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Definition of probability 

•! frequentist interpretation: the probability of an event from 
a random experiment is the proportion of the time events 
of same kind will occur in the long run, when the 
experiment is repeated 

•! examples 

–! the probability my flight to Chicago will be on time 

–! the probability this ticket will win the lottery 

–! the probability it will rain tomorrow 

•! always a number in the interval [0,1] 

0 means “never occurs” 

1 means “always occurs” 



Sample spaces 

•! sample space: a set of possible outcomes for some event 

•! examples 

–! flight to Chicago:  {on time, late} 

–! lottery: {ticket 1 wins, ticket 2 wins,…,ticket n wins} 

–! weather tomorrow:  

{rain, not rain} or 

{sun, rain, snow} or 

{sun, clouds, rain, snow, sleet} or… 

Random variables 

•! random variable: a variable representing the outcome of 
an experiment 

•! example 

–! X represents the outcome of my flight to Chicago 

–! we write the probability of my flight being on time as   
P(X = on-time)!

–! or when it’s clear which variable we’re referring to, we 
may use the shorthand P(on-time)!



Notation 

•! uppercase letters and capitalized words denote random 
variables 

•! lowercase letters and uncapitalized words denote values 

•! we’ll denote a particular value for a variable as follows 

•! we’ll also use the shorthand form 

•! for Boolean random variables, we’ll use the shorthand 
! 

P(Fever = true)

! 

P(X = x)

  

! 

P(x)   for   P(X = x)

  

! 

P( fever)  for  P(Fever = true)

  

! 

P(¬fever)  for  P(Fever = false)

Probability distributions 

•! if X is a random variable, the function given by P(X = x) 

for each x is the probability distribution of X!

•! requirements: 

! 

P(x) =1
x

" 0.2 

0.3 

0.1 

  

! 

P(x) " 0   for every x



Joint distributions 

•! joint probability distribution: the function given by      
P(X = x, Y = y)!

•! read “X equals x and Y equals y” 

•!  example 

x, y P(X = x, Y = y) 

sun, on-time 0.20 

rain, on-time 0.20 

snow, on-time 0.05 

sun, late 0.10 

rain, late 0.30 

snow, late 0.15 

probability that it’s sunny  
and my flight is on time 

Marginal distributions 

•! the marginal distribution of X is defined by 

“the distribution of X ignoring other variables” 

•! this definition generalizes to more than two variables, e.g. ! 

P(x) = P(x,y)
y

"

! 

P(x) = P(x,y,z)
z

"
y

"



Marginal distribution example 

x, y P(X = x, Y = y) 

sun, on-time 0.20 

rain, on-time 0.20 

snow, on-time 0.05 

sun, late 0.10 

rain, late 0.30 

snow, late 0.15 

x P(X = x) 

sun 0.3 

rain 0.5 

snow  0.2 

joint distribution marginal distribution for X!

Conditional distributions 

•! the conditional distribution of X given Y is defined as:  

 “the distribution of X given that we know the value of Y ” 

! 

P(X = x |Y = y) =
P(X = x,Y = y)

P(Y = y)



Conditional distribution example 

x, y P(X = x, Y = y) 

sun, on-time 0.20 

rain, on-time 0.20 

snow, on-time 0.05 

sun, late 0.10 

rain, late 0.30 

snow, late 0.15 

x  P(X = x|Y=on-time) 

sun 0.20/0.45 = 0.444 

rain 0.20/0.45 = 0.444 

snow  0.05/0.45 = 0.111 

joint distribution 
conditional distribution for X  

given Y=on-time!

Independence 

•! two random variables, X and Y, are independent if  

  

! 

P(x,y) = P(x) " P(y)    for all x and y



Independence example #1 

x, y P(X = x, Y = y) 

sun, on-time 0.20 

rain, on-time 0.20 

snow, on-time 0.05 

sun, late 0.10 

rain, late 0.30 

snow, late 0.15 

x P(X = x) 

sun 0.3 

rain 0.5 

snow  0.2 

joint distribution marginal distributions 

y P(Y = y) 

on-time 0.45 

late 0.55 

Are X and Y independent here? NO. 

Independence example #2 

x, y P(X = x, Y = y) 

sun, fly-United 0.27 

rain, fly-United 0.45 

snow, fly-United 0.18 

sun, fly-Northwest 0.03 

rain, fly-Northwest 0.05 

snow, fly-Northwest 0.02 

x P(X = x) 

sun 0.3 

rain 0.5 

snow  0.2 

joint distribution marginal distributions 

y P(Y = y) 

fly-United 0.9 

fly-Northwest 0.1 

Are X and Y independent here?   YES. 



