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Department of Cybernetics,
Czech Technical University in Prague

http://ida.felk.cvut.cz



pOutline

� robustness of the introduced methods – examples,

� k-means and hierarchical agglomerative clustering – complexity,

� clustering quality – evaluation

− internal versus external partitioning evaluation,

� clustering definition?

� an advanced method

− spectral clustering,

� special methods

− conceptual clustering,

− bi-clustering,

− semi-supervised clustering.
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pComparison: k-means and hierarchical single-link

� single linkage tends to generate longer non-compact clusters,

� k-means makes compact clusters, complete linkage is outlier sensitive,

k-means intuitively correct

single linkage intuitively correct

Carnegie Mellon University, course: Statistics 36-350: Data Mining
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pComplexity – comparison

� assumed: d(xi, xj) ∈ O(n),

� k-means algorithm

− assign instances into clusters: O(km) distance computations → fE ∈ O(knm),

− modify centroids: fM ∈ O(nm) (each instance used exactly once in one of the centroid),

− unknown iteration number before stop: i (estimates vary from the constant with m up to

O(mkn)),

− summary: f = i(fE + fM) ∈ O(iknm),

� hierarchical agglomerative clustering (single link)

− initialize

∗ compute distances among all instance pairs fI ∈ O(m2n),

∗ next-best-merge array – the nearest neighbor with its distance for each cluster

(complexity hidden in the previous line),

− m− 1 iterations to complete the dendrogram

∗ find the smallest distance in the next-best-merge array fE0 ∈ O(m),

∗ adjust the distance matrix fE1 ∈ O(m),

∗ adjust the next-best-merge array fE2 ∈ O(m),

− summary: f = fI + (m− 1)(fE0 + fE1 + fE2) ∈ O(m2n).
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pClustering quality – evaluation

� internal: quantifies three partitioning characteristics

− homogeneity – are instances within clusters similar?

hom = 1
m

∑k
i=1

∑
xj∈Ci

d(xj, µi),

− separability – are instances in different clusters dissimilar?

sep = 1
k(k−1)

∑k
i=1

∑k
j=1,j 6=i exp

(
−d2(µi,µj)

2σ2

)
,

− stability – how many relations brakes by adding noise or random instance sampling?

� internal evaluation criteria in the clustering algorithms

− intra-cluster variability: (see homogeneity for k-means),

− model likelihood: (for probabilistic models, see EM GMM),

− the size of the balanced cut of similarity graph: (see spectral clustering later)
1
2

∑
ij s(xi, xj)(1− δ(Ci − Cj))( 1

|Ci|
+ 1
|Cj |

),

� clustering is subjective, the “objective” internal measure can be improper.
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pClustering quality – evaluation

� external: match the partitioning Ω with a known annotation G = {G1, . . . , Gc} (gold

standard),

� basic external evaluation criteria

− purity

∗ the total major instance class ratio across clusters

(each cluster has a major class, the higher its ratio in the cluster the better),

purity(Ω, G) = 1
m

∑
i=1...k max

j=1...c
|Ci ∩Gj|

∗ disadvantage: cannot compare partitionings with different k,

∗ example (figure): purity = 5+4+3
17 = 0.71

Manning et al.: Introduction to Information Retrieval.
http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
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pClustering quality – evaluation

� basic external evaluation criteria (continuation)

− normalized mutual information

∗ based on information entropy,

NMI(Ω, G) = 2I(Ω,G)
H(Ω)H(G)

I(Ω, G) = −
∑

i=1...k

∑
j=1...c P (Ci ∩Gj) log2

( P (Ci∩Gj)

P (Ci)P (Gj)

)
H(Ω) = −

∑
i=1...k P (Ci) log2(P (Ci)), H(G) = −

∑
j=1...c P (Gj) log2(P (Gj))

∗ example (figure): H(Ω) = −2 6
17log2( 6

17)− 5
17log2( 5

17) = 1.58, H(G) = 1.52

NMI = 2×0.96
1.58×1.52 = 0.8

− rand index

∗ clustering is interpreted as a sequence of m(m−1)
2 decisions,

∗ decision = the partitioning either puts a instance pair into the same cluster or not,

∗ TP . . . an instance pair in the same cluster in Ω and the same class in G,

∗ TN . . . an instance pair in different clusters in Ω and different classes in G,

∗ RI(Ω, G) = TP+TN
TP+TN+FP+FN = 2(TP+TN)

m(m−1)

∗ example (figure): RI =
2((5

2)+(4
2)+(3

2)+(2
2)+5×8+1×7+4×5+1×2+1×3)

17×16 = 0.68
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pDefining clustering by . . .

