Lecture 9: Learning max-sum classifier

Vojtěch Franc

April 23, 2015
7.C: Learning max-sum classifier from separable examples.
8.A: Learning two-class linear classifier from non-separable examples by SVM.

XEP33SML - Structured Model Learning, Summer 2015

7.C: Max-sum classifier

Setting:

- $(\mathcal{V}, \mathcal{E})$ is undirected graph; \mathcal{V} are parts and $\mathcal{E} \subseteq\binom{|\mathcal{V}|}{2}$ pairs of related parts
- each part $v \in \mathcal{V}$ described by observation $x \in \mathcal{X}$ and label $y \in \mathcal{Y} ; \mathcal{X}$ and \mathcal{Y} are finite
$q_{v}: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ quality of label y_{v} given $x_{v} ; \boldsymbol{q}=\left(g_{v}(x, y) \in \mathbb{R} \mid x \in \mathcal{X}, y \in \mathcal{Y}, v \in \mathcal{V}\right)$
$g_{v v^{\prime}}: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ quality a label pair $\left(y_{v}, y_{v^{\prime}}\right)$;
$\boldsymbol{g}=\left(g_{v v^{\prime}}\left(y, y^{\prime}\right) \in \mathbb{R} \mid\left(y, y^{\prime}\right) \in \mathcal{Y}^{2},\left\{v, v^{\prime}\right\} \in \mathcal{E}\right)$
Max-sum classifier: Given observations $\boldsymbol{x}=\left(x_{v} \in \mathcal{X} \mid v \in \mathcal{V}\right) \in \mathcal{X}^{\mathcal{V}}$, the max-sum classifier $h: \mathcal{X}^{\mathcal{V}} \rightarrow \mathcal{Y}^{\mathcal{V}}$ returns labeling $\boldsymbol{y}=\left(y_{v} \in \mathcal{Y} \mid v \in \mathcal{V}\right) \in \mathcal{Y}^{\mathcal{V}}$ with the maximal overall quality

$$
h(\boldsymbol{x} ; \boldsymbol{q}, \boldsymbol{g}) \in \underset{\boldsymbol{y} \in \mathcal{Y}^{\mathcal{V}}}{\operatorname{argmax}} f(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{q}, \boldsymbol{g})
$$

where

$$
f(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{q}, \boldsymbol{g})=\sum_{v \in \mathcal{V}} q_{v}\left(x_{v}, y_{v}\right)+\sum_{\left\{v, v^{\prime}\right\} \in \mathcal{E}} g_{v v^{\prime}}\left(y_{v}, y_{v^{\prime}}\right)
$$

The max-sum classifier is an instance of the linear classifier since $f(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{q}, \boldsymbol{g})=\langle\boldsymbol{\Psi}(\boldsymbol{x}, \boldsymbol{y}), \boldsymbol{w}\rangle$ where $\boldsymbol{w}=(\boldsymbol{q}, \boldsymbol{g})$ and $\boldsymbol{\Psi}: \mathcal{X}^{\mathcal{Y}} \times \mathcal{Y}^{\mathcal{V}} \rightarrow \mathbb{R}^{|\mathcal{Y}||\mathcal{V}|+|\mathcal{E}||\mathcal{Y}|^{2}}$ is constructed appropriately.

7.C: Relation between Max-sum classifier and Gibbs distribution

- $(\mathcal{V}, \mathcal{E})$ is undirected graph
- $\left\{\left(X_{v}, Y_{v}\right) \mid v \in \mathcal{V}\right\}$ is a field of random variables taking values from $\left(x_{v}, y_{v}\right) \in X \times \mathcal{Y}, v \in \mathcal{V}$
- the random variables are distributed according to the Gibbs distribution

$$
\begin{aligned}
p_{\boldsymbol{q}, \boldsymbol{g}}(\boldsymbol{x}, \boldsymbol{y}) & =\frac{1}{Z(\boldsymbol{q}, \boldsymbol{g})} \exp \left(\sum_{v \in \mathcal{V}} q_{v}\left(x_{v}, y_{v}\right)+\sum_{\left\{v, v^{\prime}\right\} \in \mathcal{E}} g_{v v^{\prime}}\left(y_{v}, y_{v^{\prime}}\right)\right) \\
& =\frac{1}{Z(\boldsymbol{q}, \boldsymbol{g})} \exp f(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{q}, \boldsymbol{g})
\end{aligned}
$$

