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" SSSSNatural Number Encodings

The most common representation of natural numbers is
the following binary encoding:

value of a number = Z?:o b; X 2!

where n is a number of bits of the number and b, is a value
of i-th bit.

BCD (Binary Coded Decimal) representation with each
decimal digit represented by its own four-bit binary
sequence (nibble)

It is not as effective as the previous representation (all combinations
of binary bit sequences are not used)

BCD format are still important and continue to be used in financial,
commercial, and industrial computing.
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= nteger Number Encodings

complement representation of negative numbers (the most common):

z b, x 2 for b, = 0, thus N € (0; 2" — 1)
value ofanumber N =< =%
most- - 2(1 —b)x 2 forb, =1, thusN € (~2"~1;~1)
significant \ i=0
bit
0 111111 1)=1Z For additions and subtractions we can
0 1111110 = 126 use the same algorithms as for the
0 000O0O0M1O0 = 2 previous binary numbers
0 0 000O0GO0A 1 = 1 representation of natural numbers.
0 0000O0OO0OO0OS= 0 +/- sign can be detected from the
1 1111111 = = most-significant bit.
1 1111110 = -2 There is only encoding for zero.
1 0000 OO0 1 =-127
1 0 000 0O O =-128
8-bit two's-complement integers
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- qating-point Data and Encodings

representation:

C
pr—1

s X X b€

where s Is the sign (signum +/-)
c is the significand (fraction)
b is the base (typically 2 or 10)
p is the precision (the number of digits in the significand)
e is the integer exponent

We want to encode also +« g -«,

If b=2 (the most common case) then there can arise some
problems when inputs and outputs are converted from/to decimal
base.
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- qoating-point Data and Encodings

IEEE 754: sign  exponent fraction
. I [
e:-f 1.‘ 5

+/- zero 0 0

denormalized numbers 0 non zero
normalized numbers 1az2°-2 any

+/- 00 2°-1 0

NaN (Not a Number) 2°-1 non zero

normalized value:
value = (_1) sign y 9 exponent-exponent bias (1.fraction)

denormalized value:
value = (_1) sign y 2 exponent-exponent bias+1 (O.fraction)

Advanced algorithms



- —oating-point Data and Encodings

IEEE /754:

NaN (Not a Number) is used for encodings of numbers that were
a result of arithmetical operations with nonstandard inputs:

operations with a NaN as at least one operand
the divisions: 0/0, oo /o0, 00 /-0, -c0 /00, and -co /-c0
the multiplications: 0xoco and 0x-co
the additions: oo + (-00), (-00) + co and equivalent subtractions
calling functions with arguments out of its domain:
the square root of a negative number

the logarithm of a negative number
triginometric functions ...

NaNs have two types:

Quiet (gNaN)
do not raise any additional exceptions as they propagate through most
operations)

Signalling (sNaN)
should raise an invalid exception as underflow or overflow).
NaNs may also be explicitly assigned to variables, typically as a

representation for missing values.
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" Differences Between Computer and Standard Arithmetic

in both worlds (computer and standard arithmetic) holds:
1-x=x
X'y=y-X
X+X=2-X

in computer arithmetic needs not hold:
x-(1/x)=1
(1+x)-1=x
(x+y)+z=x+(y+2)

a common programmer’s mistake is
addition of one (or another different number) in float type inside
some loop with the stop condition with equality to some arbitrary
number. Typically, such loop will never finish.

If conditions with exact equality to float constant. Such constructions
need not be satisfied.
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= Stummary of Matrix Algebra |

An mxn matrix A is a rectangular array of numbers with ~ fan apz an )

m rows and n columns. The numbers m and n are the : a2 dyr dn
dimensions of A. 1 2 3

Example: 2 x 3 matrix A. 6

BN

The transpose, AT, of a matrix A is the matrix obtained
from A by writing its rows as columns. If A is an mxn
matrix and B = A", then B is the nxm matrix with b, = a;;.

