Machine Learning and Data Analysis
Learning Logic Formulas

Filip Zelezny

Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Cybernetics
Intelligent Data Analysis lab
http://ida.felk.cvut.cz

January 6, 2012

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 1/36

PAC Learning

So far our PAC-learning framework considered sample complexity

@ how fast m grows with 1/¢, 1/6, and n

@ we requested m to grow polynomially

Note about PAC-learning: inability to produce a consistent hypothesis
implies inability to PAC-learn

@ Fix a finite X’ C X, set Px(x) = 1/|X'| for all x € X/, set € < ﬁ
and § < 1 (we are allowed to set any Py, €, and J in PAC-learning).

@ If hypothesis f is not consistent on an arbitrary example (x,y), then
e(f) > 1/|X’| > e, violating a PAC-learning condition with
probability 1 > ¢

@ Thus if f is not consistent then we did not PAC-learn.

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 2 /36

Efficient PAC-Learning

We now also consider computational complexity

Efficient PAC Learnability

An algorithm efficiently PAC-learns C by F if it PAC-learns C by F in
polynomial time.

Polynomial: again in 1/€, 1/9, and the size n of examples

@ Learning time grows at least as m does: learner needs at least a unit
of time for processing each example

o Efficient PAC-learning thus requires each example to be processed in
polynomial time

@ Previous slide now implies: if finding a consistent model is NP-hard
then we cannot efficiently PAC-learn (unless RP=NP)

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 3 /36

Conjunctions and Disjunctions

X ={0,1}", i.e each x = (x!,...,x") where x' € {0,1}, Y = {0,1}

each f in F = C defined by a conjunction ¢ of literals using propositional
variables from set {p1...pn}

f(x) = 1iff ¢ is true under assignment of values x' to p'

Generalization algorithm:

¢ =p1 A-p1 A...pu A —pn {'most specific hypothesis'}
for each example (x,1) € S do
fori=1...ndo
if x' = 0 then
delete p; from ¢
else

delete —p; from ¢
return ¢

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 4 /36

Conjunctions and Disjunctions (cont'd)

Algorithm never deletes a literal that must stay in ¢. Final ¢ is thus
consistent or no consistent ¢ exists.

A consistent algorithm exists and |F| = 3", therefore conjunctions are
PAC-learnable.!

Sample complexity: m > % (n In341In %)

Algorithm makes m - n steps, i.e. time linear in n (size of examples),
therefore conjunctions are efficiently PAC-learnable.

Same applies for disjunctions using a simple transformation:

@ run algorithm on ‘negated’ examples (x,1 — c(x))

@ negate its output ¢ (—¢ is a disjunction)

L F| = 22" if p; A —p; allowed in the conjunction.

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 5/ 36

k-Conjunctions and k-Disjunctions

Generalization algorithm produces the most specific (longest) consistent ¢.
Often, small ¢ are wanted.

A k-conjunction contains at most k literals. Ck°" is efficiently
PAC-learnable simply by trying the (’)(nk) possible k-conjunctions on n
variables.

Heuristic approaches such as best-first search may be employed to
speed-up the search within the polynomial bound. Search would start from
the empty conjunction, adding a single literal in each step. The heuristic
function evaluating the current conjunction ¢ would e.g. be

h(¢) = —[{(x,0) €S| x = ¢}

while all descendants of any ¢ such that x ¥ ¢ for some (x,1) € S would
be pruned.

k-disjunctions C¥9i: analogical case, reduce by negating examples and ¢

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 6 /36

k-term DNF and k-clause CNF

A k-term DNF formula: disjunction of at most k conjunctions (‘terms’).
Example of a 3-term DNF formula:

(=p1 Ap3) V(P2 A =p3 Apa A =ps) V p2

A k-clause CNF formula: conjunction of at most k disjunctions (‘clauses’).
Example of a 3-clause CNF formula:

(p1V =p3) A(=p2Vp3sV —paVps) A —p2

Learnability results for the two classes analogical (again reduction by
negation), we continue analysis with k-term DNF.

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 7 /36

Consistent 3-term DNF as Graph Coloring

Finding a 3-term DNF formula consistent with a sample is as hard graph
3-coloring.

