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pMulti-Objective Optimization

:: Many real-world problems involve multiple objectives

� Conflicting objectives

− A solution that is extreme with respect

to one objective requires a compromise in

other objectives.

− A sacrifice in one objective is related to

the gain in other objective(s).

Motivation example: Buying a car

− two extreme hypothetical cars 1 and 2,

− cars with a trade-off between cost and

comfort – A, B, and C. c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

� Which solution out of all of the trade-off solutions is the best with respect to all objectives?

Without any further information those trade-offs are indistinguishable.

=⇒ a number of optimal solutions is sought in multiobjective optimization!
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pMulti-Objective Optimization: Definition

:: General form of multi-objective optimization problem

Minimize/maximize fm(x), m = 1, 2, ...,M ;

subject to gj(x) ≥ 0, j = 1, 2, ..., J ;

hk(x) = 0, k = 1, 2, ..., K;

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2, ..., n.

� x is a vector of n decision variables: x = (x1, x2, ..., xn)T ;

� Decision space is constituted by variable bounds that restrict each variable xi to take a

value within a lower x
(L)
i and an upper x

(U)
i bound;

� Inequality and equality constraints

� A solution x that satisfies all constraints and variable bounds is a feasible solution, otherwise

it si called an infeasible solution;

� Feasible space is a set of all feasible solutions;

� Objective functions f (x) = (f1(x), f2(x), ..., fM(x))T constitute a multi-dimensional

objective space.
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pDecision and Objective Space

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

� For each solution x in the decision space, there exists a point in the objective space

f (x) = z = (z1, z2, ..., zM)T
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pMotivation Example: Cantilever Design Problem

Task is to design a beam, defined by two decision variables

� diameter d,

� length l.

that can carry an end load P and is optimal with

respect to the following objectives

� f1 – minimization of weight,

� f2 – minimization of deflection.

Obviously, conflicting objectives!

subject to the following constraints c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

� the developed maximum stress σmax is less than the allowable strength Sy,

� the end deflection δ is smaller than a specified limit δmax.
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pCantilever Design Problem: Decision and Objective Space

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.
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pDominance and Pareto-Optimal Solutions

:: Domination: A solution x(1) is said to dominate the other solution x(2), x(1) � x(2), if x(1) is

no worse than x(2) in all objectives and x(1) is strictly better than x(2) in at least one objective.

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

Solutions A, B, C, D are non-dominated solutions (Pareto-optimal solutions)

Solution E is dominated by C a B (E is non-optimal).
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pProperties of Dominance Relation

Dominance is

� is not reflexive – because any solution does not dominate itself,

� is not symmetric – because p � q does not imply q � p,

� is not antisymmetric – implies from previous line,

� is transitive – because if p � q and q � r, then p � r.

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.
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pPrinciples of Multi-Objective Optimization

:: Every finite set of solutions P can be divided into two non-overlapping sets

� non-dominated set P1 – contains all solutions that do not dominate each other, and

� dominated set P2 – at least one solution in P1 dominates any solution in P2.

:: Two goals in multi-objective optimization

1. Quality – To find a set of solutions as close as possible to the Pareto-optimal front.

2. Spread – To find a set of solutions as diverse as possible.

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.
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pNon-Conflicting Objectives

:: There exist multiple Pareto-optimal solutions in a problem only if the objectives are conflicting

to each other.

� If this does not hold then the cardinality of the Pareto-optimal set is one.

Example: Cantilever beam design problem

� f1 – minimizing the end deflection δ,

� f2 – minimizing the maximum developed stress in the beam σmax.

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.
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pDifferences with Single-Objective Optimization

:: Two (orthogonal) goals instead of one

� progressing towards the Pareto-optimal front,

� maintaining a diverse set of solutions in the non-dominated set.

:: Dealing with two search spaces

� objective vs. decision space,

� in which space the diversity must be achieved?

:: No artificial fix-ups

� weighted sum approach – multiple objectives are weighted and summed together to create a

composite objective function.

Its performance depends on the chosen weights.

� ε-constraint method – chooses one of the objective functions and treats of the objectives as

constraints by limiting each of them within certain predefined limits.

Also depends on the chosen constraint limits.
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pDifficulties with Classical Optimization Algorithms

� The convergence to an optimal solution depends on the chosen initial solution.

� Most algorithms tend to get stuck to a suboptimal solution.