A

|
2
1

I
b

A vector is a matrix with the second dimension always 1. ==

L

The unit vector ¢, is the vector whose i-th element is 1
and all of whose other elements are 0. Usually, the size of A

a unit vector is clear from the context. 0 aw ... 0
TR . ﬂiug:rr] 1s B0 0 en g Egn ) = X
A Square matrix is an nxn matrix. 5 1 R
0 0 ... am
A diagonal matrix has a; = 0 whenever i # j.
i, = diag(l. 1,..., 1)

| 0 e D
The nxn identity matrix [, is a diagonal matrix with 1's 01 ... 0D

along the diagonal. = 1 & s 2
00 ... |
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=S Ummary of Matrix Algebra Il

An upper-triangular matrix U is one for which u; =0
if 7/ >j. All entries below the diagonal are zero:

An upper-triangular matrix is unit upper-triangular
if it has all 1's along the diagonal.

A lower-triangular matrix L is one for which [, = 0 if
i <j. All entries above the diagonal are zero:

A lower-triangular matrix is unit lower-triangular if
it has all 1's along the diagonal.

A permutation matrix P has exactly one 1 in each
row or column, and 0's elsewhere. An example of a
permutation matrix is:

An inverse matrix for nxn matrix 4 is a matrix nxn,
we denote it as A1 (if it exists), that holds:

AAT=1 = A4
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" EEEEELUP Decomposition

solving systems of linear equations
Consider systems of n linear equations Ax = b, letting A = (a;),x= (x)a b= (b)

A, X:+a-X>+...+da =h
11X1 12X2 1nn = D1 Gy e e B % b,

ApX; + AppXy+ ...+ Ay X, = b, @y ap -+ ay X3 by

— fy| g2 ++ Gy X I
A, X7+ A X+ ...+ A,.X, = b, L " f "

If the rank of A is less than n-then the system is underdetermined. An
underdetermined system typically has infinitely many solutions, although it may
have no solutions at all if the equations are inconsistent.

If the number of equations exceeds the number n of unknowns, the system is
overdetermined, and there may not exist any solutions.

If A is nonsingular, it possesses an inverse A ~'and x = A ~'b is the solution vector,
because

x=1x=AT1TAx=A""b.
Thus we have only one solution.
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" EEEEELUP Decomposition

solving systems of linear equations

one possible solution:

Compute A1 and then multiply both sides by A1, yielding A1 Ax =

Alb, or x = Alb. This approach suffers in practice from numerical
instability.

a solution using LUP decomposition:

The idea behind LUP decomposition is to find three n x n
matrices L, U, and P such that

PA=LU
where

L is a unit lower-triangular matrix,

U is an upper-triangular matrix, and
P is a permutation matrix.
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" EEEEELUP Decomposition

solving systems of linear equations with a LUP decomposition knowledge
Multiplying both sides of Ax = b by P yields the equivalent equation:
P Ax = Pb, which only permutes the original linear equations.
Using our LUP decomposition equality PA=LU, we obtain

LUx=Pb.

We can now solve this equation by solving two triangular linear systems.
Let us define y = Ux, where X is the desired solution vector.
First, we solve the lower-triangular system:
Ly =Pb  for the unknown vector y by a method called forward substitution.
Having solved for y, we then solve the upper-triangular system
Ux=y for the unknown x by a method called back substitution.
The vector x is our solution to Ax = b, since the permutation matrix P is invertible:

Ax =P LUx = P'Pb=b.
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" EEEEELUP Decomposition

forward substitution
can solve the lower-triangular system in ©(n?) given L, P, and b.
Let us define ¢ = Pb as permutation of a vector b (in detail: ¢; = b).
Since L is unit lower-triangular, equation Ly = Pb can be rewritten as

Y1 =
Liyi + W =
31y1 + Iy, + 3 = (3
lbayr + Loys + lLays ++ »m =

We can solve for y, directly (from the 1t equation). Having solved
for y,, we can substitute it into the second equation, yielding

