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Natural Number Encodings 

 The most common representation of natural numbers is 
the following binary encoding: 

 

 

 where n is a number of bits of the number and bi is a value 
of i-th bit.  

 BCD (Binary Coded Decimal) representation with each 
decimal digit represented by its own four-bit binary 
sequence (nibble) 
 It is not as effective as the previous representation (all combinations 

of binary bit sequences are not used) 

 BCD format are still important and continue to be used in financial, 

commercial, and industrial computing. 

value of a number =  𝑏𝑖 × 2𝑖𝑛
𝑖=0  
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Integer Number Encodings 

 complement representation of negative numbers (the most common): 

 

 

 

 

 

value of a number 𝑁 =

 
 
 

 
  𝑏𝑖 × 2𝑖
𝑛−1

𝑖=0

                         for 𝑏𝑛 = 0,  thus 𝑁 ∈  0; 2𝑛−1 − 1 

−1 − (1− 𝑏𝑖) × 2𝑖
𝑛−1

𝑖=0

   for 𝑏𝑛 = 1,  thus 𝑁 ∈  −2𝑛−1; −1 

 

  
 For additions and subtractions we can 

use the same algorithms as for the 
previous binary numbers 
representation of natural numbers.  

 +/- sign can be detected from the 
most-significant bit. 

 There is only encoding for zero. 
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Floating-point Data and Encodings 

 representation: 
 

 


  

 

 

where  s is the sign (signum +/-) 

     c is the significand (fraction) 

        b is the base (typically 2 or 10) 

   p is the precision (the number of digits in the significand) 

         e is the integer exponent 
 

 We want to encode also +∞ a -∞. 

 If b=2 (the most common case) then there can arise some 

problems when inputs and outputs are converted from/to decimal 
base. 

 

𝑠 ×
𝑐

𝑏𝑝−1
× 𝑏𝑒  
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Floating-point Data and Encodings 

 IEEE 754: 

 

 

 

 

 

 

 normalized value: 

 value = (-1) sign  2 exponent-exponent bias   (1.fraction) 

 denormalized value: 

 value = (-1) sign  2 exponent-exponent bias+1   (0.fraction) 

 

 
 

 

type exponent field significand 
(fraction field) 

+/- zero 0 0 

denormalized numbers 0 non zero 

normalized numbers 1 až 2
e - 2 any 

+/- ∞ 2
e 
- 1 0 

NaN (Not a Number) 2
e - 1 non zero 
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Floating-point Data and Encodings 
 IEEE 754: 

 NaN (Not a Number) is used for encodings of numbers that were 

a result of arithmetical operations with nonstandard inputs: 

 operations with a NaN as at least one operand  

 the divisions: 0/0, ∞/∞, ∞/-∞, -∞/∞, and -∞/-∞  

 the multiplications: 0×∞ and 0×-∞  

 the additions: ∞ + (-∞), (-∞) + ∞ and equivalent subtractions  

 calling functions with arguments out of its domain: 

 the square root of a negative number  

 the logarithm of a negative number 

 triginometric functions … 

 NaNs have two types: 

 Quiet (qNaN)  

 do not raise any additional exceptions as they propagate through most 

operations) 

 Signalling (sNaN) 

 should raise an invalid exception as underflow or overflow).  

 NaNs may also be explicitly assigned to variables, typically as a 

representation for missing values. 
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Differences Between Computer and Standard Arithmetic 

 in both worlds (computer and standard arithmetic) holds: 

 1 ∙ x = x 

 x ∙ y = y ∙ x 

 x + x = 2 ∙ x 

 in computer arithmetic needs not hold: 

 x ∙ (1/x) = 1 

 (1 + x) – 1 = x 

 (x + y) + z = x + (y + z) 

 a common programmer’s mistake is 
 addition of one (or another different number) in float type inside 

some loop with the stop condition with equality to some arbitrary 

number. Typically, such loop will never finish. 

