
OPPA European Social Fund
Prague & EU: We invest in your future.

Frequent subsequences, episodal rules

Jǐŕı Kléma

Department of Cybernetics,
Czech Technical University in Prague

http://ida.felk.cvut.cz

pOutline

� Motivation for frequent subsequence search

− applications, variance in needs and sequence definitions,

� what do we already know?

− connection to itemsets, what changed?

− directed sequences, without noise/gaps and time,

� why is it sometimes more difficult?

− undirected sequences a their canonical form,

− (complete) transactional representation and connected definitions,

− GSP algorithm (Agrawal’s APRIORI generalization),

− other algorithms – FreeSpan, PrefixSpan,

� summary

− categorization of methods according to sequence and pattern types,

� STULONG – a case study.

� A4M33SAD

pFrequent subsequences – example 1: DNA

� motif discovery

− searches for short sequential patterns in a file of unaligned DNA or protein sequences,

− searches for discriminative patterns (characteristics)

∗ typical for one sequence class, unusual in the other classes,

∗ this pattern could relate with the biological/regulation function of the (protein) class,

− transcription factor interacts with DNA through a particular motif,

− frequent subsequence search is a subtask,

� event = nucleotide, string (no time), undirected DNA.

� A4M33SAD

pFrequent subsequences – example 2: insurance

� event is signing of a insurance contract of a certain type,

� several events may occur concurrently,

� sequence is a chronological series of events,

� analogy: directed acyclic graph, the edge length equals time between events,

� interesting patterns: typical contract sequences (signed in a reasonable time span).

Meyer: Sequence Mining in Marketing.

� A4M33SAD

pFrequent subsequences – similarity to frequent itemsets

� first of all, similarity in task representation,

� the process can be intrinsically identical, but we ask different questions

− itemsets: which insurance contracts people arrange concurrently,

− sequences: how people arrange insurance contracts in their course of life,

� transaction representation still formally possible and helpful (universal)

− more factors must be concerned and stored.

Transaction Items (insurance type)

t1 home, life

t2 car, home

t3 pension, life

t4 travel

t5 pension, life

.

Customer Date (time) Items (insurance type)

c1 5.10.2003 home, life

c1 8.1.2005 travel

c1 3.8.2010 car, pension

c2 10.10.2003 car, home

c2 20.11.2006 pension

.

� A4M33SAD

pFrequent subsequences – similarity to frequent itemsets

� secondly, similarity in terms of task solution,

� APRIORI property can easily be generalized for sequences:

Each subsequence of a frequent sequence is frequent.

� the anti-monotone property can also be transformed to monotone one:

No supersequence of an infrequent sequence can be frequent.

� the model APRIORI-like algorithm for sequential data

− a direct analogy of the APRIORI algorithm for itemsets,

− the basic operations (informal – a reminder only):

1. search for trivial frequent sequences (typically of the length 0 or 1),

2. generate candidate sequences with the length incremented by 1,

3. check for their actual support in the transaction database,

4. reduce the candidate sequence set

∗ a subset of frequent sequences of the given length is created,

5. until the frequent sequence set non-empty go to the step 2.

� A4M33SAD

pFrequent substrings – a trivial APRIORI application

� a string

− a directed sequence, an equidistant step, exactly one item per transaction,

− events given by a symbol alphabet, a pattern is an ordered list of neighboring events,

− 〈a1 . . . am〉 is a subsequence of 〈b1 . . . bn〉 iff ∃i a1 = bi ∧ · · · ∧ am = bi+m.

� Example: DNA sequence (n = 20, A = {a, g, t})

i Ci Li

1 {a}, {g}, {t} {a}, {g}, {t}
2 (9 patterns) {aa}, {ga}, {gg}, {gt}, {tg}, {tt}
3 {aaa}, {gaa}, {gga}, . . . (12 patterns) {gaa}, {ggg}, {gtt}, {tga}, {ttg}
4 {gggg}, {gttg}, {tgaa}, {ttga} {gggg}, {tgaa}, {ttga}
5 {ttgaa} {ttgaa}

� how to check for support quickly, i.e. how to find all subsequence occurrences in a sequence?

− algorithms Knuth-Morris-Pratt or Boyer-Moore.