Vo= €= I )y
In general, we substitute y,, y,, ..., y,_; "forward" into the i-th equation

to solve for y;: i1
Yi =6 — z Lij yj
j=1
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" EEEEELUP Decomposition

back substitution

IS similar to forward substitution. It solves the upper-triangular
system in @(n?) given U and y.
Since U is upper-triangular, we can rewrite the system Ux =y as

Up1X1 + UppXy +t+ Uy 1Xp—1 T UppXy = NN
UppXy T+t Uppn_1Xp—q T UppXy =
un—l,n—lxn—l + un—l,nxn = Yn-1

unnxn — yn

We can solve for x, from the last equation as x,=y,/ u,, . Having
solved for x,, we can substitute it into the previous equation,
yleldlng Xp-1= (y Uy 1,n n)/ Uy 1,n-1"

In general, we substitute x,, x4, ..., X;,; back" into the i-th

equation to solve for x;:
Xi =\ Vi — Z Ujj X /uii

j=i+1
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" EEEEELUP Decomposition

solving systems of linear equations with a LUP
decomposition knowledge

We represent the permutation P compactly by a permutation array m[1..n].

Fori=1,2,...,n, the entry nt[i] indicates that P; ,;; =1 and P; = 0 for j # m[i].

We have now shown that if an LUP decomposition can be computed for a
nonsingular matrix A4, forward and back substitution can be used to solve the
system Ax = b of linear equations in ©(n?) time.

It remains to show how an LUP decomposition for A can be found efficiently.

We start with the case in which A is an n x n nonsingular matrix and P is
absent (or, equivalently, P =1,). We call it LU decomposition.
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" EEEEELUP Decomposition

computing an LU decomposition

the idea is based on Gaussian elimination:

We start by subtracting multiples of the first equation from the other
equations so that the first variable is removed from those equations.

Then, we subtract multiples of the second equation from the third and
subsequent equations so that now the first and second variables are
removed from them.

We continue this process until the system that is left has an upper-
triangular form-in fact, it is the matrix U. The matrix L is made up of the row
multipliers that cause variables to be eliminated.

the recursive algorithm:
Divide A into following parts according the picture:

iy | i 3
A’is (n-1) x (n - 1) matrix, a: = S IS
v is a column vector, and {,;,, .:,;_,3 u,'”,
w' is a row vector. ( ayy w' )

v A
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" EEEEELUP Decomposition

computing an LU decomposition

Then we decompose the matrix:

= (f.r“ r.-';")
v A
I () il w’
vian  fa- 0 A'-wwlfay, )

The submatrix A’-vw™/a,, with dimensions (n - 1) x (n - 1) is called

Schur complement A with respect to ay;.

Because the Schur complement is nonsingular, we can now recursively

find an LU decomposition of it (= L’U’).

where L' is unit lower-triangular and U’ is upper-triangular. Then, using

matrix algebra, we have ap T -
z/u., [,y ) ( 0 A —ovw'/a )

ap U'T

( v/a I,_.A " ) ( 0 1()
\ [ay w'

( l/(l” L’ ) ( U’ )

L

U,
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" EEEEELUP Decomposition

computing an LU decomposition (nonrecursive)
Procedure LU-DECOMPOSITION (matrix A)

n=rowslA];
fork=1tondo{
Upge = i 5
fori=k+1tondo{
Ly, = ay/Upe; // L. represents v,
Uy = Ay ; // u,represents w',
}

fori=k+1tondo
forj=k+1tondo

}

return L and U

The asymptotic time complexity is ©(n3).
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" EEEEELUP Decomposition

computing an LU decomposition (Example)

% 3 A8 31 5 2 3 1 5 2.3 1 5
6 13 5 19 3[4 2 4 3@ 2 4 3]4 2 4
2 19 10 23 116 9 18 1 4|1 2 1 4|@ 2
4 10 11 31 2[4 9 21 > Bl 7 17 2 1 7|3
(a) (b) (c) (d)

2 3 1 5 1 00 0 8 3 58

6 13 5 19 B 31 00 0 4 2 4

2 19 10 23 - 1 4 1 0 0 0 1 2

4 10 11 31 21 7 1 000 3

A L U

(e)
Of course, if it holds a’;; = 0 for a currently processed sub-matrix A4’,
then this method doesn't work, because it attempts to divide by 0.

