x,y)]]

 [y:on(x,y)] {GOAL(ontable(x))  GOAL(holding(y))

 GOAL(clear(y))  [z:GOAL(on(x,z))] (z = y)

 [z:GOAL(on(z,y))] (z = x)  goodtowerbelow(y)}

 badtower(x)  clear(x)  goodtower(x)

Blocks World Example (continued)

Three different control formulas:

(1) Every goodtower must always remain a goodtower:

(2) Like (1), but also says never to put anything onto a badtower:

(3) Like (2), but also says never to pick up a block from the table unless you can
put it onto a goodtower:

Outline of How TLPlan Works

 Recall that TLPLan’s input includes a current state s, and a control formula f written in
LTL

 How can TLPLan determine whether there exists a sequence of states M beginning
with s, such that M |= f ?

 We can compute a formula f + such that for every sequence M = s, s+, s++,…,

 M |= f + iff M+ = s+, s++,… satisfies f +

 f + is called the progression of f through s

 If f + = FALSE then no M+ can satisfy f +

 Thus no M can satisfy f, so TLPLan can backtrack

 Otherwise, need to determine whether there is an M+ that satisfies f +

 For every child s+ of s, call TLPLan recursively on s+ and f +

 How to compute the progression of f through s?

Procedure Progress

s

s s
s

s

s

s

s

s

where {c1, …, cn} = {x : s |= (x)}, and fi = f with x replaced by ci

Boolean simplification rules:

contains no temporal operators:

Progress

Progress

Progress

Progress

Progress

Progress

Progress

i=1,…,nProgress(fi, s)
i=1,…,nProgress(fi, s)

Examples

 Suppose f =  on(a,b)

 f + = Progress(on(a,b), s)   on(a,b)

 If on(a,b) is true in s then
 f + = TRUE   on(a,b)

 simplifies to  on(a,b)

 If on(a,b) is false in s then
 f + = FALSE   on(a,b)

 simplifies to FALSE

 Summary:

  generates a test on the current state

 If the test succeeds,  propagates it to the next state

Examples (continued)

 Suppose f = (on(a,b) clear(a))

 f + = Progress[(on(a,b) clear(a)), s]

 = Progress[on(a,b) clear(a), s]  (on(a,b) clear(a))

 If on(a,b) is true in s, then

 f + = clear(a)  (on(a,b) clear(a))

 Since on(a,b) is true in s,

s+ must satisfy clear(a)

 The “always” constraint is propagated to s+

 If on(a,b) is false in s, then

 f + = (on(a,b)  clear(a))

 The “always” constraint is propagated to s+

Example

 s = {ontable(a), ontable(b), clear(a), clear(c), on(c,b)}

 g = {on(b, a)}

 f = [x:clear(x)] {(ontable(x)  [y:GOAL(on(x,y))])  holding(x)}

 never pick up a block x if x is not required to be on another block y

 f + = Progress(f,s)  f

 Progress(f,s)

= Progress([x:clear(x)]
{(ontable(x)  [y:GOAL(on(x,y))])  holding(x)},s)

= Progress((ontable(a)  [y:GOAL(on(a,y))])  holding(a)},s)

 Progress((ontable(b)  [y:GOAL(on(b,y))])  holding(b)},s)

= holding(a)  TRUE

 f + =holding(a)  TRUE  f
= holding(a) 
[x:clear(x)] {(ontable(x)  [y:GOAL(on(x,y))])  holding(x)}

a b

b

a

c

Pseudocode for TLPlan

 Nondeterministic forward search

 Input includes a control formula f for the current state s

 When we expand a state s, we progress its formula f through s

 If the progressed formula is false, s is a dead-end

 Otherwise the progressed formula is the control formula for s’s children

Procedure TLPlan (s, f, g, π)

f +  Progress (f, s)

if f + = FALSE then return failure

if s satisfies g then return π

A  {actions applicable to s}

if A = empty then return failure

nondeterministically choose a  A

s +   (s,a)

return TLPlan (s +, f +, g, π.a)

Discussion

 2000 International Planning Competition

 TALplanner: same kind of algorithm, different temporal
logic
 received the top award for a “hand-tailored” (i.e., domain-

configurable) planner

 TLPlan won the same award in the 2002 International
Planning Competition

 Both of them:

 Ran several orders of magnitude faster than the “fully
automated” (i.e., domain-independent) planners
 especially on large problems

 Solved problems on which the domain-independent planners
ran out of time/memory

OPPA European Social Fund
Prague & EU: We invest in your future.