•! two random variables X and Y are conditionally 

independent  given Z if  

“once you know the value of Z, knowing Y doesn’t tell 
you anything about X ” 

•! alternatively 

Conditional independence 

  

! 

P(X |Y,Z) = P(X | Z) 

  

! 

P(x,y | z) = P(x | z) " P(y | z)   for all x,y,z

Conditional independence example 

Flu Fever Vomit P 

true true true 0.04 

true true false 0.04 

true false true 0.01 

true false false 0.01 

false true true 0.009 

false true false 0.081 

false false true 0.081 

false false false 0.729 

  

! 

e.g.  P( fever,vomit) " P( fever) # P(vomit)

Are Fever and Vomit  independent? NO. 



Conditional independence example 

Flu Fever Vomit P 

true true true 0.04 

true true false 0.04 

true false true 0.01 

true false false 0.01 

false true true 0.009 

false true false 0.081 

false false true 0.081 

false false false 0.729 

Are Fever and Vomit conditionally independent given Flu: 

  

! 

P( fever,vomit | flu) = P( fever | flu) " P(vomit | flu)

P( fever,vomit |¬flu) = P( fever |¬flu)" P(vomit |¬flu)

etc.

YES. 

Chain rule of probability 

•! for two variables 

•! for three variables 

•! etc. 

•! to see that this is true, note that 

  

! 

P(X,Y ) = P(X |Y ) " P(Y )

  

! 

P(X,Y,Z) = P(X |Y,Z) " P(Y | Z) " P(Z)

! 

P(X,Y,Z) =
P(X,Y,Z)

P(Y,Z)
"
P(Y,Z)

P(Z)
" P(Z)



Bayes theorem 

•! this theorem is extremely useful 

•! there are many cases when it is hard to estimate P(x | y) 

directly, but it’s not too hard to estimate P(y | x) and P(x)!
! 

P(x | y) =
P(y | x)P(x)

P(y)
=

P(y | x)P(x)

P(y | x)P(x)
x

"

Bayes theorem example 

•! MDs usually aren’t good at estimating                 
P(Disorder | Symptom)!

•! they’re usually better at estimating P(Symptom | Disorder) !

•! if we can estimate P(Fever | Flu) and P(Flu) we can use 
Bayes’ Theorem to do diagnosis 

! 

P( flu | fever) =
P( fever | flu)P( flu)

P( fever | flu)P( flu)+ P( fever |¬flu)P(¬flu)



Expected values 

•! the expected value of a random variable that takes 
on numerical values is defined as: 

this is the same thing as the mean 

•! we can also talk about the expected value of a 
function of a random variable 

! 

E X[ ] = x " P(x)
x

#

! 

E g(X)[ ] = g(x) " P(x)
x

#

Expected value examples 

  

! 

E Shoesize[ ] =

     5 " P(Shoesize = 5) + ...+14 " P(Shoesize =14)

   

•! Suppose each lottery ticket costs $1 and the winning ticket pays 
out $100.  The probability that a particular ticket is the winning 
ticket is 0.001. 

  

! 

E gain(Lottery)[ ] =

     gain(winning)P(winning) + gain(losing)P(losing) =

     ($100 " $1) # 0.001" $1# 0.999 =

    " $0.90

   



•! distribution over the number of successes in  a fixed number n of 
independent trials (with same probability of success p in each) 

•! e.g. the probability of x heads in n coin flips 

The binomial distribution 

! 

P(x) =
n

x

" 
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Binomial distribution w/ p=0.5, n=10

•! distribution over the number of trials before the first 
failure (with same probability of success p in each) 

•! e.g. the probability of x heads before the first tail 

The geometric distribution 

! 

P(x) = (1" p)p
x
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•! k possible outcomes on each trial 

•! probability pi for outcome xi in each trial 

•! distribution over the number of occurrences xi for each 
outcome in a fixed number n of independent trials 

•! e.g. with k=6 (a six-sided die) and n=30!

The multinomial distribution 

! 

P(x) =
n!

(xi!)
i

"
pi
xi

i

"

! 

P([7,3,0,8,10,2]) =
30!

7!"3!"0!"8!"10!"2!
p1
7
p2
3
p3
0
p4

8
p5
10
p6
2( )

vector of outcome 
occurrences 


