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Multi-Objective Optimization

:: Many real-world problems involve multiple objectives

|
A solution that is extreme with respect sodf -
. . . . . B .~
to one objective requires a compromise in @
. . 18 //
other objectives. 5 A’
A sacrifice in one objective is related to  § ,’
. . . . /
the gain in other objective(s).
. . . 40%
Motivation example: Buying a car
. | |
two extreme hypothetical cars 1 and 2, 10k P
Cost
cars with a trade-off between cost and
Comfort _ A B and C (©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.
m out of all of the trade-off solutions with respect to all objectives?

Without any further information those trade-offs are indistinguishable.




Multi-Objective Optimization: Definition

Minimize /maximize f,,(x), m=1,2,.... M,
subject to g;(x) > 0, j=1,2..J;
hi(z) = 0, k=12 . K.
CCZ(L) <z < :Ugm, 1=1,2,...,n.
T.

= x is a vector of n decision variables: x = (x1, x9, ..., T,)";

N is constituted by variable bounds that restrict each variable x; to take a

(L)

value within a lower 2, and an upper 2V bound;

i
m Inequality and equality constraints

m A solution z that satisfies all constraints and variable bounds is a otherwise
it si called an .

B is a set of all feasible solutions:

= Objective functions f(x) = (f1(z), fo(x), ..., far(x))! constitute a multi-dimensional




Decision and Objective Space

=
3 O e . .
A Decision space Objective space

X
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m For each solution x in the decision space, there exists a point in the objective space

Fa) = 2 = (21, 29,y )T
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Motivation Example: Cantilever Design Problem

is to design a beam, defined by two decision variables

s diameter d,

= length [.

that can carry an end load P and is optimal with
respect to the following

A\
AN
jof

= f1 — minimization of weight,

A
|

= fo — minimization of de flection.

Obviously, conflicting objectives!

su bject to the fo”owing (©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

m the developed maximum stress o,,,, is less than the allowable strength S,

m the end deflection ¢ is smaller than a specified limit 9,4,




Cantilever Design Problem:

Decision and Objective Space
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Dominance and Pareto-Optimal Solutions

- A solution V) is said to dominate the other solution z'%), z(!) < 22 if (1) s
no worse than %) in all objectives and x\V) is strictly better than ') in at least one objective.
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Solutions A, B, C, D are non-dominated solutions (Pareto-optimal solutions)

Solution E is dominated by C a B (E is non-optimal).




Properties of Dominance Relation

Dominance is
= is not reflexive — because any solution does not dominate itself,

m is not symmetric — because p < ¢ does not imply ¢ < p,
m is not antisymmetric — implies from previous line,

m is transitive — because if p < ¢ and ¢ < r, then p < r.
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Principles of Multi-Objective Optimization

:: Every finite set of solutions P can be divided into two non-overlapping sets

= non-dominated set P; — contains all solutions that do not dominate each other, and

s dominated set %, — at least one solution in P, dominates any solution in P.

in multi-objective optimization

1. — To find a set of solutions as close as possible to the Pareto-optimal front.
2. — To find a set of solutions as diverse as possible.

;E2 — Locally ! X,

‘ Pareto-optimal set T

L Globally f x
Pareto-optimal set 1 2t

(©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.




Non-Conflicting Objectives

:: There exist multiple Pareto-optimal solutions in a problem only if the objectives are conflicting

to each other.
m If this does not hold then the cardinality of the Pareto-optimal set is one.

Example: Cantilever beam design problem
= f1 — minimizing the end deflection 9,

= fo — minimizing the maximum developed stress in the beam o,,,;.
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Differences with Single-Objective Optimization

m progressing towards the Pareto-optimal front,

= maintaining a diverse set of solutions in the non-dominated set.

m objective vs. decision space,

= in which space the diversity must be achieved?

m weighted sum approach — multiple objectives are weighted and summed together to create a
composite objective function.

lts performance depends on the chosen weights.
m e-constraint method — chooses one of the objective functions and treats of the objectives as
constraints by limiting each of them within certain predefined limits.

Also depends on the chosen constraint limits.




Difficulties with Classical Optimization Algorithms

= [he convergence to an optimal solution depends on the chosen initial solution.
m Most algorithms tend to get stuck to a suboptimal solution.

= An algorithm efficient in solving one optimization problem may not be efficient in solving a
different opt. problem.

m Algorithms are not efficient in handling problems having a discrete search space.

m Algorithms cannot be efficiently used on a parallel machine
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Non-Dominated Sorting Genetic Algorithm (NSGA)

with the standard GA

variation operators — crossover and mutation,

m selection method — Stochastic Reminder Roulette-Wheel,

standard generational evolutionary model.

fitness assignment scheme which prefers non-dominated solutions, and

m fitness sharing strategy which preserves diversity among solutions of each non-dominated front.

1. Initialize population of solutions
2. Repeat

m Calculate objective values and assign fitness values

m Generate new population

Until stopping condition is fulfilled




Fitness Sharing

originally proposed for solving multi-modal optimization
problems so that GA is able to sample each optimum with the same number of solutions.

— diversity in the population is preserved by degrading the fitness of similar solutions

i for calculating the shared fitness function value of i-th individual in population of
size N
1. calculate sharing function value with all solutions in the population according to

1 — (—d )a, if d < Oshare

Sh(d) — Oshare _
0, otherwise.
2. calculate niche count nc¢; as follows
N
ne; = Sh(d)
j=1
3. calculate shared fitness as
fil = fi/nCi

: If d = 0 then Sh(d) = 1 meaning that two solutions are identical. If d > o4qre
then Sh(d) = 0 meaning that two solutions do not have any sharing effect on each other.