� a quality function – see the previous slides

+ can use standard optimization techniques,

− heuristic choice of quality function, usually NP hard,

� high density areas

− a cluster is a high density area, clusters are separated by low density areas,

+ intuitively makes sense, density estimation is the well-known problem,

− for non-trivial dimension even more demanding than clustering itself,
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pDefining clustering by . . .

� a model-based approach

− assumed that data were generated by a (probabilistic) model

− the model implicitly defines clusters,

+ model more than a partitioning = a clear interpretation,

+ standard techniques such as ML, EM, Bayesian approaches available,

− often too strong assumptions eventually unsatisfied, parameter estimation is not easy,

� an axiomatic view

− clustering function from the distance matrix to partitioning defined indirectly by properties,

− an axiomatic system example:

∗ scale invariance: distance scaling does not change the partitioning,

∗ richness: for any clustering there exists a distance matrix which induces it,

∗ consistency: shrink/expand distances inside/outside cluster → partition unchanged,

+ an elegant way of definition,

− seemingly harmless axiom sets contradictory, ad hoc choice, often not pract. helpful,

� information theory

− clustering=lossy compression, defined by acceptable amount of loss or code length,

− what is the “original information”? cannot be solved analytically.
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pSpectral clustering – motivation

� clustering algorithms assume certain cluster shapes

− unexpected shapes cause difficulties (eg. linearly non-separable clusters),

− “classical pairwise similarity” can be insufficient.

K-means application Single linkage application

R, kernlab package, specc function demo
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pSpectral clustering – context

� frequent solution is a feature space transformation,

� a domain independent clustering algorithm, the transformation tuned for the domain

− explicit transformation

∗ get the object coordinates in the new feature space,

∗ traditional clustering in the new space,

∗ illustrative, but impractical,

− implicit transformation

∗ via similarity resp. kernel function K : X × X → R,

∗ purely a function of object pairs, no object coordinates in the new space,

∗ very natural for clustering, similarity/distance its essential part anyway,

∗ kernel trick analogy (SVM classification),

∗ an implicit high-dimensional space, clusters (classes) potentially easily separable,

∗ kernel PCA – kernel matrix → PCA → a low-dimensional feature space.
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pExample: spirals – connectivity kernel, Gaussian kernel

� connectivity kernel

− the object pair distance given by the max edge on the path connecting the objects,

− if there are more paths, the one minimizing the criterion above is taken,

− more robust than single linkage,

Fischer et al.: Clustering with the Connectivity Kernel

� Gaussian (RBF) kernel

− s(xi, xj) = exp(−||xi − xj||/σ2),

− σ set to have a “tight” object neighborhood,

− an implicit feature space (infinite dimension).
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pSpectral clustering in a nutshell

� input: a set of objects,

� described as a graph,

� edges encode similarity,

� graph decomposed into components = clusters,

� graph partitioned by its spectral properties.

Azran: A Tutorial on Spectral Clustering
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pGraph theory – basic terms

� vertex (object) similarity (affinity)

− suv = 〈u, v〉,

� vertex degree (volume), degree matrix

− du =
∑m

v=1 suv,

− D = diag(d1, . . . ,dm),

� size and degree of a vertex set (cluster)

− |A| . . . the number of vertices in A,

− vol(A) =
∑

u∈A du,

� an edge cut between two components

− cut(A,B) =
∑

u∈A
∑

v∈B suv.