� A4M33SAD

pCanonical form for sequences

� a canonical (standard) code word

− a unique sequence representation, based on the symbol alphabet ordering,

− a usual (not necessary) choice:

∗ the lexicographical symbol alphabet ordering a < b < c < . . .,

∗ the lexicographically smallest (smaller) code word taken as canonical (bac < cab),

� a directed sequence

− the only interpretation (way of reading), each (sub)sequence is a canonical code word,

� an undirected sequence

− two possible ways of reading = two alternative code words,

− the routine application of lexicographical ordering is not possible,

− prefix property in a space of canonical code words does not hold:

∗ every prefix of a canonical word is a canonical word itself,

sequence canonical form prefix canonical form

bab bab ba ab

cabd cabd cab bac

− we have to find a different way of forming code words.

� A4M33SAD

pCanonical form for undirected sequences

� The canonical code words with the prefix property will be formed as follows

− even and odd length words will be handled separately,

− code words are started in the middle of sequence,

even length odd length

sequence am am−1 . . . a2 a1 b1 b2 . . . bm−1 bm am am−1 . . . a2 a1 a0 b1 b2 . . . bm−1 bm
code word a1 b1 a2 b2 . . . am−1 bm−1 am bm a0 a1 b1 a2 b2 . . . am−1 bm−1 am bm
code word b1 a1 b2 a2 . . . bm−1 am−1 bm am a0 b1 a1 b2 a2 . . . bm−1 am−1 bm am

� canonical is the lexicographically smaller code word in the table,

� the sequence is extended by adding

− a pair am+1 bm+1 or bm+1 am+1,

− one item at the front and one item at the end.

� an example

even length odd length

sequence code words sequence code words

at at ta ule lue leu

data atda taad rules luers leusr

� A4M33SAD

pCanonical form for undirected sequences – the prefix property

� Prefix property proof for the new representation by contradiction

1. suppose the prefix property does not hold,

2. then there exists a canonical code word wm = a1 b1 a2 b2 . . . am−1 bm−1 am bm,

3. whose prefix wm−1 = a1 b1 a2 b2 . . . am−1 bm−1 is not a canonical code word,

4. as a consequence we have wm < vm, where vm = b1 a1 b2 a2 . . . bm−1 am−1 bm am,

5. and vm−1 < wm−1, where vm−1 = b1 a1 b2 a2 . . . bm−1 am−1,

6. however vm−1 < wm−1 ⇒ vm < wm

− because vm−1 is a prefix of vm and wm−1 is a prefix of wm,

7. vm < wm from the step 6 contradicts wm < vm from the step 4 �.

� A4M33SAD

pCanonical form for undirected sequences – efficiency

� two possible code words can be created and compared in O(m),

� an additional symmetry flag introduced for each sequence enables the same in O(1)

sm =

m∧
i=1

(ai = bi)

� the symmetry flag is maintained in constant time with

sm+1 = sm ∧ (am+1 = bm+1)

� sequence extension is permissible when the flag:

− if sm = true, it must be am+1 ≤ bm+1,

− if sm = false, any relation between am+1 and bm+1 is possible.

� sequences and symmetry flags at the beginning

− even length: an empty sequence, s0 = 1,

− odd length: all frequent alphabet symbols, s1 = 1,

� the procedure guarantees exclusively the canonical sequence extensions.

� A4M33SAD

pFrequent subsequences – APRIORI application to undirected sequences

� consider undirected sequences, otherwise the formalization as yet

− 〈a1 . . . am〉 is a subsequence of 〈b1 . . . bn〉 if:

∃i a1 = bi ∧ · · · ∧ am = bi+m, or

∃i a1 = bi+m ∧ · · · ∧ am = bi.

