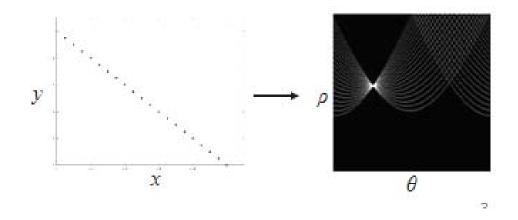


Hough Transform



Jiří Matas

Center for Machine Perception

Department of Cybernetics, Faculty of Electrical Engineering

Czech Technical University, Prague

Many slides thanks to Kristen Grauman and Bastian Leibe

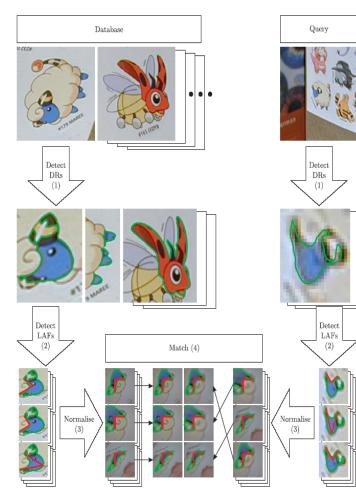
Recognition with Local Features

Strengths:

- applicable to many objects (e.g. in image stitching)
- is real-time
- scales well to very large problems (retrieval of millions of images)
- handles occlusion well
- insensitive to a broad class of image transformations

Weaknesses:

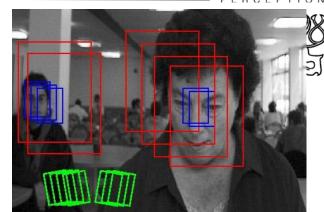
- applicable to recognition of specific objects (no categorization)
- applicable only to objects with distinguished local features



Recognition with the Scanning Window (Viola-Jones)

Strengths:

- applicable to many <u>classes</u> of objects
- not restricted to specific objects
- often real-time

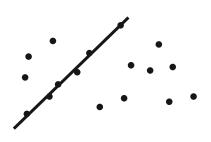


Weaknesses:

- extension to a large number of classes not straightforward (standard implementation: linear complexity in the number of classes)
- occlusion handling not easy
- full 3D recognition requires too many windows to be checked
- training time is potentially very long

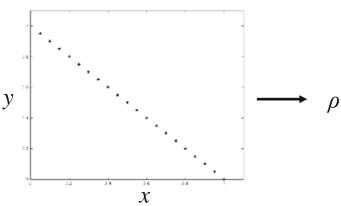
Hough Transform

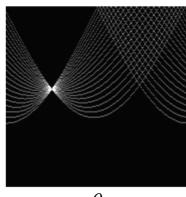
- Origin: Detection of straight lines in clutter
 - Basic idea: each candidate point votes for all lines that it is consistent with.
 - Votes are accumulated in quantized array
 - Local maxima correspond to candidate lines



- Representation of a line
 - Usual form y = a x + b has a singularity around 90°.
 - Better parameterization: $x \cos(\theta) + y \sin(\theta) = \rho$



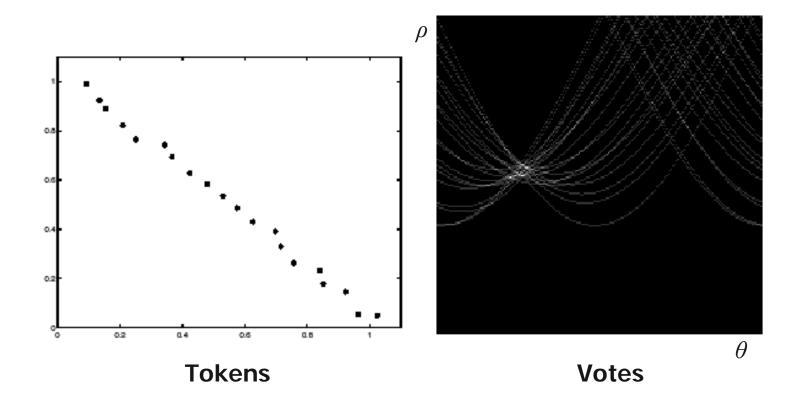




Hough Transform for Straight Lines

- Define the parametrisation of the space of lines. Most common: ρ , θ . Other options: slope + intercept, nearest point to center, ...
- Quantize the Hough space: identify the maximum and minimum values of ρ and θ , and the number of cells,
- \blacksquare Create an accumulator array A(ρ , θ); set all values to zero
- (if grandient available) For all edge points (x_i, y_i) in the image
 - if available, use gradient direction for θ
 - Compute ρ from the equation
 - Increment $A(\rho, \theta)$ by one
- (if grandient not available) For all edge points (x_i, y_i) in the image
 - Increment $A(\rho, \theta)$ by one for all lines incident on x,y
- For all cells in $A(\rho, \theta)$
 - Search for the maximum value of $A(\rho, \theta)$
 - Calculate the equation of the line
- To reduce the effect of noise more than one element (elements in a neighborhood) in the accumulator array are increased