Azran: A Tutorial on Spectral Clustering
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pSpectral clustering as an approximated minimum graph cut

� clustering ∼ partition the similarity graph into components,

� can be solved as an optimization problem

− search for a minimum edge cut in the similarity graph S to make it disconnected

∗ min
A⊂S

cut(A, Ā),

∗ a computationally feasible problem, but rather unsatisfactory partitionings,

mincut, incorrect RatioCut, Ncut, correct

− a “reasonable” size of the components needs to be required

∗ minimize one of the balanced cut criteria,

∗ RatioCut(A,B) = cut(A,B)
(

1
|A| +

1
|B|
)

,

∗ Ncut(A,B) = cut(A,B)
(

1
vol(A) + 1

vol(B)

)
,

∗ the dark side of the coin: NP-hard problems,

� spectral clustering provides a relaxed and feasible solution to the balanced cut problem.
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pSpectral clustering – algorithm

� inputs: X = [xij]m×n = {x1, . . . , xm} ⊂ Rn, k

1. select the similarity function

− linear, RBF, polynomial, etc.

− a general rule assigning functions to problems does not exist,

2. compute the similarity (adjacency) matrix S = [sij]m×m

− (a new implicit feature space originates),

3. construct a “reasonable” similarity graph by editing S
− S is a complete graph, vertices ∼ objects, similarities ∼ edges,

− remove long (improper) edges,

4. derive the Laplace matrix L out of the similarity matrix S
− unnormalized: L = D − S,

− normalized: Lrw = D−1L = I − D−1S,

5. project into an explicit space of k first eigenvectors of L,

− V = [vij]m×k, eigenvectors of L as columns,

6. k-means clustering in V matrix

− V rows interpreted as new object positions in k-dimensional space.
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pSpectral clustering – similarity graph

� reduce the complete graph to an unoriented graph concerning local neighborhoods,

� vertices shall have a reasonable degree (� m),

� basic approaches

− ε-neighborhood

∗ sij > ε→ vertices i and j connected by an edge, otherwise sij = 0,

− k-nearest neighbors

∗ symmetric: connect i and j if i belongs to k nearest neighbors of j or vice versa,

∗ mutual: connect i and j if i belongs to k nearest neighbors of j and vice versa,

− keep the complete graph

∗ usually with the RBF or other strictly local kernel.

Euclidean similarity, 3 nearest neighbors (var sym) RBF kernel, too small ε RBF kernel, a suitable ε
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pSpectral clustering – graph Laplacian

� concern the unnormalized option: L = D − S

� then for ∀f ∈ Rm

f ′Lf = f ′Df − f ′Sf =

=

m∑
i=1

dif
2
i −

m∑
i,j=1

fifjsij =

=
1

2

( m∑
i=1

(

m∑
j=1

sij)f
2
i − 2

m∑
i,j=1

fifjsij +

m∑
j=1

(

m∑
i=1

sij)f
2
j

)
=

=
1

2

m∑
i,j=1

sij(fi − fj)2

� measures the variation of function f along the graph

− the value f ′Lf is low when close vertices agree in their fi,

− assumes that near objects shall have close function values (f),

� the discrete Laplace operator encodes the same property,

� an interesting case: f = 1A (fi = 1 if vi ∈ A jinak fi = 0), A is a graph component.
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pSpectral clustering – eigenvectors of L

� eigenvectors x of L matix (Lx = λx) provide a good graph partitioning indication,

� an ultimate (ideal) case: graph has exactly k components

− k smallest eigenvectors ideally split k clusters,

− λ1 = · · · = λk = 0 < λk+1 ≤ · · · ≤ λm → x1, . . . , xk,

� other (usual) cases: a connected graph, k component candidates exist

− the space of k smallest eigenvectors (with nonzero λ) allows to form k clusters.

The ideal case for k = 2.
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pSpectral clustering – eigenvalues of L

� provided k is unknown, eigengap statistic

− a k-means gap heuristic analogy,

− concern only small eigenvectors before the first jump in eigenvalues,

− the number of clusters matches the number of selected eigenvectors.

Luxburg: Clustering.
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pExample: spirals – eigenvectors

� similarity matrix splits the graph into components nearly ideally,

� the second eigenvector of L is a perfect component indicator.

