PLANOVANIAHRY - CV 4

STATE-SPACE SEARCH

Jan HrndGir

State-space Search

T e
o Forward Search

1 Backward Search
1 Heuristic Search

- Forward search

Forward Search

Forward-search(O, sg, g)

S = 8

m «— the empty plan

loop
if s satisfies g then return
E «— {ala is a ground instance an operator in O,

and precond(a) is true in s}

if E'= () then return failure
nondeterministically choose an action a € £
s «— v(s,a)

o .0
cranel
=1
=
-~ T 4 7

pl

locl loc2

Forward Search Properties

Forward-search 1S sound

for any plan returned by any of its
nondeterministic traces, this plan is guaranteed to
be a solution

Forward-search IS also complete

If a solution exists then at least one of Forward-
search’S nondeterministic traces will return
a solution.

Task 1: DWR, find one finite and

one Infinite trace
I e

7 So:

c3 cranel

c2 //ff
p2

cl 37 ri

locl ' loc2

o g. {at(rl, locl), loaded(rl, c3)}

Branching Factor of Forward
Search

- a,

a,
| |8y [83| --- |80 93
initial state goal

Forward search can have a very large branching factor
E.g., many applicable actions that don’t progress toward goal

Why this is bad:

Deterministic implementations can waste time trying lots of
Irrelevant actions

Need a good heuristic function and/or pruning procedure
How to do pruning?

- Backward search

Backward Search

For forward search, we started at the initial state
and computed state transitions

new state = y(s,a)

For backward search, we start at the goal and
compute inverse state transitions

new set of subgoals = y(g,a)
To define y1(g,a), must first define relevance:

An action a is relevant for a goal g if
a makes at least one of g’s literals true
g N effects(a) # I

a does not make any of g’s literals false
g* N effects~(a) = J and g~ n effects*(a) = J

Inverse State Transitions

If a Is relevant for g, then

v-1(g,a) = (g — effects(a)) w precond(a)
Otherwise y=1(g,a) is undefined
Example: suppose that

g = {on(b1,b2), on(b2,b3)}

a = stack(bl,b2)

What is y1(g,a)?

Backward Search
T e

Backward-search(O, s, g)

m «— the empty plan

loop
if sy satisfies ¢ then return
A « {ala is a ground instance of an operator in O

and v (g, a) is defined}

if A =0 then return failure
nondeterministically choose an action a € A
T Q.7

g —~'(g,a)

Task 2: DWR, backward search

o Solve the problem by the backward-search, trace the algorithm.
o Actions: load(crane, loc, cont, r), take(crane, loc, cont, pallet, pile), move(r, from, to)

initial state: goal state:

Task 2: DWR, backward search

o Solve the problem by the backward-search, trace the algorithm.
o Actions: load(crane, loc, cont, r), take(crane, loc, cont, pallet, pile), move(r, from, to)

initial state: plan = goal state:
take(crane,locl,cont,pallet,pile)
move(robot,loc2,locl)
load(crane,locl,cont,robot)
move(robot,locl,loc2)

Lifting I.

Backward search can also have a very large branching
factor

E.g., an operator o that is relevant for g may have many ground
Instances a,, a,, ..., &, such that each a;’s input state might be
unreachable from the initial state

Can reduce the branching factor of backward search

If we partially instantiate the operators

this is called lifting
Basic Idea: Delay grounding of operators until necessary

In order to bind variables with those required to realize
goal or subgoal

Lifting II.

p(a;,a,) 0(ay,a)

foo(x,y)
precond: p(X,y)

effects: q(x) (3, 8)

q(a,)

foo(a,,a5,)

p(al,asp)

\

foo(a,,y)
0(a.y) / a(a,)

Lifted Backward Search

1
- More complicated than Backward-search
Have to keep track of what substitutions were performed

o But it has a much smaller branching factor

Lifted-backward-search(Q, sg, g)
m «— the empty plan

loop
if sg satisfies g then return

A «— {(o,#)|o is a standardization of an operator in O,
6 is an mgu for an atom of g and an atom of effects™ (o),
and v 1(6(g),0(0)) is defined}

if A = () then return failure

nondeterministically choose a pair (0,0) € A

m «— the concatenation of #(o) and #(m)

g — v 1(0(g),0(0))

- Heuristic search

Local heuristic search: Hill climbing
_

Hill-climbing

o := make-root-node(init())
forever:
if is-goal(state(o)):
return extract-solution(o)
¥ :={ make-node(o,0, s) | (0, s) € succ(state(o)) }
o := an element of ¥’ minimizing /i (random tie breaking)

.

Enforced hill-climbing: procedure improve

def improve(oy):
queue = new fifo-queue
queue.push-back(ay)
closed := ()
while not queue.empty():
o = queue.pop-front()
if state(o) ¢ closed.
closed := closed U {state(c)}
if h(c) < h(op):
return o
for each (o, s) € succ(state(o)):
o’ := make-node(o, 0, s)
queue.push-back(o’)

fail

>

Enforced hill-climbing

o := make-root-node(init())

while not is-goal(state(o)):
o = improve(o)

return extract-solution(o)

Systematic heuristic search:
Greedy best-first search

Greedy best-first search (with duplicate detection)

open := new min-heap ordered by (o +— h(o))
open.insert(make-root-node(init()))
closed := ()
while not open.empty():
o = open.pop-min()
if state(o) ¢ closed:
closed := closed ' {state(o)}
if is-goal(state(o)):
return extract-solution(o)
for each (0, s) € succ(state(o)):
o' := make-node(a, 0, s)
if h(o') < oc:
open.insert(c’)
return unsolvable

