
Advanced algorithms

computer arithmetic:

number encodings and operations,

LUP decomposition, finding inverse matrix

Jiří Vyskočil, Radek Mařík

2011

Advanced algorithms
2 / 23

Natural Number Encodings

 The most common representation of natural numbers is
the following binary encoding:

 where n is a number of bits of the number and bi is a value
of i-th bit.

 BCD (Binary Coded Decimal) representation with each
decimal digit represented by its own four-bit binary
sequence (nibble)
 It is not as effective as the previous representation (all combinations

of binary bit sequences are not used)

 BCD format are still important and continue to be used in financial,

commercial, and industrial computing.

value of a number = 𝑏𝑖 × 2𝑖𝑛
𝑖=0

Advanced algorithms
3 / 23

Integer Number Encodings

 complement representation of negative numbers (the most common):

value of a number 𝑁 =

 𝑏𝑖 × 2𝑖
𝑛−1

𝑖=0

 for 𝑏𝑛 = 0, thus 𝑁 ∈ 0; 2𝑛−1 − 1

−1 − (1− 𝑏𝑖) × 2𝑖
𝑛−1

𝑖=0

 for 𝑏𝑛 = 1, thus 𝑁 ∈ −2𝑛−1; −1

 For additions and subtractions we can

use the same algorithms as for the
previous binary numbers
representation of natural numbers.

 +/- sign can be detected from the
most-significant bit.

 There is only encoding for zero.

Advanced algorithms
4 / 23

Floating-point Data and Encodings

 representation:



where s is the sign (signum +/-)

 c is the significand (fraction)

 b is the base (typically 2 or 10)

 p is the precision (the number of digits in the significand)

 e is the integer exponent

 We want to encode also +∞ a -∞.

 If b=2 (the most common case) then there can arise some

problems when inputs and outputs are converted from/to decimal
base.

𝑠 ×
𝑐

𝑏𝑝−1
× 𝑏𝑒

Advanced algorithms
5 / 23

Floating-point Data and Encodings

 IEEE 754:

 normalized value:

 value = (-1) sign  2 exponent-exponent bias  (1.fraction)

 denormalized value:

 value = (-1) sign  2 exponent-exponent bias+1  (0.fraction)

type exponent field significand
(fraction field)

+/- zero 0 0

denormalized numbers 0 non zero

normalized numbers 1 až 2
e - 2 any

+/- ∞ 2
e
- 1 0

NaN (Not a Number) 2
e - 1 non zero

Advanced algorithms
6 / 23

Floating-point Data and Encodings
 IEEE 754:

 NaN (Not a Number) is used for encodings of numbers that were

a result of arithmetical operations with nonstandard inputs:

 operations with a NaN as at least one operand

 the divisions: 0/0, ∞/∞, ∞/-∞, -∞/∞, and -∞/-∞

 the multiplications: 0×∞ and 0×-∞

 the additions: ∞ + (-∞), (-∞) + ∞ and equivalent subtractions

 calling functions with arguments out of its domain:

 the square root of a negative number

 the logarithm of a negative number

 triginometric functions …

 NaNs have two types:

 Quiet (qNaN)

 do not raise any additional exceptions as they propagate through most

operations)

 Signalling (sNaN)

 should raise an invalid exception as underflow or overflow).

 NaNs may also be explicitly assigned to variables, typically as a

representation for missing values.

Advanced algorithms
7 / 23

Differences Between Computer and Standard Arithmetic

 in both worlds (computer and standard arithmetic) holds:

 1 ∙ x = x

 x ∙ y = y ∙ x

 x + x = 2 ∙ x

 in computer arithmetic needs not hold:

 x ∙ (1/x) = 1

 (1 + x) – 1 = x

 (x + y) + z = x + (y + z)

 a common programmer’s mistake is
 addition of one (or another different number) in float type inside

some loop with the stop condition with equality to some arbitrary

number. Typically, such loop will never finish.

 If conditions with exact equality to float constant. Such constructions

need not be satisfied.

Advanced algorithms
8 / 23

Summary of Matrix Algebra I
 An m×n matrix A is a rectangular array of numbers with

m rows and n columns. The numbers m and n are the
dimensions of A.

 Example: 2 × 3 matrix A.

 The transpose, AT, of a matrix A is the matrix obtained
from A by writing its rows as columns. If A is an m×n
matrix and B = AT, then B is the n×m matrix with bij = aji.

 A vector is a matrix with the second dimension always 1.

 The unit vector ei is the vector whose i-th element is 1
and all of whose other elements are 0. Usually, the size of
a unit vector is clear from the context.

 A Square matrix is an n×n matrix.

 A diagonal matrix has aij = 0 whenever i ≠ j.

 The n×n identity matrix In is a diagonal matrix with 1's
along the diagonal.

Advanced algorithms
9 / 23

Summary of Matrix Algebra II
 An upper-triangular matrix U is one for which uij = 0

if i > j. All entries below the diagonal are zero:

 An upper-triangular matrix is unit upper-triangular
if it has all 1's along the diagonal.