Similarity matrix for RBF kernel with a suitable σ
the instance order is illustrative and keeps the real spiral membership

Projection – the first and second eigenvector space S
colors give the real spiral membership, k-means clustering is trivial
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pSpectral clustering – summary

� advantages

− does not make strong assumptions on cluster shape,

− simple to implement – uses existing algorithms,

− does not have a local optima, cannot stuck,

− a modular approach applicable in a range of problems

∗ modify the kernel or similarity graph to adapt to a new problem,

− eigengap heuristic to find an optimal cluster number,

− successful in a range of real problems,

� disadvantages

− can be sensitive to choice of parameters, unclear how to set them,

∗ kernels (eg. σ for RBF), graph similarity (ε or k),

− computationally expensive on large non-sparse graphs,

∗ use only after simpler algorithms fail,

− not really clear what it does on non-regular graphs (e.g. power law graphs),

� demo

− http://www.ml.uni-saarland.de/GraphDemo/GraphDemo.html.
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pConceptual clustering – motivation

� the objects in one cluster share a property

− it generalizes the earlier similarity-based cluster definition,

− (the common property was e.g. the proximity to a cluster centroid),

� besides the partitioning it also generates a cluster description

− concept (= a definition of a subset of instance space in a language),

− (it is big, yellow, fast, it makes noise, five people fits in . . . it is a car),

� refers both to clustering and recognition

− the property defining a cluster can be complex.

Tan et al.: Introduction to Data Mining
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pConceptual clustering: COBWEB (Fisher, 1987)

Name BodyCover HeartChamber BodyTemp Fertilization

fish scales two unregulated external

amphibian moist skin three unregulated external

mammal hair four regulated internal

bird feathers four regulated internal

reptile cornified skin imperfect four unregulated internal

Fisher: Conceptual Acquisition Via Incremental Conceptual Clustering
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pConceptual clustering: COBWEB (Fisher, 1987)

Name BodyCover HeartChamber BodyTemp Fertilization

fish scales two unregulated external

amphibian moist skin three unregulated external

mammal hair four regulated internal

bird feathers four regulated internal

reptile cornified skin imperfect four unregulated internal

Fisher: Conceptual Acquisition Via Incremental Conceptual Clustering
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pCOBWEB algorithm

� instance by instance makes a (classification) tree,

− internal node = (probabilistic) concept, leaf = instance,

� for each instance takes one of the following operators

− create a new class – find a position in the hierarchy for a new subclass,

− assign the instance into an existing class – an object is similar with the objects belonging

to one of the classes,

� to minimize the influence of instance ordering, concern the learning operators

− merge classes – two classes replaced by one class,

− split class – one class breaks to subclasses or individual objects,

� bi-directional hill-climbing search driven by the category utility function.
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pCOBWEB: evaluation function

� What is a good clustering result/partitioning?

− feature values are predictable within a class

∗ “It is a taxi.”⇒ “It is yellow.”,

∗ expressed by Pr(fi = vij|Cc) (example with high Pr(fcolor = yellow|Ctaxi))

· F = {f1, . . . , fn} . . . a feature set,

· Vi = {vi1, . . . , vil} . . . the values of the i-th feature,

· Ω = {C1, . . . , Ck} . . . the partitioning of X set,

∗ corresponds to homogeneity shown earlier,

− feature values are predictive for classes

∗ “It has a hair.”⇒ “It is a mammal.”,

∗ expressed by Pr(Cc|fi = vij) (example with high Pr(Cmammal|fbodyCover = hair)),

∗ corresponds to separability shown earlier,

− the feature values with the above-mention properties shall be frequent

∗ “It uses ultrasound to navigate.”⇒ “It is a mammal.”,

∗ of limited use since Pr(fnavigation = ultrasound)→ 0,

− the partitioning is compact/brief

∗ the fewer categories/concepts, the better.
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pCOBWEB: evaluation function