 If conditions with exact equality to float constant. Such constructions 

need not be satisfied. 
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Summary of Matrix Algebra I 
 An m×n matrix A is a rectangular array of numbers with 

m rows and n columns. The numbers m and n are the 
dimensions of A.  

 Example: 2 × 3 matrix A. 

 The transpose, AT, of a matrix A is the matrix obtained 
from A by writing its rows as columns. If A is an m×n 
matrix and B = AT, then B is the n×m matrix with bij = aji.  

 

 A vector is a matrix with the second dimension always 1. 

 The unit vector ei is the vector whose i-th element is 1 
and all of whose other elements are 0. Usually, the size of 
a unit vector is clear from the context. 

 A Square matrix is an n×n matrix. 

 A diagonal matrix has aij = 0 whenever i ≠ j. 

 

 The n×n identity matrix In is a diagonal matrix with 1's 
along the diagonal. 
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Summary of Matrix Algebra II 
 An upper-triangular matrix U is one for which uij = 0 

if i  > j. All entries below the diagonal are zero: 

 An upper-triangular matrix is unit upper-triangular 
if it has all 1's along the diagonal. 

 

 A lower-triangular matrix L is one for which lij = 0 if 
i < j. All entries above the diagonal are zero: 

 A lower-triangular matrix is unit lower-triangular if 
it has all 1's along the diagonal. 

 

 A permutation matrix P has exactly one 1 in each 
row or column, and 0's elsewhere. An example of a 
permutation matrix is: 

 

 An inverse matrix for n×n matrix A is a matrix n×n, 
we denote it as A-1 (if it exists), that holds: 

  A A-1 = In = A-1A  
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LUP Decomposition 
 solving systems of linear equations 

 Consider systems of n linear equations Ax = b, letting A = (aij), x = (xj) a b = (bi) 

 

a11x1 + a12x2 + . . . + a1nxn = b1 

a21x1 + a22x2 + . . . + a2nxn = b2 

... 

an1x1 + an2x2 + . . . + annxn = bn 

 

 

 If the rank of A is less than n-then the system is underdetermined. An 

underdetermined system typically has infinitely many solutions, although it may 

have no solutions at all if the equations are inconsistent. 

 If the number of equations exceeds the number n of unknowns, the system is 

overdetermined, and there may not exist any solutions.  

 If A is nonsingular, it possesses an inverse A −1 and x = A −1b is the solution vector, 

because 

 x = In x = A −1 A x = A −1b.  

 Thus we have only one solution. 
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LUP Decomposition 
 solving systems of linear equations 

 

 one possible solution:  

 Compute A-1 and then multiply both sides by A-1, yielding A-1 Ax = 
A-1b, or x = A-1b. This approach suffers in practice from numerical 

instability. 

 

 a solution using LUP decomposition:  

 The idea behind LUP decomposition is to find three n × n 
matrices L, U, and P such that 

   PA = LU 
 where 

 L is a unit lower-triangular matrix, 

 U is an upper-triangular matrix, and 

 P is a permutation matrix. 
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LUP Decomposition 
 solving systems of linear equations with a LUP decomposition knowledge 

 Multiplying both sides of Ax = b by P yields the equivalent equation:  

 P Ax = Pb,  which only permutes the original linear equations.  

 Using our LUP decomposition equality PA=LU, we obtain  

 LUx = Pb . 

 We can now solve this equation by solving two triangular linear systems.  

 Let us define y = Ux, where x is the desired solution vector. 

 First, we solve the lower-triangular system:  

 Ly = Pb  for the unknown vector  y  by a method called forward substitution.  

 Having solved for y, we then solve the upper-triangular system 

 Ux = y   for the unknown x  by a method called back substitution. 

 The vector x is our solution to Ax = b, since the permutation matrix P is invertible:  

 Ax = P−1LUx = P−1Pb = b. 
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LUP Decomposition 
 forward substitution 

 can solve the lower-triangular system in Θ(n2) given L, P, and b. 