 A lower-triangular matrix L is one for which lij = 0 if
i < j. All entries above the diagonal are zero:

 A lower-triangular matrix is unit lower-triangular if
it has all 1's along the diagonal.

 A permutation matrix P has exactly one 1 in each
row or column, and 0's elsewhere. An example of a
permutation matrix is:

 An inverse matrix for n×n matrix A is a matrix n×n,
we denote it as A-1 (if it exists), that holds:

 A A-1 = In = A-1A

Advanced algorithms
10 / 23

LUP Decomposition
 solving systems of linear equations

 Consider systems of n linear equations Ax = b, letting A = (aij), x = (xj) a b = (bi)

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

...

an1x1 + an2x2 + . . . + annxn = bn

 If the rank of A is less than n-then the system is underdetermined. An

underdetermined system typically has infinitely many solutions, although it may

have no solutions at all if the equations are inconsistent.

 If the number of equations exceeds the number n of unknowns, the system is

overdetermined, and there may not exist any solutions.

 If A is nonsingular, it possesses an inverse A −1 and x = A −1b is the solution vector,

because

 x = In x = A −1 A x = A −1b.

 Thus we have only one solution.

Advanced algorithms
11 / 23

LUP Decomposition
 solving systems of linear equations

 one possible solution:

 Compute A-1 and then multiply both sides by A-1, yielding A-1 Ax =
A-1b, or x = A-1b. This approach suffers in practice from numerical

instability.

 a solution using LUP decomposition:

 The idea behind LUP decomposition is to find three n × n
matrices L, U, and P such that

 PA = LU
 where

 L is a unit lower-triangular matrix,

 U is an upper-triangular matrix, and

 P is a permutation matrix.

Advanced algorithms
12 / 23

LUP Decomposition
 solving systems of linear equations with a LUP decomposition knowledge

 Multiplying both sides of Ax = b by P yields the equivalent equation:

 P Ax = Pb, which only permutes the original linear equations.

 Using our LUP decomposition equality PA=LU, we obtain

 LUx = Pb .

 We can now solve this equation by solving two triangular linear systems.

 Let us define y = Ux, where x is the desired solution vector.

 First, we solve the lower-triangular system:

 Ly = Pb for the unknown vector y by a method called forward substitution.

 Having solved for y, we then solve the upper-triangular system

 Ux = y for the unknown x by a method called back substitution.

 The vector x is our solution to Ax = b, since the permutation matrix P is invertible:

 Ax = P−1LUx = P−1Pb = b.

Advanced algorithms
13 / 23

LUP Decomposition
 forward substitution

 can solve the lower-triangular system in Θ(n2) given L, P, and b.

 Let us define c = Pb as permutation of a vector b (in detail: ci = bπ(i)).

 Since L is unit lower-triangular, equation Ly = Pb can be rewritten as

 We can solve for y1 directly (from the 1st equation). Having solved

for y1, we can substitute it into the second equation, yielding

 y2 = c2 − l21 y1

 In general, we substitute y1, y2, . . . , yi−1 "forward" into the i-th equation

to solve for yi:

𝑦1 = 𝑐1

𝑙21𝑦1 + 𝑦2 = 𝑐2

𝑙31𝑦1 + 𝑙32𝑦2 + 𝑦3 = 𝑐3

⋮ ⋱ ⋮
𝑙𝑛1𝑦1 + 𝑙𝑛2𝑦2 + 𝑙𝑛3𝑦3 +⋯+ 𝑦𝑛 = 𝑐𝑛

𝑦𝑖 = 𝑐𝑖 − 𝑙𝑖𝑗𝑦𝑗

𝑖−1

𝑗=1

Advanced algorithms
14 / 23

LUP Decomposition
 back substitution

 is similar to forward substitution. It solves the upper-triangular

system in Θ(n2) given U and y.

 Since U is upper-triangular, we can rewrite the system Ux = y as

 We can solve for xn from the last equation as xn = yn / unn . Having

solved for xn, we can substitute it into the previous equation,

yielding xn-1 = (yn-1 − un-1,nxn)/ un-1,n-1 .

 In general, we substitute xn, xn-1, . . . , xi+1 “back" into the i-th

equation to solve for xi:

𝑢11𝑥1 + 𝑢12𝑥2 +⋯+ 𝑢1,𝑛−1𝑥𝑛−1 + 𝑢1𝑛𝑥𝑛 = 𝑦1

𝑢22𝑥2 +⋯+ 𝑢2,𝑛−1𝑥𝑛−1 + 𝑢2𝑛𝑥𝑛 = 𝑦2

⋱ ⋮
𝑢𝑛−1,𝑛−1𝑥𝑛−1 + 𝑢𝑛−1,𝑛𝑥𝑛 = 𝑦𝑛−1

𝑢𝑛𝑛𝑥𝑛 = 𝑦𝑛

𝑥𝑖 = 𝑦𝑖 − 𝑢𝑖𝑗 𝑥𝑗

𝑛

𝑗=𝑖+1

 𝑢𝑖𝑖

Advanced algorithms
15 / 23

LUP Decomposition
 solving systems of linear equations with a LUP

decomposition knowledge

 We represent the permutation P compactly by a permutation array π[1..n].