� COBWEB measures partitioning quality with category utility

− summarizes the properties mentioned on the previous slide,

− it is a mutual information modification,

� partitioning quality – feature frequency × class predictiveness × feature predictability

k∑
c=1

n∑
i=1

|Vi|∑
j=1

Pr(fi = vij)Pr(Cc|fi = vij)Pr(fi = vij|Cc) =

=

k∑
c=1

n∑
i=1

|Vi|∑
j=1

Pr(Cc)Pr(fi = vij|Cc)Pr(fi = vij|Cc) =

k∑
c=1

Pr(Cc)

n∑
i=1

|Vi|∑
j=1

Pr(fi = vij|Cc)2

� the category utility function shall also concern

− partitioning brevity – normalize by the number of clusters,

− the referential information carried by the original (unclustered) data.

UC(Ω,X ) =
1

k

k∑
c=1

Pr(Cc)
( n∑
i=1

|Vi|∑
j=1

Pr(fi = vij|Cc)2 −
n∑
i=1

|Vi|∑
j=1

Pr(fi = vij)
2
)
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pCOBWEB: summary

� algorithm properties

− symbolic: nominal features,

− hierarchical: creates a taxonomy,

− incremental: the output made gradually, instance by instance,

� what language it works with?

− the probabilistic concept description is a weak language (a vague one),

− it permits an arbitrary concept

∗ an example for three binary features: Pr(x|Cj) = [0.6, 0.5, 0.7],

− when enhanced by constraints it is a stronger language

∗ define α factor for minimum deviation from 0.5,

∗ the constraint can apply to the maximum deviation or all the deviations (features),

∗ α = 0.3 for one feature at least

· the vector [0.6, 0.5, 0.7] is not a concept, [0.6, 0.5, 0.9] vice versa,

∗ the ultimate case α = 0.5 for all the features

· the language of logical conjunctions,

� how would you classify an unseen example?
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pBi-clustering (co-clustering)

� (hierarchical) both for instances and features,

� frequent in gene expression data analysis or text mining,

− instances: tissues, features: genes,

� figure: two-way clustering carried out independently

(successively) in both dimensions

− comprehensible visualisation,

− a global model

∗ all tissues used to cluster genes,

∗ all genes used to cluster tissues,

� bi-clustering clusters concurrently in both dimensions

− a local model

∗ only relevant tissues to cluster particular genes,

∗ only relevant genes to cluster particular tissues,

− genes can have multiple functions, different biolog-

ical conditions trigger different functions,

− incomplete and inexclusive (skip object/feature,

cluster overlaps).
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pBi-clustering – cluster structures

(a) single bi-cluster, (b) exclusive rows and columns, (c) checkerboard, (d) exclusive rows,

(e) exclusive columns, (f) hierarchical nonoverlapping, (g) nonoverlapping nonexclusive,

(h) hierarchical overlapping, (i) arbitrarily positioned overlapping.

Madeira, Oliveira: Biclustering Algorithms for Biological Data Analysis.
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pBi-clustering – an algorithm example

� block clustering (also direct clustering, Hartigan)

1. order rows (columns) by row (column) means,

2. find the best row or column split,

(a) criterion is the decrease in the internal block variance,

k∑
c=1

∑
i∈I,j∈J

(xij − xIJ)2

(I, J) is a bi-cluster, I ⊆ {1 . . .m}, I ⊆ {1 . . . n}, xIJ is the bi-cluster mean,

(b) splits always keep the row/column order – the linear number of tests with m and n,

3. repeat the previous step in both sub-blocks until the given k is reached,

− hierarchical divide and conquer approach,

− trivial, fast algorithm with roughly suboptimal solutions,

− searches for (f) type bi-clusters, ie. hierarchical nonoverlapping,

− preference for constant bi-clusters – ideally the only value in whole bi-cluster.
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pBlock clustering – US presidential elections

� the republican vote for president (the republican candidate vote percentage),

� the southern US states in 1900-1968.