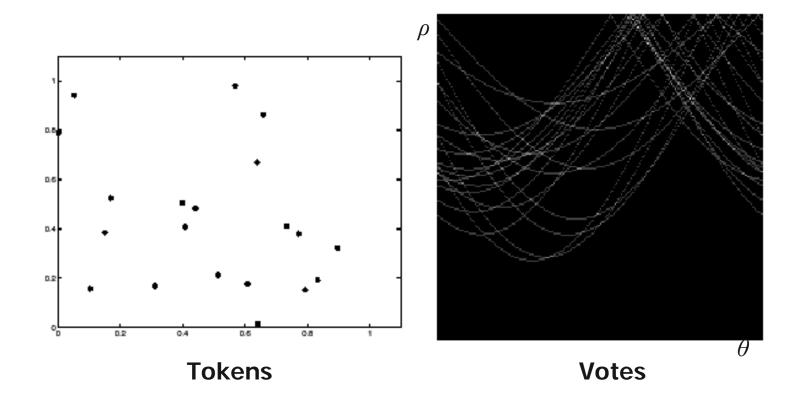
Hough Transform: Noisy Line



Problem: Finding the true maximum

K. Grauman, B. Leibe

Hough Transform: Noisy Input



Problem: Lots of spurious maxima

Generalized Hough Transform [Ballard81]

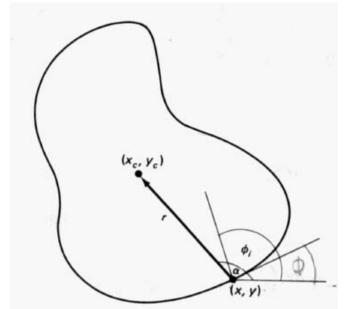
- Generalization for an arbitrary contour or shape
 - Choose reference point for the contour (e.g. center)

• For each point on the contour remember where it is located w.r.t. to the

reference point

• Remember radius r and angle ϕ relative to the contour tangent

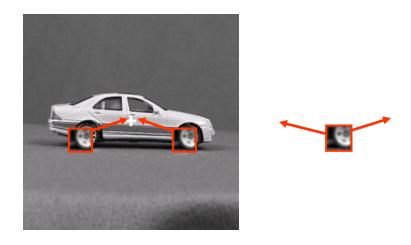
 Recognition: whenever you find a contour point, calculate the tangent angle and 'vote' for all possible reference points



- Instead of reference point, can also vote for transformation
- \Rightarrow The same idea can be used with local features!

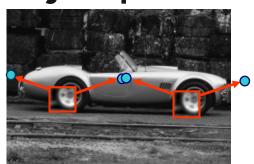
Gen. Hough Transform with Local Features

For every feature, store possible "occurrences"



For new image, let the matched featige to be solventied for possible object positions

- Pose



Relative position

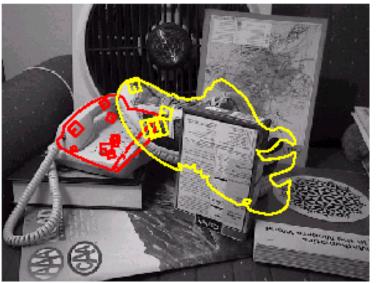
Finding Consistent Configurations

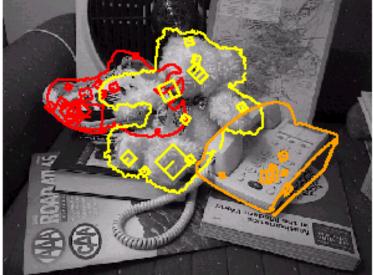
- Global spatial models
 - Generalized Hough Transform [Lowe99]
 - RANSAC [Obdrzalek02, Chum05, Nister06]
 - Basic assumption: object is planar

- Valid for many structures on buildings
- Sufficient for small viewpoint variations on 3D objects

3D Object Recognition

- Gen. HT for Recognition
 - Typically only 3 feature matches needed for recognition
 - Extra matches provide robustness
 - Affine model can be used for planar objects





Comparison

Gen. Hough Transform

- Advantages
 - Very effective for recognizing arbitrary shapes or objects
 - Can handle high percentage of outliers (¿95%)
 - Extracts groupings from clutter in linear time
- Disadvantages
 - Quantization issues
 - Only practical for small number of dimensions (up to 4)
- Improvements available
 - Probabilistic Extensions
 - Continuous Voting Space

[Leibe08]

RANSAC

- Advantages
 - General method suited to large range of problems
 - Easy to implement
 - Independent of number of dimensions
- Disadvantages
 - Only handles moderate number of outliers (¡50%)
- Many variants available, e.g.
 - PROSAC: Progressive RANSAC [Chum05
 - Preemptive RANSAC [Nister05]

Thank you for your attention.