 For i = 1, 2, . . . , n, the entry π[i] indicates that Pi, π[i] = 1 and Pij = 0 for j ≠ π[i].

 We have now shown that if an LUP decomposition can be computed for a

nonsingular matrix A, forward and back substitution can be used to solve the

system Ax = b of linear equations in Θ(n2) time.

 It remains to show how an LUP decomposition for A can be found efficiently.

 We start with the case in which A is an n × n nonsingular matrix and P is

absent (or, equivalently, P = In). We call it LU decomposition.

Advanced algorithms
16 / 23

LUP Decomposition
 computing an LU decomposition

 the idea is based on Gaussian elimination:

 We start by subtracting multiples of the first equation from the other

equations so that the first variable is removed from those equations.

 Then, we subtract multiples of the second equation from the third and

subsequent equations so that now the first and second variables are

removed from them.

 We continue this process until the system that is left has an upper-

triangular form-in fact, it is the matrix U. The matrix L is made up of the row

multipliers that cause variables to be eliminated.

 the recursive algorithm:

1. Divide A into following parts according the picture:

 A’ is (n − 1) × (n − 1) matrix,

 v is a column vector, and

 wT
 is a row vector.

Advanced algorithms
17 / 23

LUP Decomposition
 computing an LU decomposition

2. Then we decompose the matrix:

 The submatrix A’-vwT/a11 with dimensions (n − 1) × (n − 1) is called

 Schur complement A with respect to a11.

 Because the Schur complement is nonsingular, we can now recursively

find an LU decomposition of it (= L’U’).

 where L′ is unit lower-triangular and U′ is upper-triangular. Then, using

matrix algebra, we have

Advanced algorithms
18 / 23

LUP Decomposition
 computing an LU decomposition (nonrecursive)

1) Procedure LU-DECOMPOSITION(matrix A)

2) n = rows[A] ;

3) for k = 1 to n do {

4) ukk = akk ;

5) for i = k + 1 to n do {

6) lik = aik/ukk ; // lik represents vi

7) uki = aki ; // uki represents wT
i

8) }

9) for i = k + 1 to n do

10) for j = k + 1 to n do

11) aij = aij - likukj ;

12) }

13) return L and U

 The asymptotic time complexity is Θ(n3).

Advanced algorithms
19 / 23

LUP Decomposition
 computing an LU decomposition (Example)

 Of course, if it holds a’11 = 0 for a currently processed sub-matrix A’,

then this method doesn't work, because it attempts to divide by 0.

 Thus, if |a’11| is near to 0, then this algorithm can produce big

errors.

Advanced algorithms
20 / 23

LUP Decomposition
 computing an LUP decomposition (nonrecursive)

1) Procedure LUP-DECOMPOSITION(matrix A)

2) n = rows[A];

3) for i = 1 to n do π[i] = i ;

4) for k = 1 to n do {

5) p = 0 ;

6) for i = k to n do {

7) if |aik| > p then {

8) p = |aik| ;

9) k' = i ;

10) }

11) if p = 0 then error "singular matrix“;

12) exchange π[k] ↔ π[k'] ;

13) for i = 1 to n do exchange aki ↔ ak'i ;

14) for i = k + 1 to n do {

15) aik = aik/akk ;

16) for j = k + 1 to n do aij = aij - aikakj ;

17) }

18) }

 The asymptotic time complexity is

Θ(n3).

 The resulting matrices L and U

are contained in “improved”

matrix A in the following way

𝑎𝑖𝑗 =
𝑙𝑖𝑗 if 𝑖 > 𝑗

𝑢𝑖𝑗 if 𝑖 ≤ 𝑗

// main cycle

// initialization of pivot

// selection of pivot

// position of pivot

// k-th column of L

 // U

Advanced algorithms
21 / 23

LUP Decomposition
 computing an LUP decomposition (Example)

Advanced algorithms
22 / 23

Computing Inverse Matrix
 computing inverse matrix using LUP decomposition

 Using LUP-DECOMPOSITION, we can solve an equation of the form

Ax = b in time Θ(n2).

 Since the LUP-DECOMPOSITION decomposition depends on A but not

b, we can run LUP-DECOMPOSITION on a second set of equations of

the form Ax = b' in additional time Θ(n2).

 Using the same LUP-DECOMPOSITION, we can solve n equations of

the form Ax = ei for i from 1 to n (dimensions of matrix A is n×n)

where ei is a unit vector also in time Θ(n2).

 If we join all n vectors ei for i from 1 to n together then we have In

(unit matrix).

 The task of finding an inverse matrix X for A is to find a solution of

the following matrix equation AX = I.

 If we join all n solutions x from Ax = ei from 1 to n together then we

have a matrix to X (so it holds: AX = I).

 Since the LUP decomposition of A can be computed in time Θ(n3),

the inverse A-1 of a matrix A can be determined in time Θ(n3).

Advanced algorithms
23 / 23

References

 Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.;
Stein, Clifford (2001). Introduction to Algorithms (2nd ed.). MIT
Press and McGraw-Hill. ISBN 0-262-53196-8.

 http://babbage.cs.qc.cuny.edu/IEEE-754/References.xhtml