� Example: DNA sequence (n = 20, A = {a, g, t})

i Ci Li

0 {} {}
1 {a}, {g}, {t} {a}, {g}, {t}
2 {aa}, {ag}, {at}, {gg}, {gt}, {tt} {aa}, {gg}, {gt}, {tt}
3 {aaa}, {aag}, {aat}, {gag}, {gat}, {tat}, {aga}, {agg}, {agt}, {ggg}, {gtt}
{ggg}, {ggt}, {tgt}, {ata}, {atg}, {att}, {gtg}, {gtt}, {ttt}

4 {aaaa}, {aaag}, {aaat}, {gaag}, {gaat}, {taat}, {gggg}
{agta}, {agtg}, {ggta}, {agtt}, {tgta}, {ggtg},
{ggtt}, {tgtg}, . . . in total 27 (1) patterns

� A4M33SAD

pA generalized subsequence definition in transactional representation

� Items: I = {i1, i2, . . . , im},
� itemsets: (x1, x2, . . . , xk) ⊆ I , k ≥ 1, xi ∈ I ,

� sequences: 〈s1, . . . , sn〉, si = (x1, x2, . . . , xk) ⊆ I , si 6= ∅, x1 < x2 < . . . < xk,

− an ordered list of elements, elements = itemsets,

− the canonical representation: lexicographical ordering of items in each itemset,

− example: 〈a(abc)(ac)d(cf)〉, a simplification of the form: (xi) ∼ xi,

� the sequence length l

− given by the number of item instances (occurrences) in sequence,

− l-sequence contains exactly l item instances,

− ex.: 〈a(abc)(ac)d(cf)〉 is a 9-sequence,

� α is a subsequence of β, β is a supersequence of α: α v β

− α = 〈a1, . . . , an〉, β = 〈b1, . . . , bm〉, ∃1 ≤ j1 < . . . < jn ≤ m,∀i = 1 . . . n : ai ⊆ bji,

− example: 〈a(bc)df〉 v 〈a(abc)(ac)d(cf)〉, 〈d(ab)〉 6v 〈a(abc)(ac)d(cf)〉

� a sequence database: S = {〈sid1, s1〉 . . . , 〈sidk, sk〉}

− a set of ordered pairs a sequence identifier and a sequence.

� A4M33SAD

pSubsequence search in transaction representation

� Support of α sequence in the database S

− the number of sequences s ∈ S satisfying: α v s,

� Subsequence search in transaction representation, task definition

− input: S a smin – minimum support,

− output: the complete set of frequent sequential patterns

∗ all the subsequences with or above the threshold frequency.

Id Sequence

10 〈a(abc)(ac)d(cf)〉
20 〈(ad)c(bc)(ae)〉
30 〈(ef)(ab)(df)cb〉
40 〈eg(af)cbc〉

Id Time Items

10 t1 a

10 t2 a, b, c

10 t3 a, c

10 t4 d

10 t5 c, f

l sequential pattern (smin=2)

3 〈a(bc)〉, 〈aba〉, 〈abc〉, 〈(ab)c〉, 〈(ab)d〉, 〈(ab)f〉, 〈aca〉, 〈acb〉, 〈acc〉, 〈adc〉, . . .
4 〈a(bc)a〉, 〈(ab)dc〉, . . .

Pei, Han et al.: PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth.

� A4M33SAD

pGSP: Generalized Sequential Patterns [Agrawal, Srikant, 1996]

� applies the core idea of APRIORI to sequential data,

� the key issue is generation of the candidate sequential patterns

− divided into two steps

1. join

∗ l-sequence is created by joining of two (l-1)-sequences,

∗ (l-1)-sequences can be joined when identical after removal of the first item in one

and the last one in second,

2. prune

∗ skip each l-sequence which contains an infrequent (l-1)-subsequence.

L3
C4

after join after prune

〈(ab)c〉, 〈(ab)d〉, 〈(ab)(cd)〉 〈(ab)(cd)〉
〈a(cd)〉, 〈(ac)e〉, 〈(ab)ce〉
〈b(cd)〉, 〈bce〉

Agrawal, Srikant: Mining Sequential Patterns: Generalizations and Performance.

� A4M33SAD

pExample: GSP, smin=2

Id Sequence

10 〈(bd)cb(ac)〉
20 〈(bf)(ce)b(fg)〉
30 〈(ah)(bf)abf〉
40 〈(be)(ce)d〉
50 〈a(bd)bcb(ade)〉

� s(〈g〉) = s(〈h〉) = 1 < smin

(skips a large portion of 92 available 2-candidates),

� 〈(bd)cba〉 v s10 ∧ 〈(bd)cba〉 v s50

(created from 〈(bd)cb〉 a 〈dcba〉),

(the patterns 〈(bd)ba〉, 〈(bd)ca〉 and 〈bcba〉 must also

be frequent).