Fitness Sharing: Example

:: Bimodal function - six solutions and corresponding shared fitness functions

B Ogygre = 0.5, o = 1.

Sol. String Decoded x(V) f; ne; T A 6 5
i value r 7
17 ‘10100 52 1.651 0.890 2.856 0.312 el
2 101100 44 1.397 0.948 3.160 0.300 S 06
S+ 011104 29 0.921 0.246 1.048 0.235 “
4 001011 11 0.349 0.890 1.000 0.890 et fd o
5 110000 48 1.524 0.997 3.364 0.296 02 = g
6 101110 46 1.460 0.992 3.364 0.295 ; P
0 0.5 1 1.5 2
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:: Let's take the first solution
m di; = 0.0, dig = 0.254, di3 = 0.731, dyy = 1.302, di5 = 0.127, dig = 0.191
s Sh(di1) =1, Sh(dip) = 0.492, Sh(di3) = 0, Sh(dys) = 0,
Sh(d15) = (.746, Sh(d16) = 0.618.
mncg=140492+040+0.746 4+ 0.618 = 2.856
o f’(l) = f(l)/nq = 0.890/2.856 = 0.312
0ooooooao Evolutionary Algorithms: Lecture 4
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NSGA: Fitness Assignment

:: Input: Set P of solutions with assigned objective values.

:: Output: Set of solutions with assigned fitness values (the bigger the better).

1. Choose sharing parameter o, small positive number ¢,

initialize F},,, = PopSize and front counter front =1
2. Find set P’ C P of non-dominated solutions

3. Foreachg e P’
= assign fitness f(q) = fiaz

= calculate sharing function with all solutions in P’ niche

count nc, among solutions of P’ only, g ( T, — @) 2
) ) ) ) Ly maxr __ ~.min
the normalized Euclidean distance d;; is calculated 1 Tk Ly,

s calculate shared fitness f'(q) = f(q)/nc,.
4. foae =min(f'(q) :q € P') — ¢
P=P\ P
front = front +1

5. If not all solutions are assessed go to step 2, otherwise stop.




NSGA: Fitness Assignment cont.

:: Example:
m First, 10 solutions are classified into different non-dominated fronts.
m [hen, the fitness values are calculated according to the fitness sharing method.
The sharing function method is used front-wise.

Within a front, less dense solutions have better fitness values.
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NSGA: Conclusions

= Governed by the non-dominated sorting procedure and the sharing function implementation.

non-dominated sorting — complexity of O(M N?).

sharing function — requires every solution in a front to be compared with every other
solution in the same front, total of » /| | Pj|?, where p is a number of fronts.

Each distance computation requires evaluation of n differences between parameter values.
In the worst case, when p = 1, the overall complexity is of O(nN?).

m Assignment of fitness according to non-dominated sets — makes the algorithm converge towards
the Pareto-optimal region.

m Sharing allows phenotypically diverse solutions to emerge.

m sensitive to the sharing method parameter o4

some guidelines for setting the parameter based on the expected number of optima g¢.
0.5

{a

Oshare =

or dynamic update procedure of opqpe.




NSGA-II

= Computational complexity of O(M N?).

m the sharing function method is replaced with a crowded comparison approach,

m parameterless approach.




NSGA-II: Diversity preservation

fh) 0
[ ]
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Every solution in the population has two attributes
1. non-domination rank (i"*"%), and

2. crowding distance (i4/st@nce),

A partial order <, is defined as:

7 '<nj if(imnk < jrank) or ((Z'rank — jmnk)and(idistance > jdistance))




NSGA-II: Evolutionary Model

1. Current population P, is sorted based on the non-domination

Each solution is assigned a fitness equal to its non-domination level (1 is the best).

2. The usual binary tournament selection, recombination, and mutation are used to create a child
population (); of size N.

3. Combined population R; = P, U (); is formed.

Elitism is ensured.

4. Population P, is formed according to the following schema

Non—dominated Crowding P,
sorting distance
F_] I:I sorting |:|
P, e | L]
F_3
2,
Q, 1]
l: = Rejected
—1
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NSGA-II: Simulation Results

Problem with continuous Pareto-optimal front Problem with discontinuous Pareto-optimal front
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NSGA-II: Simulation Results cont.

Comparison of NSGA-Il and PAES on problem with continuous Pareto-optimal front
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NSGA-II: Constraint Handling Approach

with modified domination concept is used to choose the

better solution out of the two solutions ¢ and 7, randomly picked up from the population.

In the presence of constraints each solution in the population can be either feasible or
infeasible, so that there are the following three possible situations:

m both solutions are feasible,
m one is feasible and other is not,
m both are infeasible.

: A solution ¢ is said to constrained-dominate a solution j, if any

of the following conditions is true

1. Solution 7 is feasible and solution j is not.

2. Solutions 7 and j are both infeasible, but solution ¢ has a smaller overall constraint violation.

3. Solutions ¢ and j are feasible, and solution ¢ dominates solution j.




NSGA-II: Simulation Results cont.

Comparison of NSGA-Il and Ray-Kang-Chye's Constraint handling approach

B Ray, T., Tai, K. and Seow, K.C. [2001] " Multiobjective Design Optimization by an Evolutionary Algorithm”, Engineering Optimization, Vol.33, No.4, pp.399-424
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NSGA-II: Simulation Results cont.

Comparison of NSGA-Il and Ray-Kang-Chye's Constraint handling approach
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