
PLÁNOVÁNÍ A HRY – CV 4

STATE-SPACE SEARCH

Based on slides by Štěpán Kopřiva Jan Hrnčíř

State-space Search

 Forward Search

 Backward Search

 Heuristic Search

Forward search

Forward Search

take c3

take c2
…

Forward Search Properties

 Forward-search is sound

 for any plan returned by any of its

nondeterministic traces, this plan is guaranteed to

be a solution

 Forward-search is also complete

 if a solution exists then at least one of Forward-

search’s nondeterministic traces will return

a solution.

Task 1: DWR, find one finite and

one infinite trace

 s0:

 g: {at(r1, loc1), loaded(r1, c3)}

Branching Factor of Forward

Search

 Forward search can have a very large branching factor
 E.g., many applicable actions that don’t progress toward goal

 Why this is bad:
 Deterministic implementations can waste time trying lots of

irrelevant actions

 Need a good heuristic function and/or pruning procedure

 How to do pruning?

a3

a1

a2

… a1 a2 a50 a3

initial state goal

Backward search

Backward Search

 For forward search, we started at the initial state
and computed state transitions
 new state = (s,a)

 For backward search, we start at the goal and
compute inverse state transitions
 new set of subgoals = –1(g,a)

 To define -1(g,a), must first define relevance:
 An action a is relevant for a goal g if
 a makes at least one of g’s literals true

 g  effects(a) ≠ 

 a does not make any of g’s literals false
 g+  effects–(a) =  and g–  effects+(a) = 

Inverse State Transitions

 If a is relevant for g, then

 –1(g,a) = (g – effects(a))  precond(a)

 Otherwise –1(g,a) is undefined

 Example: suppose that

 g = {on(b1,b2), on(b2,b3)}

 a = stack(b1,b2)

 What is –1(g,a)?

Backward Search

Task 2: DWR, backward search

s0

loc1 loc2

pallet
cont.

crane

robot

s5

loc1 loc2

pallet

crane

robot

cont.

initial state: goal state:

 Solve the problem by the backward-search, trace the algorithm.

 Actions: load(crane, loc, cont, r), take(crane, loc, cont, pallet, pile), move(r, from, to)

Task 2: DWR, backward search

s1

loc1 loc2

pallet

cont.

crane

robot

s3

loc1 loc2

pallet

cont.

crane

robot

s0

loc1 loc2

pallet
cont.

crane

robot

s4

loc1 loc2

pallet

crane

robot

cont.

s5

loc1 loc2

pallet

crane

robot

cont.

plan =

move(robot,loc2,loc1)

initial state: goal state:

load(crane,loc1,cont,robot)

take(crane,loc1,cont,pallet,pile)

 Solve the problem by the backward-search, trace the algorithm.

 Actions: load(crane, loc, cont, r), take(crane, loc, cont, pallet, pile), move(r, from, to)

move(robot,loc1,loc2)

Lifting I.

 Backward search can also have a very large branching

factor

 E.g., an operator o that is relevant for g may have many ground

instances a1, a2, …, an such that each ai’s input state might be

unreachable from the initial state

 Can reduce the branching factor of backward search

if we partially instantiate the operators

 this is called lifting

 Basic Idea: Delay grounding of operators until necessary

in order to bind variables with those required to realize

goal or subgoal

Lifting II.

q(a1)

foo(x,y)

 precond: p(x,y)

 effects: q(x)

foo(a1,a1)

foo(a1,a2)

foo(a1,a3) . . .

p(a1,a2)

p(a1,a3)

p(a1,a50)
foo(a1,a50)

q(a1)
foo(a1,y)

p(a1,y)

Lifted Backward Search

 More complicated than Backward-search
 Have to keep track of what substitutions were performed

 But it has a much smaller branching factor

Heuristic search

Local heuristic search: Hill climbing

Systematic heuristic search:

Greedy best-first search