 Let us define c = Pb as permutation of a vector b (in detail: ci = bπ(i)). 

 Since L is unit lower-triangular, equation Ly = Pb can be rewritten as 

 

 

 

 

 

 We can solve for y1 directly (from the 1st equation). Having solved 

for y1, we can substitute it into the second equation, yielding        

    y2 = c2 − l21 y1  

 In general, we substitute y1, y2, . . . , yi−1 "forward" into the i-th equation 

to solve for yi:  

𝑦1 = 𝑐1

𝑙21𝑦1 + 𝑦2 = 𝑐2

𝑙31𝑦1 + 𝑙32𝑦2 + 𝑦3 = 𝑐3

⋮ ⋱ ⋮
𝑙𝑛1𝑦1 + 𝑙𝑛2𝑦2 + 𝑙𝑛3𝑦3 +⋯+ 𝑦𝑛 = 𝑐𝑛

 

𝑦𝑖 = 𝑐𝑖 −  𝑙𝑖𝑗𝑦𝑗

𝑖−1

𝑗=1
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LUP Decomposition 
 back substitution 

 is similar to forward substitution. It solves the upper-triangular 

system in Θ(n2) given U and y. 

 Since U is upper-triangular, we can rewrite the system Ux = y  as 

 

 

 

 

 

 We can solve for xn from the last equation as xn = yn / unn  . Having 

solved for xn, we can substitute it into the previous equation, 

yielding     xn-1 = (yn-1 − un-1,nxn)/ un-1,n-1 . 

 In general, we substitute xn, xn-1, . . . , xi+1 “back" into the i-th 

equation to solve for xi:  

𝑢11𝑥1 + 𝑢12𝑥2 +⋯+ 𝑢1,𝑛−1𝑥𝑛−1 + 𝑢1𝑛𝑥𝑛 = 𝑦1

𝑢22𝑥2 +⋯+ 𝑢2,𝑛−1𝑥𝑛−1 + 𝑢2𝑛𝑥𝑛 = 𝑦2

⋱ ⋮
𝑢𝑛−1,𝑛−1𝑥𝑛−1 + 𝑢𝑛−1,𝑛𝑥𝑛 = 𝑦𝑛−1

𝑢𝑛𝑛𝑥𝑛 = 𝑦𝑛

 

𝑥𝑖 =  𝑦𝑖 −  𝑢𝑖𝑗 𝑥𝑗

𝑛

𝑗=𝑖+1

 𝑢𝑖𝑖  
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LUP Decomposition 
 solving systems of linear equations with a LUP 

decomposition knowledge 

 We represent the permutation P compactly by a permutation array π[1..n].  

 For i = 1, 2, . . . , n, the entry π[i] indicates that Pi, π[i] = 1 and Pij = 0 for j ≠ π[i].  

  

 We have now shown that if an LUP decomposition can be computed for a 

nonsingular matrix A, forward and back substitution can be used to solve the 

system Ax = b of linear equations in Θ(n2) time. 

 

 It remains to show how an LUP decomposition for A can be found efficiently. 

 

 We start with the case in which A is an n × n nonsingular matrix and P is 

absent (or, equivalently, P = In). We call it LU decomposition.  
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LUP Decomposition 
 computing an LU decomposition 

 the idea is based on Gaussian elimination:  

 We start by subtracting multiples of the first equation from the other 

equations so that the first variable is removed from those equations.  

 Then, we subtract multiples of the second equation from the third and 

subsequent equations so that now the first and second variables are 

removed from them.  

 We continue this process until the system that is left has an upper-

triangular form-in fact, it is the matrix U. The matrix L is made up of the row 

multipliers that cause variables to be eliminated. 

 the recursive algorithm: 

1. Divide A into following parts according the picture: 

  

    A’  is (n − 1) × (n − 1) matrix,  

 v is a column vector, and  

 wT
  is a row vector.  
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LUP Decomposition 
 computing an LU decomposition 

2. Then we decompose the matrix: 

 

 

 

 

 The submatrix A’-vwT/a11 with dimensions (n − 1) × (n − 1) is called 

 Schur complement  A with respect to a11. 