� An algorithm efficient in solving one optimization problem may not be efficient in solving a

different opt. problem.

� Algorithms are not efficient in handling problems having a discrete search space.

� Algorithms cannot be efficiently used on a parallel machine
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pMulti-Objective Evolutionary Algorithms

� Pareto Archived Evolution Strategy (PAES)

Knowles, J.D., Corne, D.W. (2000) Approximating the nondominated front using the Pareto

archived evolution strategy. Evolutionary Computation, 8(2), pp. 149-172

� Multiple Objective Genetic Algorithm (MOGA)

Carlos M. Fonseca, Peter J. Fleming: Genetic Algorithms for Multiobjective Optimization:

Formulation, Discussion and Generalization, In Genetic Algorithms: Proceedings of the Fifth

International Conference, 1993

� Niched-Pareto Genetic Algorithm (NPGA)

Jeffrey Horn, Nicholas Nafpliotis, David E. Goldberg: A Niched Pareto Genetic Algorithm

for Multiobjective Optimization, Proceedings of the First IEEE Conference on Evolutionary

Computation, IEEE World Congress on Computational Intelligence, 1994

� SPEA2

Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Al-

gorithm For Multiobjective Optimization, In: Evolutionary Methods for Design, Optimisation,

and Control, Barcelona, Spain, pp. 19-26, 2002
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� NSGA

Srinivas, N., and Deb, K.: Multi-objective function optimization using non-dominated sorting

genetic algorithms, Evolutionary Computation Journal 2(3), pp. 221-248, 1994

� NSGA-II

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T Meyarivan: A Fast Elitist Non-Dominated

Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II, In Proceedings of the

Parallel Problem Solving from Nature VI Conference, 2000

� . . .
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pNon-Dominated Sorting Genetic Algorithm (NSGA)

:: Common features with the standard GA

� variation operators – crossover and mutation,

� selection method – Stochastic Reminder Roulette-Wheel,

� standard generational evolutionary model.

:: What distinguishes NSGA from the SGA

� fitness assignment scheme which prefers non-dominated solutions, and

� fitness sharing strategy which preserves diversity among solutions of each non-dominated front.

:: Algorithm NSGA

1. Initialize population of solutions

2. Repeat

� Calculate objective values and assign fitness values

� Generate new population

Until stopping condition is fulfilled
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pFitness Sharing

:: Diversity preservation method originally proposed for solving multi-modal optimization

problems so that GA is able to sample each optimum with the same number of solutions.

:: Idea – diversity in the population is preserved by degrading the fitness of similar solutions

:: Algorithm for calculating the shared fitness function value of i-th individual in population of

size N

1. calculate sharing function value with all solutions in the population according to

Sh(d) =
1− ( d

σshare
)α, if d ≤ σshare

0, otherwise.

2. calculate niche count nci as follows

nci =

N∑
j=1

Sh(dij)

3. calculate shared fitness as

f ′i = fi/nci

:: Remark: If d = 0 then Sh(d) = 1 meaning that two solutions are identical. If d ≥ σshare

then Sh(d) = 0 meaning that two solutions do not have any sharing effect on each other.
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pFitness Sharing: Example

:: Bimodal function - six solutions and corresponding shared fitness functions

� σshare = 0.5, α = 1.

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

:: Let’s take the first solution

� d11 = 0.0, d12 = 0.254, d13 = 0.731, d14 = 1.302, d15 = 0.127, d16 = 0.191

� Sh(d11) = 1, Sh(d12) = 0.492, Sh(d13) = 0, Sh(d14) = 0,

Sh(d15) = 0.746, Sh(d16) = 0.618.

� nc1 = 1 + 0.492 + 0 + 0 + 0.746 + 0.618 = 2.856

� f ′(1) = f (1)/nc1 = 0.890/2.856 = 0.312
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pNSGA: Fitness Assignment

:: Input: Set P of solutions with assigned objective values.

:: Output: Set of solutions with assigned fitness values (the bigger the better).