- The optimal (Bayes) classifier minimizing the expected risk under the 0/1-loss

$$
\left.R(h)=\mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim p_{\boldsymbol{q}, \boldsymbol{g}}} \llbracket \boldsymbol{y} \neq h(\boldsymbol{x})\right]
$$

is the max-sum classifier

$$
h(\boldsymbol{x} ; \boldsymbol{q}, \boldsymbol{g}) \in \underset{\boldsymbol{y} \in \mathcal{Y}^{\nu}}{\operatorname{argmax}} f(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{q}, \boldsymbol{g})
$$

7.C: Learning max-sum classifier from linearly separable examples

Task: Given linearly separable training set $\mathcal{T}=\left\{\left(\boldsymbol{x}^{i}, \boldsymbol{y}^{i}\right) \in \mathcal{X}^{\mathcal{V}} \times \mathcal{Y}^{\mathcal{V}} \mid i \in \mathcal{I}=\{1, \ldots, m\}\right\}$ find quality functions $\boldsymbol{q}, \boldsymbol{g}$ of the max-sum classifier such that

$$
\boldsymbol{y}^{i}=h\left(\boldsymbol{x}^{i} ; \boldsymbol{q}, \boldsymbol{g}\right)=\underset{\boldsymbol{y} \in \mathcal{Y}^{\mathcal{V}}}{\operatorname{argmax}}\left[\sum_{v \in \mathcal{V}} q_{v}\left(x_{v}^{i}, y_{v}\right)+\sum_{\left\{v, v^{\prime}\right\} \in \mathcal{E}} g_{v v^{\prime}}\left(y_{v}, y_{v^{\prime}}\right)\right], \quad i \in \mathcal{I} .
$$

The max-sum problem $\mathcal{P}=(\mathcal{E}, \mathcal{V}, \boldsymbol{q}, \boldsymbol{g}, \boldsymbol{x})$ associated with the classification $h(\boldsymbol{x} ; \boldsymbol{q}, \boldsymbol{g})$ is tractable if:

1. $(\mathcal{V}, \mathcal{E})$ is acyclic graph
2. \mathcal{Y} is fully ordered and $-g_{v v^{\prime}},\left\{v, v^{\prime}\right\} \in \mathcal{E}$ are submodular w.r.t the ordering: for each $\left(y_{v}, y_{v}^{\prime}, y_{v^{\prime}}, y_{v^{\prime}}^{\prime}\right) \in \mathcal{Y}^{4}$ such that $y_{v}>y_{v}^{\prime}$ and $y_{v^{\prime}}>y_{v^{\prime}}^{\prime}$ it following inequality holds

$$
g_{v v^{\prime}}\left(y_{v}, y_{v^{\prime}}\right)+g_{v v^{\prime}}\left(y_{v}^{\prime}, y_{v^{\prime}}^{\prime}\right) \leq g_{v v^{\prime}}\left(y_{v}, y_{v^{\prime}}^{\prime}\right)+g_{v v^{\prime}}\left(y_{v}^{\prime}, y_{v^{\prime}}\right)
$$

3. $\mathcal{P}=(\mathcal{V}, \mathcal{E}, \boldsymbol{q}, \boldsymbol{g}, \boldsymbol{x})$ have a strictly trivial equivalent, that is, the LP relaxation is tight and the max-sum problem has unique solution

7.C: LP relaxation of max-sum problem (recall Lecture 3, section 3)