� A4M33SAD

pAPRIORI algorithm for sequences – disadvantages

� the generate (join step) and test (prune step) method,

� the problems discussed in terms of frequent itemsets persist and intensify

1. generates a large amount of candidate patterns

− obvious even for 2-sequences: m×m + m(m−1)
2 → O(m2)

(for itemsets it was just the second fraction, one third or so of candidates),

2. requires a lot of database scans

− one scan per sequence length,

− the number of scans given by the max pattern length

the length ≤ max(|s|, s ∈ S) (typically >> m),

(max itemset length is m and thus m scans at most),

3. search for long sequential patterns is difficult

− the total amount of candidate patterns is exponential with the pattern length,

(the same growth as for itemsets, however the problem max(|s|, s ∈ S) >> m).

� the disadvantages addressed by alternative methods in FreeSpan and PrefixSpan algorithms.

� A4M33SAD

pFreeSpan [Han, Pei, Yin, 2000], smin = 2

� takes the recursive divide and conquer approach

− decides along the decreasingly sorted list of frequent items,

∗ f -list = 〈(a : 4), (b : 4), (c : 4), (d : 3), (e : 3), (f : 3)〉,
∗ (g : 1) is not frequent,

− the sequential patterns splits into disjoint groups

∗ the patterns containing the most frequent item only,

∗ the patterns containing the second most frequent item and no less frequent items, etc.

− creates a projection sequence database (one per each group)

∗ from sequences it removes all the items disregarded by the group,

∗ it removes sequences missing item which must be in the pattern.

� subproblems have fewer items (beginning), and contain fewer sequences (end of f -list).

Id Sequence a-projection b-projection . . . f-projection

10 〈a(abc)(ac)d(cf)〉 〈aaa〉 〈a(ab)a〉 . . . 〈a(abc)(ac)d(cf)〉
20 〈(ad)c(bc)(ae)〉 〈aa〉 〈aba〉 . . .

30 〈(ef)(ab)(df)cb〉 〈a〉 〈(ab)b〉 . . . 〈(ef)(ab)(df)cb〉
40 〈eg(af)cbc〉 〈a〉 〈ab〉 . . . 〈e(af)cbc〉

Pei, Han et al.: PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth.

� A4M33SAD

pPrefixSpan [Pei, Han et al., 2001]

� a similar idea, more efficient than its predecessor FreeSpan,

� the projection based on prefix subsequence occurrence (in FreeSpan arbitrary occurrence)

− allows for a more efficient database decomposition,

� β = 〈s′1, . . . , s′m〉 is a prefix of α = 〈s1, . . . , sn〉 if:

(1) m ≤ n, (2) ∀i ≤ m− 1 s′i = si, (3) s′m ⊆ sm,

(4) ∀ items from (sm − s′m) > ∀ items from s′m,

− ex.: 〈a〉, 〈aa〉, 〈a(ab)〉 and 〈a(abc)〉 are the prefixes 〈a(abc)(ac)d(cf)〉,
− ex.: 〈ab〉, 〈a(bc)〉 are not the prefixes 〈a(abc)(ac)d(cf)〉,

� informally: postfix is a prefix complement

− ex.: prefix 〈a〉 has wrt 〈a(abc)(ac)d(cf)〉 the postfix 〈(abc)(ac)d(cf)〉,
− ex.: prefix 〈aa〉 has wrt 〈a(abc)(ac)d(cf)〉 the postfix 〈(bc)(ac)d(cf)〉,

� α′ v α is a projection α wrt the prefix β v α, if:

(1) α′ has a prefix β,

(2) there is no α′′ that is (i) a supersequence of α′ (i.e. α′ @ α′′),

(ii) subsequence of α and (iii) has the prefix β,

− ex.: the projection of 〈a(abc)(ac)d(cf)〉 wrt the prefix 〈(ac)d〉 is 〈(ac)d(cf)〉.

� A4M33SAD

pPrefixSpan – algorithm, example (smin = 2)

� PrefixSpan: the input is S and smin

1. i = 1, the init projection prefix database S|α0 = S|∅ = S,

2. repeat for all the projection prefix databases S|αi−1

(a) find frequent i-patterns (sufficient support in αi−1 · S|αi−1),

(b) until the set of i-patterns is not empty

i. split the state space having the i-patterns (αi) as prefixes

a projection database set originates S|αi
= (αi−1 · S|αi−1)|αi

,

ii. i=i+1 and go to the step (2).