Hartigan: Direct Clustering of a Data Matrix.
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pBi-clustering – another algorithm

� Cheng and Church

− the first bi-clustering algorithm used for microarray data,

− stems from the modified variance definition (residues)∑k
c=1

1
|I||J |

∑
i∈I,j∈J(xij − xIj − xiJ + xIJ)2

∗ superpose background (xIJ), gene effect (xiJ) and effect of biological conditions (xIj),

− problem: some trivial bi-clusters having zero residue (1×m or 1× n)

∗ introduces a threshold residue δ, searches for the largests bi-clusters having residue< δ,

− greedy algorithm (bi-clusters of the type (i))

1. start with the whole matrix,

2. remove a row or column causing the top residual decrease,

3. repeat step 2 until the residue cannot be further decreased or it is < δ,

4. randomize the values in the found bi-cluster, repeat (1-3) for k bi-clusters.

� figure: additive (left pane) a multiplicative (right pane) bi-cluster.
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pSemi-supervised clustering

� besides (unannotated) instances takes a prior knowledge as an input

− a few annotated (classified) instances (cluster seeds),

− constrains (usually must-link or cannot-link relations),

� modifies the classic clustering algorithms

− EM clustering for both classified and unclassified instances

1. construct a probabilistic model using the initial classified sample set,

2. standard EM iterations, the classified instances get “frozen”

(ie. cannot change cluster),

− modify qualitative evaluation of the partitioning

∗ homogeneity as well as reward for keeping must-link and penalty for violating cannot-link,
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pSemi-supervised clustering

� how to learn to recognize eclipse photographs in reasonable time?
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pSemi-supervised clustering

� success story: document classification into 20 discussion groups [Nigam, 2006]

− 2 classified training instances per discusiion group available only,

− further we have 10000 unclassified instances,

− näıve Bayes model made from 40 documents (without clustering): 27% class. accuracy,

− the same model type for 10040 documents (with clustering): 43% classification accuracy,

− necessary condition to succeed: data clusters must match classes.

� an explanation for 16% increase in accuracy?

Decision boundary for annotated instances only Decision boundary with unannotated instances

Zhu: Semi-Supervised Learning Tutorial
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pAdvanced clustering – summary

� Clustering covers a wide range of methods

− not merely an instance set partitioning in Rn dealing with disjoint clusters,

− in general, it discovers arbitrary frequent co-occurrence of events in data,

� unsupervised = subjective approach

− “gold true” does not exist (compare with classification),

− the outcome is influenced by the employed implicit and explicit knowledge,

Jain: Data Clustering: 50 Years Beyond K-Means, modified

� tightly related to learning

− conceptual clustering – knowledge-based with cluster/concept descriptions,

− semi-supervised clustering – both annotated and unannotated instances,
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pAdvanced clustering – summary

� exists in many modifications

− bi-clustering

∗ rather the local (context-sensitive) than global similarity.

� topics not covered

− heterogenous data

∗ that cannot be represented as a constant-size feature vector,

− large scale clustering

∗ efficient NN, incremental clustering, sampling, prior data summarization,

− clustering ensembles

∗ the result obtained by combining multiple partitions.

Jain: Data Clustering: 50 Years Beyond K-Means, modified
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pRecommended reading, lecture resources

:: Reading

� von Luxburg: Lectures on Clustering.

− PASCAL Bootcamp in Machine Learning, Vilanova (Barcelona), 2007,

− http://videolectures.net/bootcamp07 luxburg clu/,

� Fisher: Knowledge Acquisition Via Incremental Conceptual Clustering.

− Machine Learning 2, 139-172, 1987.

− http://www.springerlink.com/index/X8552PPN35245112.pdf,

� Madeira, Oliveira: Biclustering Algorithms for Biological Data Analysis.

− IEEE/ACM Trans Comput Biol Bioinform. Jan-Mar 1(1):24-45, 2004.

− http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.58.3943,

� Zhu: Semi-Supervised Learning Tutorial.

− http://pages.cs.wisc.edu/~jerryzhu/pub/sslicml07.pdf.

� Nigam, McCallum, Mitchell: Semi-Supervised Text Classification Using EM.

− In Chapelle, Zien, Scholkopf (eds.) Semi-Supervised Learning. MIT Press, 2006.
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