Thus, if |a’;4| is near to 0, then this algorithm can produce big
errors.
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" EEEEELUP Decomposition

computing an LUP decomposition (nonrecursive)

Procedure LUP-DECOMPOSITION (matrix A)

n =rows|A];
fori=1tondonli]=1i;
fork=1tondo{ // main cycle
p=0; // initialization of pivot

fori=ktondo{ // selection of pivot
if |a,| > p then {
D= lagyl;
k'=1i; // position of pivot
}
if p = 0 then error "singular matrix®;
exchange n[k] & n[k'] ;
for i = 1 to n do exchange a,; © a,;;
fori=k+1tondo{
Ay = A/ e 5 // k-th column of L
forj=k+1tondo a;=a;-aya,; // U
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The asymptotic time complexity is

O(nd).

The resulting matrices L and U

are contained in “improved”

matrix A in the following way
(L ifi>j



" REEEELUP Decomposition

computing an LUP decomposition (Example)

1] 2 0 2 06 3l @ 5 4 2 3 @ 5 4 2
C > 3 3 4 =2 2 Bl 3 4 =2 o Tl 0 1.6 -3.2
3 @ 5 4 2 1| 828 0 2 06 1| 04|22 04 -2
4] -1 2 34 -1 4| IO -2 34 -1 4| 02| -1 42 -06
(a) (b) (c)
2] 3 % 4 3 3] 5 5 a4 2 3] 5 5 4 2
C 2| T06] 0 1.6 —32 1| 04]@ 04 02 1| 04|@ 04 02
1| 04|@ 04 02 2| o6 B 15 32 2| 0.6 N 1.6 3.2
4| 02| -1 42 -06 4| 02 42 06 4| 0205 4 -05
B () (@) - )
3] 5 5 4 2 3] 5 5 a4 2 3] 5 5 4 2
1| 04| -2 04 02 1| 04| 04 -02 1| 04]-2 04 -02
C 2| 06 0 |16 3.2 4| 02 05 @ -05 4 02 05| @ -05
4| 02 05|@ -05 2| o6 o [f6l-32 2| 06 0 04]-3
(2) (h) (1)
0010 2 0 2 06 1 0 0 0\ (5 5 4 2
1 00 0 3 3 4 2| o4 1 0 0 O <2 D400
0O 0 1 5 5 4 2 o 02 05 1 0 0 0 4 —0.5
01 0 0 -1 =2 34 -1 0.6 0 04 1 0 0 0 -3
P A _ L U
Q)
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" = Computing Inverse Matrix

computing inverse matrix using LUP decomposition
Using LUP-DECOMPOSITION, we can solve an equation of the form
Ax = b in time O(n?).
Since the LUP-DECOMPOSITION decomposition depends on A but not

b, we can run LUP-DECOMPOSITION on a second set of equations of
the form Ax = b' in additional time ©(n?).

Using the same LUP-DECOMPOSITION, we can solve n equations of
the form Ax = e, for i from 1 to n (dimensions of matrix A is nxn)
where e; is a unit vector also in time O(n?).

If we join all n vectors e, for i from 1 to n together then we have I,
(unit matrix).

The task of finding an inverse matrix X for A is to find a solution of
the following matrix equation AX = I.

If we join all n solutions x from Ax = e; from 1 to n together then we
have a matrix to X (so it holds: AX=1).

Since the LUP decomposition of A can be computed in time ©(n3),
the inverse A1 of a matrix A can be determined in time ©(n3).
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