Id Sequence

10 〈a(abc)(ac)d(cf)〉
20 〈(ad)c(bc)(ae)〉
30 〈(ef)(ab)(df)cb〉
40 〈eg(af)cbc〉

Prefix Projection database (postfixes) or patterns

〈a〉 〈(abc)(ac)d(cf)〉, 〈(d)c(bc)(ae)〉, 〈(b)(df)cb〉, 〈(f)cbc〉
2-patterns: 〈aa〉:2, 〈ab〉:4, 〈ac〉:4, 〈ad〉:2, 〈af〉:2, 〈(ab)〉:2

〈b〉 〈(c)(ac)d(cf)〉, 〈(c)(ae)〉, 〈(df)cb〉, 〈c〉
2-patterns: 〈ba〉:2, 〈bc〉:3, 〈(bc)〉:2, 〈bd〉:2, 〈bf〉:2

〈aa〉 〈(bc)(ac)d(cf)〉, 〈(e)〉
STOP (no 3-patterns)

〈(ab)〉 〈(c)(ac)d(cf)〉, 〈(df)cb〉
3-patterns: 〈(ab)c〉:2, 〈(ab)d〉:2, 〈(ab)f〉:2

� A4M33SAD

pFrequent sequence search – problem generalization

� subsequence definition (slide 13) is still not general enough for certain practical problems,

� ex.: book stores

ID Time Items

C1 1 Ringworld

C1 2 Foundation

C1 15 Ringworld Engineers, Second Foundation

C2 1 Foundation, Ringworld

C2 20 Foundation and Empire

C2 50 Ringworld Engineers

� the GSP algorithm contributed in several additional aspects

1. introduction of time constraints

− adjoining sequence elements must not be too far (MaxGap) nor close (MinGap),

2. extended transaction definition

− the items with near time stamps included in the same transaction,

− sliding window, the parameter WinSize gives its size,

3. a taxonomy of items

− a directed acyclic graph defines a concept hierarchy built upon items.

� A4M33SAD

pEpisodal rules

� association rule analogy,

� predict the further development of sequence with the aid of patterns,

� ex.: the only sequence, the only item per position, MaxGap=3

� S is a sequence, α = 〈AB〉 and β = 〈ABC〉 its subsequences,

� α is a prefix of β,

� episodal rule is a probabilistic implication

− α⇒ postfix(β, α), i.e. 〈AB〉 ⇒ 〈C〉

� likewise for association rules, min support parameter is usually completed by min confidence

− conf (α⇒ postfix(β, α)) = s(β,S,3)
s(α,S,3) = 1

2.

� A4M33SAD

pFrequent subsequences – summary, categorization

� Different problem types distinguished according to the sequence types

− single vs more sequences in a database

∗ asks for different support definition,

− directed vs undirected sequences

∗ asks for different treatment of canonical representation,

− one item vs more items per single sequence position

∗ influences complexity of the solution,

− constraints may be needed

∗ e.g. the window size for transaction definition,

∗ MinGap and MaxGap for sequence definition,

∗ constraints extend practical applicability, slightly increase complexity,

− a taxonomy of items may exist

∗ similar to constraints – extends applicability, but it may increase complexity,

− items or (labeled) intervals

∗ an interval: I = (start, end, label).

� the next lecture: from sequences towards structural patterns (trees/graphs).

� A4M33SAD

pRecommended reading, lecture resources

:: Reading

� Agrawal, Srikant: Mining Sequential Patterns.

� Agrawal, Srikant: MSPs: Generalizations and Performance.

− from APRIORI towards its sequential versions AprioriAll and GSP,

− http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.2818&rep=rep1&type=pdf,

� Pei, Han et al.: PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth.

− FreeSpan (idea) and PrefixSpan algorithms, efficiency comparison with GSP,

− http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.7211,

� Mannila et al.: Discovery of Frequent Episodes in Event Sequences.

− episodal rules,

− http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.3594,

� Borgelt: Frequent Pattern Mining.

− undirected sequences,

− http://www.borgelt.net/teach/fpm/slides.html.

� A4M33SAD

OPPA European Social Fund
Prague & EU: We invest in your future.