1. Choose sharing parameter σshare, small positive number ε,

initialize Fmax = PopSize and front counter front = 1

2. Find set P ′ ⊂ P of non-dominated solutions

3. For each q ∈ P ′

� assign fitness f (q) = fmax,

� calculate sharing function with all solutions in P ′ niche

count ncq among solutions of P ′ only,

the normalized Euclidean distance dij is calculated

� calculate shared fitness f ′(q) = f (q)/ncq.

dij =

√√√√ n∑
k=1

(
x

(i)
k − x

(j)
k

xmax
k − xmin

k

)2

4. fmax = min(f ′(q) : q ∈ P ′)− ε

P = P \ P ′

front = front + 1

5. If not all solutions are assessed go to step 2, otherwise stop.
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pNSGA: Fitness Assignment cont.

:: Example:

� First, 10 solutions are classified into different non-dominated fronts.

� Then, the fitness values are calculated according to the fitness sharing method.

− The sharing function method is used front-wise.

− Within a front, less dense solutions have better fitness values.

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.
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pNSGA: Conclusions

:: Computational complexity
� Governed by the non-dominated sorting procedure and the sharing function implementation.

− non-dominated sorting – complexity of O(MN 3).

− sharing function – requires every solution in a front to be compared with every other

solution in the same front, total of
∑ρ

j=1 |Pj|2, where ρ is a number of fronts.

Each distance computation requires evaluation of n differences between parameter values.

In the worst case, when ρ = 1, the overall complexity is of O(nN 2).

:: Advantages
� Assignment of fitness according to non-dominated sets – makes the algorithm converge towards

the Pareto-optimal region.

� Sharing allows phenotypically diverse solutions to emerge.

:: Disdvantages
� sensitive to the sharing method parameter σshare.

− some guidelines for setting the parameter based on the expected number of optima q.

σshare =
0.5
n
√

q

− or dynamic update procedure of σshare.
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pNSGA-II

:: Fast non-dominated sorting approach

� Computational complexity of O(MN 2).

:: Diversity preservation

� the sharing function method is replaced with a crowded comparison approach,

� parameterless approach.

:: Elitist evolutionary model
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pNSGA-II: Diversity preservation

:: Density estimation

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

:: Crowded comparison operator

Every solution in the population has two attributes
1. non-domination rank (irand), and

2. crowding distance (idistance).

A partial order ≺n is defined as:

i ≺n j if(irank < jrank) or ((irank = jrank)and(idistance > jdistance))

� � � � � � � � � � � � � � � � � � � � � � � � � � � � Evolutionary Algorithms: Lecture 4



pNSGA-II: Evolutionary Model

1. Current population Pt is sorted based on the non-domination

Each solution is assigned a fitness equal to its non-domination level (1 is the best).

2. The usual binary tournament selection, recombination, and mutation are used to create a child

population Qt of size N.

3. Combined population Rt = Pt ∪Qt is formed.

Elitism is ensured.

4. Population Pt+1 is formed according to the following schema

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.
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pNSGA-II: Simulation Results

Problem with continuous Pareto-optimal front Problem with discontinuous Pareto-optimal front

c©Kalyanmoy Deb et al.: A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II.
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pNSGA-II: Simulation Results cont.

Comparison of NSGA-II and PAES on problem with continuous Pareto-optimal front

c©Kalyanmoy Deb et al.: A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II.
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pNSGA-II: Constraint Handling Approach

:: Binary tournament selection with modified domination concept is used to choose the

better solution out of the two solutions i and j, randomly picked up from the population.

:: In the presence of constraints each solution in the population can be either feasible or

infeasible, so that there are the following three possible situations:

� both solutions are feasible,

� one is feasible and other is not,

� both are infeasible.

:: Constrained-domination: A solution i is said to constrained-dominate a solution j, if any

of the following conditions is true

1. Solution i is feasible and solution j is not.

2. Solutions i and j are both infeasible, but solution i has a smaller overall constraint violation.

3. Solutions i and j are feasible, and solution i dominates solution j.
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pNSGA-II: Simulation Results cont.

Comparison of NSGA-II and Ray-Kang-Chye’s Constraint handling approach

� Ray, T., Tai, K. and Seow, K.C. [2001] ”Multiobjective Design Optimization by an Evolutionary Algorithm”, Engineering Optimization, Vol.33, No.4, pp.399-424

NSGA-II Ray-Kang-Chye’s

c©Kalyanmoy Deb et al.: A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II.
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pNSGA-II: Simulation Results cont.

Comparison of NSGA-II and Ray-Kang-Chye’s Constraint handling approach

NSGA-II Ray-Kang-Chye’s

c©Kalyanmoy Deb et al.: A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II.
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