Graph 3-coloring:
@ given vertices V and edges E,

@ assign one of 3 colors to each vertex v € V so that no adjacent
vertices have same color

@ NP-complete problem

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 8 /36

Graph Coloring

N
VN

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 9 /36

Reduction from a Graph to a Learning Sample

Graph Sample
vertices v1...v, propositional variables py...py
Oifk=1i
vertex v; example (x,1), x i
1 otherwise

e.g.: vertex v3
edge ¢;;

e.g.: edge U3g

(x,

example (11011, 1)
Oifk=iork=j

example (x,0), x* = ! 1-or J

1 otherwise

(

example (11001, 0)

Reduction takes time linear in m = |V| + |E| and n.

Remind: (x,1) denote positive examples, (x,0) negative examples.

Filip Zelezny (CVUT)

Learning Logic Formulas January 6, 2012

10 / 36

Reduction from a Graph to a Learning Sample (cont'd)

(01111,1) (10111,1)

(00111, 0)
(0104, 0)
(01101, 0) 3 3 {(11011,1) (10110, 0)
/ (1104,0)

(11100, 0)

(11101,1) (11110 1)

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012

11/ 36

Consistent 3-term DNF as Graph Coloring (cont’d)

Let S be a sample obtained by reduction of graph (V,E). We will show:

Q If (V,E) is 3-colorable then there is a 3-term DNF formula ¢
consistent with S

Q If there is a 3-term DNF formula ¢ consistent with S then (V,E) is
3-colorable

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 12 / 36

Colorability = Consistency

Assume vertices V are split in partitions R, B, Y (red, black, yellow)
representing a valid coloring.

Consider 3-term DNF formula

¢=TrVTpVTy

such that
Tk = A pi Tg=)\ pi Ty = A pi
U,‘%R U,‘¢B ZJ,‘%Y

We will show that ¢ is consistent with S reduced from graph (V,E).

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 13 / 36

Colorability = Consistency (cont'd)

Consistency with positive examples:

@ One positive example (x,1) for each vertex v;
© Assume v; € R (B and Y are analogical)

© TR does not contain p; (by definition of Tg)
Q@ ¥/ =1 for i # j (by reduction)

© «x satisfies Tr (denote x = Tr) (from 3 and 4)
Q Therefore x = ¢

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 14 / 36

Colorability = Consistency (cont'd)

Consistency with negative examples:

@ One negative example (x,0) for each edge ¢;;

@ x' = 0 (by definition)

@ ©; and v; cannot both be red (because the coloring is valid)
@ Assume v; is not red

© p; € Tr (by definition of TR)

© Therefore x ¥ T (from 2 and 5)

@ Analogically x ¥ Tg and x ¥ Ty (repeat from Step 3 for the remaining
colors)

©Q Therefore x ¥ ¢

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 15 / 36

Consistency = Colorability

Assume there is a consistent 3-term DNF ¢, denote the 3 terms Tx, Tg, T'y:

¢=TrVTIpVTy
This prescribes coloring:

for all positive examples (x,1) do
Let v; be the vertex corresponding to x
if x |= Tr then
color v; red
else
if x = Tp then
color v; black
else
if x = Ty then
color v; yellow

Filip Zelezny (CVUT) Learning Logic Formulas

January 6, 2012

16 / 36

Consistency = Colorability (cont'd)

We prove that invalid coloring implies inconsistency of ¢.

© Suppose the coloring is not valid.

@ Then there are some adjacent v; and v; of same color, say red

@ Let (x;,1), (x,1) and (x;,0) denote the examples corresponding to
v;, vj and e;;

Q x;,x; = Tr (by coloring algorithm)

Q x = x; = 0 (by reduction)

@ TR does not contain p; or p; (from 4 and 5)

o x{.‘j =1 for k ¢ {i,j} (by reduction)

Q xjj = Tk (from 5 and 7)

@ Therefore x;; |= ¢ but then ¢ is not consistent since (x;;,0) is a
negative example

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 17 / 36

3-term DNF not Efficiently PAC-Learnable

We proved that graph 3-coloring can be solved by linear-time reduction to
a learning sample S and learning a 3-term DNF formula ¢ consistent with

S.
Since graph 3-coloring is NP-hard, finding a consistent ¢ is also NP-hard.

Therefore C3-tem PNF ig not efficiently PAC-learnable by C3-term DNF,

@ This follows from the fact that inability to find a consistent
hypothesis implies inability to PAC-learn (as we have already shown)

Can be also shown for any Cl-term DNF 3 > 5

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 18 / 36

k-CNF and k-DNF

C*CNF contains conjunctions of k-disjunctions. Example:

(p1Vp2) AN(=p3VpsaVps)

belongs in C3-CNF,

C3-DNF analogical, we continue with C3-CNF,

CFCNF is as easy to learn as monotone conjunctions:

@ assign a new atom p; to each clause that can be written with the
original symbols p;

o there is O(n*) (i.e. poly number) of such clauses

@ convert all examples into the new representation using symbols p! (in
poly time)

@ learn a monotone conjunction with the new examples using symbols p!