 Because the Schur complement is nonsingular, we can now recursively 

find an LU decomposition of it (= L’U’). 

 where L′ is unit lower-triangular and U′ is upper-triangular. Then, using 

matrix algebra, we have 
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LUP Decomposition 
 computing an LU decomposition (nonrecursive) 

1) Procedure LU-DECOMPOSITION(matrix  A)  

2) n = rows[A] ; 

3) for k = 1 to n do { 

4)         ukk = akk ; 

5)         for i = k + 1 to n do { 

6)                 lik = aik/ukk ;         //  lik represents vi  

7)                 uki = aki ;               //   uki represents wT
i 

8)         } 

9)         for i = k + 1 to n do 

10)                 for j = k + 1 to n do 

11)                         aij = aij - likukj ; 

12) } 

13) return L and U 

 The asymptotic time complexity is Θ(n3).  
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LUP Decomposition 
 computing an LU decomposition (Example) 

 

 

 

 

 

 Of course, if it holds a’11 = 0 for a currently processed sub-matrix A’, 

then this method doesn't work, because it attempts to divide by 0.  

 Thus, if |a’11| is near to 0, then this algorithm can produce big 

errors. 
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LUP Decomposition 
 computing an LUP decomposition (nonrecursive) 

 
1) Procedure LUP-DECOMPOSITION(matrix  A)  

2) n = rows[A];  

3) for i = 1 to n do π[i] = i ;  

4) for k = 1 to n do { 

5)         p = 0 ;  

6)         for i = k to n do { 

7)                 if |aik| > p then { 

8)                         p = |aik| ; 

9)                         k' = i ; 

10)                 } 

11)         if p = 0 then error "singular matrix“;  

12)         exchange π[k] ↔ π[k'] ; 

13)         for i = 1 to n do exchange aki ↔ ak'i ; 

14)         for i = k + 1 to n do { 

15)                 aik = aik/akk ; 

16)                 for j = k + 1 to n do  aij = aij - aikakj ; 

17)         } 

18) } 

 The asymptotic time complexity is 

Θ(n3).   

 The resulting matrices L and U 

are contained in “improved”  

matrix A in the following way 

 

 

 

𝑎𝑖𝑗 =  
𝑙𝑖𝑗  if 𝑖 > 𝑗

𝑢𝑖𝑗  if 𝑖 ≤ 𝑗
 

  

 

  

// main cycle 

// initialization of pivot 

// selection of pivot 

 

 

// position of pivot 

 

 

 

 

 

// k-th column of L 

                                    //  U 
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LUP Decomposition 
 computing an LUP decomposition (Example) 
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Computing Inverse Matrix 
 computing inverse matrix using LUP decomposition 

 Using LUP-DECOMPOSITION, we can solve an equation of the form 

Ax = b in time Θ(n2).   

 Since the LUP-DECOMPOSITION decomposition depends on A but not 

b, we can run LUP-DECOMPOSITION on a second set of equations of 

the form Ax = b' in additional time Θ(n2). 

 Using the same LUP-DECOMPOSITION, we can solve n equations of 

the form Ax = ei for i from 1 to n (dimensions of matrix A is n×n) 

where ei is a unit vector also in time Θ(n2). 

 If we join all n vectors ei for i from 1 to n together then we have In 

(unit matrix). 

 The task of finding an inverse matrix X for A is to find a solution of 

the following matrix equation AX = I. 

 If we join all n solutions x from Ax = ei from 1 to n together then we 

have a matrix to X (so it holds: AX = I ).  

 Since the LUP decomposition of A can be computed in time Θ(n3), 

the inverse A-1 of a matrix A can be determined in time Θ(n3).  
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