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Based on tutorial by Benavoli et al.
http://ipg.idsia.ch/tutorials/2016/bayesian-tests-ml/

Experiments:

§ Comparing Adaboost (ada) vs. Gradient boosting classifier
(gbc)

§ scikit-learn implementation

§ max depth=1, n estimators=100

§ learning rate=1.0 (gbc)

http://ipg.idsia.ch/tutorials/2016/bayesian-tests-ml/
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Data

Table: 27 UCI data sets

Name Size No. of features

0 heart-statlog 270 13
1 mushroom 5644 22
2 segment 2310 19
3 cleveland-14-heart-disease 296 13
4 zoo 101 17

. . .
23 ionosphere 351 34
24 pima diabetes 768 8
25 vote 232 16
26 vehicle 846 18
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Null hypothesis significance testing

Procedure of NHST

1. State the null and the alternative hypotheses H0 and H1

2. Based on statistical assumption about data, choose a
statistical test

3. Under the null hypothesis, the test statistic T follows a known
probability distribution

4. Calculate observed test statistic tpxq

5. Calculate the probability that T is “more extreme” than
observed tpxq (the p-value)

6. If p ă α, reject H0
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NHST in machine learning

Correlated t-test

§ Used to test two algorithms on one data set

§ Calculates a score (e. g., accuracy) on p runs of k-fold
cross-validation

§ Sample size: n “ pk

§ Observations: x “ pxiq
n
i“1, the score differences on each fold

§ The standard t-test assumes xi to be independently,
identically and normally distributed

§ Correlated t-test accounts for correlations between
xi, xj , i ‰ j due to cross-validation
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NHST in machine learning

Correlated t-test (II)

The test statistic:

tpx, µq “
x̄´ µ

c

σ̂2
´

1
n ´

ρ
1´ρ

¯

§ t follows Student’s distribution with n´ 1 degrees of freedom

§ ρ – correlation between results from overlapping training sets

§
ρ

1´ρ “
nte
ntr

– a heuristic for the correlation correction
parameter (Nadeau and Bengio, 2003)

§ Two-sided test: H0 : µ “ 0, H1 : µ ‰ 0

§ One-sided test: H0 : µ ď 0, H1 : µ ą 0
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NHST in machine learning

Example

Table: p-values of the two-sided correlated t-test. 14 out of 27 results are
significant at α “ 0.05.

Name p-val

0 heart-statlog 0.51
1 mushroom 0.00*
2 segment 0.00*
3 cleveland-14-heart-disease 0.42
4 zoo 0.00*

. . .
23 ionosphere 0.23
24 pima diabetes 0.29
25 vote 0.39
26 vehicle 0.00*
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NHST in machine learning

Wilcoxon signed-rank test

§ Used to compare two classifiers on multiple data sets

§ Counts ranks of differences, not their magnitudes

§ zi – the mean score difference on ith data set, i “ 1, . . . , q

§ zi assumed to be i.i.d. samples from a symmetric distribution
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NHST in machine learning

Wilcoxon signed-rank test (II)

§ The test statistic is

t “ min

"

ÿ

i:zią0

rankp|zi|q `
1

2

ÿ

i:zi“0

rankp|zi|q,

ÿ

i:ziă0

rankp|zi|q `
1

2

ÿ

i:zi“0

rankp|zi|q

*

§ Critical value tables exist for q small enough, e. g., q ă 25

§ Otherwise w “
t´ 1

4
qpq`1q

b

1
24
qpq`1qp2q`1q

follows an approximately

normal distribution
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NHST in machine learning

Example

Wilcoxon signed-rank test of mean accuracy difference between
ada and gbc:

w “ 120, p-value“ 0.10.
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Pitfalls of NHST

p-value not what researchers want

§ p-value is not the probability of the null hypothesis

ppT ą tpxq|H0q ‰ ppH0|xq

§ Similarly, 1´ p is not the probability of the alternative
hypothesis

ppT ď tpxq|H0q ‰ ppH1|xq



Bayesian Hypotheses Testing

Pitfalls of NHST

p-value depends on sample size

§ The difference between classifiers is never zero

§ Arbitrarily small effects can be confirmed on large enough
samples

20 trials, p-value“ 0.24 100 trials, pr ă 10´3
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Pitfalls of NHST

NHST cannot measure effect size

§ Statistical significance does not imply practical significance

p ă 10´3 p ă 10´3
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Pitfalls of NHST

And more. . .

§ If null hypothesis is not rejected, the result is inconclusive

§ Significance level cannot be reasonably decided

§ NHST assumes certain sampling intentions
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Pitfalls of NHST

Bayesian analysis

Bayesian inference:

1. Formulating a joint probability model of observable data x
and unknown parameters θ:

ppθ,xq “ ppx|θqppθq

2. Infering θ|x by Bayes’ theorem:

ppθ|xq “
ppθ,xq

ppxq
“
ppx|θqppθq

ppxq

3. Summarizing the posterior distribution
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Bayesian tests

Bayesian correlated t-test

Likelihood:

x |µ, τ „ MVNpµ1,Σq

Σ “

¨

˚

˚

˚

˝

1{τ ρ{τ ¨ ¨ ¨ ρ{τ

ρ{τ 1{τ ¨ ¨ ¨ ρ{τ
...

...
. . .

...
ρ{τ ρ{τ ¨ ¨ ¨ 1{τ

˛

‹

‹

‹

‚

Prior:

µ, τ „ NormalGammapµ0, k0, a, bq

µ | τ „ N pµ0, k0{τq
τ „ Gammapa, bq
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Bayesian tests

Bayesian correlated t-test (II)

§ NormalGamma is conjugate to MVN

§ The posterior is a NormalGamma distribution

§ Marginalizing out precision τ , the posterior of µ is a Student
t-distribution

§ For µ0 “ 0, k0 Ñ8, a “ ´ 1{2, b “ 0 (matching prior):

µ „ St

˜

n´ 1, x̄,

d

σ̂2
ˆ

1

n
`

ρ

1´ ρ

˙

¸

§ What is the difference then?
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Bayesian tests

Example

Region of practical equivalence (rope): 0.01

P padaq ą gbcq “ 0.65 P propeq “ 0.15 P pgbc ą adaq “ 0.20
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Bayesian tests

Example
§ Can show practically significant differences (1´ P propeq)
§ Can quantify uncertainty (high density intervals)
§ Posterior probability of the null: P propeq
§ Provides basis for decisions (expected loss minimization)



Bayesian Hypotheses Testing

Bayesian tests

Bayesian signed-rank test

§ Let z “ pz1, . . . , zqq be i.i.d. samples of z

§ Place Dirichlet process prior on z parameterized by strength
s ą 0 and mean z0

§ The posterior is a Dirichlet mixture

§ Can be reformulated to a ternary distribution of test outcomes

§ Monte Carlo sampling used to approximate the posterior
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Bayesian tests

Example
Rope = 0.01

P pada ą gbcq “ 0.02 P propeq “ 0.24 P pgbc ą adaq “ 0.75

Posterior for Bayesian signed-rank test for ada vs. gbc on 27 UCI data
sets
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Bayesian tests

Conclusion

§ NHST has many drawbacks
§ Bayesian tests:

§ claimed significant differences are practical
§ are able to detect practical equivalence
§ provide estimate with uncertainty
§ allow to automatize decisions
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