@ convert it back to the original representation using symbols p;

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 19 / 36

k-CNF vs. k-term DNF

Every k-term DNF formula can be written as an equivalent k-CNF formula.
Example:

(1 Ap2) V(P2 Ap3) = (p1Vip2) A(p1 Vps) Ap2 A (p2V ps)
Thus Ck—term DNF C Ck—CNF_
|Ck—term DNFl — O(zn)

2n
CHCNF| = 0(2< k)> — 02"

So Cleterm DNF — Ck-CNF "1 s not every k-CNF formula can be written as
an equivalent k-term DNF formula.

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 20 / 36

Learning k-term DNF by k-CNF

Learning k-term DNF can be reduced to learning k-CNF. Assume examples
in sample S contain values for n propositional variables.

@ Create a new variable for each possible clause; there are O(n*) of
them

o Create a new sample S’ using the new variables computed from the
original variables.

@ Learn a monotone conjunction from S’. Translating it back to the
original variables yields a k-CNF formula

Since conjunctions are efficiently PAC-learnable, k-term DNF are efficiently
PAC-learnable by k-CNF. (Caveat: Learning may produce a k-CNF formula
not rewrittable into a k-term DNF formula.)

In general: a hypothesis class may not be efficiently PAC-learnable by
itself, but may be efficiently PAC-learnable by a larger hypothesis class!

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 21/ 36

k-Decision Lists

A k-Decision list is an ordered set of conjunctive rules with at most k
literals in each, and a default value.

Example of a 2-DL:

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012

22/ 36

k-Decision Lists (cont'd)
For |C*PL| we have
[P = 0@ (e

(each conjunction in in the list can be either be absent, attached to 0, or
1, and the order in the list is arbitrary). Therefore log(|C¥PL|) is
polynomial in 7, implying polynomial sample complexity.

Every k-DNF formula can be written as a k-Decision List

@ every term T of the formula (in any order) forms one rule —1
@ default value is 0

Thus
Ck—DNF C Ck—DL

For every ¢ € C¥PL also —c € CFPL (revert values in leaves). Therefore
also
Ck—CNF C Ck—DL

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 23 / 36

k-Decision Lists (cont'd)
CkDL is efficiently PAC-learnable (by C¥PL) with the covering algorithm

1: S = training sample, DL = empty decision list

2: while S # {} do

3: ¢ = any k-conjunction such that
{(x0)eS|x=¢t#{}and {(x,1) €S |x|=¢} = {} or
{(x0) €S [x=¢}={}and {(x,1) €S |x |= ¢} # {}

4: add —> 0 or —> 1 (respectively) to DL

5. S=5\{(xy) €S[xF¢}

6: if S={} then

7: add default value 1 or 0 (respectively) to DL
8: return DL

Note: in Step 3 may go over all O(nk) k-conjunctions; heuristic search
applicable as in learning k-conjunctions.

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 24 / 36

k-Decision Trees

A tree in which each path from the root to a leaf has length at most k and
represents a rule. Each non-leaf vertex contains one propositional variable,
each leaf a class value.

Example of a 3-decision tree:

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 25 / 36

k-Decision Trees (cont'd)

Any k-DT can be represented by a k-DNF:

@ create one term for each path leading to a leaf labelled with “1”
Any k-DT can be represented by a k-CNF:

@ create one clause for each path leading to a leaf labelled with “0”

Therefore
Ck—DT g Ck-CNF N Ck-DNF

Since Ck-CNF 7& Ck—DNF' we have CkPT — Ck-CNF 4nd kDT — CkDNF 4g
since CFCNF C kDL \ve also have

Ck-DT C Ck—DL

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 26 / 36

k-Decision Trees (cont'd)

It is NP-hard to find a consistent k-Decision tree. C*PT is not efficiently

PAC-learnable by C*PT.

What is the error bound for an inconsistent tree? Remind: if
1 2|F|
> ——Iln——
"= 22 75

then classification error will not exceed training error by more than € with
at least 1 — & probability.

Need to calculate |F| = |CFPT|

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 27 / 36

k-Decision Trees (cont'd)

‘Cl_DTl -9

For depth k + 1 we have 1 choices of the root variable, |C*PT| possible
left subtrees and |C*PT| possible right subtrees.

|C(k+1)—DT’ -7 ‘Ck-DT’2

Denote I, = log, |C*PT]|

L =1
lk+1 = 10g2 n—+ ZZk

Solution:
= (2" —1)(1+1log,n) +1

l.e. In|C¥PT| polynomial in 1 (and exponential in k).

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012

28 / 36

k-leave Decision Trees

Altnernatively, we may bound the number of leaves.
Clleave DT. trees with at most k leaves.

Finding a consistent k-leave DT still NP-hard. C*'eave PT not efficiently
PAC-learnable with C*eave DT,

Error bound for an inconsistent tree? Size of the concept space:

|Ck—leave DT| < nkfl (k—|— 1)(2k71)

Provides better bound than in k-DT: In |Ceave DT| polynomial in both 7
and k.

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 29 / 36

TDIDT algorithm

A recursive heuristic algorithm for quick (poly-time) construction of a
possibly inconsistent DT .

TDIDT(S: sample, P = {p1,...,pn}: propositional variables)

if all examples in S have same class y then
return vertex labeled y

else
if P = {} then
return vertex labeled by the majority class in S
else

Choose p; € P and create a vertex labeled p;
forv e {0,1} do
Create an edge from the p; vertex, label it v
S'={(x,y) €S| x =0}

if S = {} then
add a leaf to edge v, label it by the majority class in S
else

add TDIDT(S',P \ p;) to edge v

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 30/ 36

TDIDT algorithm: remarks

@ The heuristic in Choose p; € P

Define S; = {(x,y) |x = p;}. Usually we choose p; maximizing

AH(S,p;) = H(S) — %'H(Si) - lS\S—SdH(S \'Si)

where entropy H(S) is defined as

s = -y W) €5Mo, Winy) €5)
ye{01}

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012

31/ 36

Remarks

@ TDIDT easily adaptable to constructing k-DT
Condition P = {} is replaced by P = {} or current depth = k

@ TDIDT and other logic-based learners applicable also non-Boolean
classification

TDIDT: No change in code needed. Decision lists: use multiple target
values instead of 0 and 1, covering strategy remains same.

@ TDIDT and other logic-based learners easily adaptable to nominal
features

TDIDT: Instead of going over the Boolean range v € {0,1}, we go over
all possible values of the nominal feature x'. Other learners: pre-construct
Boolean features from nominal features (similarly to what follows).

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 32 /36

Remarks (cont'd)

@ TDIDT and other logic-based learners easily adaptable to real-valued
features

Use pre-constructed Boolean features such as p:
p is true iff x' > 153.56

where x’ is an original real-valued feature and the threshold value 153.56 is
determined in a preprocessing step. Multiple thresholds for one real-valued
feature may be considered and used to define multiple Boolean features.

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 33 /36

Discretization: 3 General Approaches

@ Equilength intervals

>
=
>

@ Equiprobable intervals

hs

hy

@ Intervals containing same-class examples (most popular)

o F
Filip Zelezny (CVUT) Learning Logic Formulas _

Inconsistent Hypotheses

Remind: when C & F or Py|x is not a concept, we must learn inconsistent
hypotheses. Then we do not PAC-learn but we still have error bounds:

@ Training error vs. classification error bound

elf) —e(5.£)] < 1 510 27

does not assume the learner minimizes training error, i.e. that it outputs
arg minse & e(S,f)

@ Classification error of learned vs. best hypothesis bound

e(f) < (mine()) +2y/ 5,0 251

assumes the learner minimizes training error. This may be difficult.

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 35/ 36

Consistency vs. Error Minimization

Class Find f, e(S,f) =0 Find argminsc 7 e(S,f)
k-DT, k-leave DT NP-hard NP-hard

any C where |C| poly easy easy

. such as k-conjunctions easy easy

general conjunctions_casy Nehad

Minimizing e(S,f) for general conjunctions can be reduced to the NP-hard
vertex-cover graph problem.

Filip Zelezny (CVUT) Learning Logic Formulas January 6, 2012 36 / 36