The max-sum problem

$$
\boldsymbol{y}^{*} \in \underset{\boldsymbol{y} \in \mathcal{Y}^{\mathcal{V}}}{\operatorname{argmax}}\left[\sum_{v \in \mathcal{V}} q_{v}\left(x_{v}, y_{v}\right)+\sum_{\left\{v, v^{\prime}\right\} \in \mathcal{E}} g_{v, v^{\prime}}\left(y_{v}, y_{v^{\prime}}\right)\right]
$$

The Schlesinger's LP relaxation of the max-sum problem reads

$$
\boldsymbol{\mu}^{*}=\underset{\boldsymbol{\mu} \in \mathbb{R}^{\left.|\mathcal{V} \||\mathcal{Y}|+|\mathcal{E}|| \mathcal{Y}\right|^{2}}}{\operatorname{argmax}}\left[\sum_{v \in \mathcal{V}} \sum_{y \in \mathcal{Y}} \mu_{v}(y) q_{v}\left(x_{v}, y_{v}\right)+\sum_{\left\{v, v^{\prime}\right\} \in \mathcal{E}} \sum_{\left(y, y^{\prime}\right) \in \mathcal{Y}^{2}} \mu_{v v^{\prime}}\left(y, y^{\prime}\right) g_{v v^{\prime}}\left(y, y^{\prime}\right)\right]
$$

subject to

$$
\sum_{y^{\prime} \in \mathcal{Y}} \mu_{v v^{\prime}}\left(y, y^{\prime}\right)=\mu_{v}(y),\left\{v, v^{\prime}\right\} \in \mathcal{E}, y \in \mathcal{Y}, \quad \sum_{y \in \mathcal{Y}} \mu_{v}(y)=1, v \in \mathcal{V}, \quad \boldsymbol{\mu} \geq \mathbf{0}
$$

Note that adding a constraint $\boldsymbol{\mu} \in\{0,1\}$ makes the LP relaxation equivalent to the original max-sum problem.

7.C: Dual of LP relaxation

The Lagrange dual of the (primal) LP relaxation can be written as an unconstrained problem

$$
\boldsymbol{\varphi}^{*}=\underset{\boldsymbol{\varphi}}{\operatorname{argmin}} U\left(\boldsymbol{x}, \boldsymbol{q}^{\boldsymbol{\varphi}}, \boldsymbol{g}^{\boldsymbol{\varphi}}\right)=\underset{\boldsymbol{\varphi}}{\operatorname{argmin}}\left[\sum_{v \in \mathcal{V}} \max _{y \in \mathcal{Y}} q_{v}^{\boldsymbol{\varphi}}\left(x_{v}, y\right)+\sum_{\left\{v, v^{\prime}\right\} \in \mathcal{E}} \max _{\left(y, y^{\prime}\right) \in \mathcal{Y}^{\mathcal{L}^{2}}} g_{v v^{\prime}}^{\boldsymbol{\varphi}}\left(y, y^{\prime}\right)\right]
$$

where $\varphi \in \mathbb{R}^{2|\mathcal{E}||\mathcal{Y}|}$ is a vector of dual variables $\varphi_{v v^{\prime}}: \mathcal{Y} \rightarrow \mathbb{R}, \varphi_{v^{\prime} v}: \mathcal{Y} \rightarrow \mathbb{R},\left\{v, v^{\prime}\right\} \in \mathcal{E}$ and

$$
\begin{aligned}
g_{v v^{\prime}}^{\varphi}\left(y, y^{\prime}\right) & =g_{v v^{\prime}}\left(y, y^{\prime}\right)+\varphi_{v v^{\prime}}(y)+\varphi_{v^{\prime} v}\left(y^{\prime}\right), & & \left\{v, v^{\prime}\right\} \in \mathcal{E}, y, y^{\prime} \in \mathcal{Y} \\
q_{v}^{\varphi}(y) & =q_{v}(y)-\sum_{v^{\prime} \in \mathcal{N}(v)} \varphi_{v v^{\prime}}(y), & & v \in \mathcal{V}, y \in \mathcal{Y}
\end{aligned}
$$

Questions:

1. Is the LP relaxation tight, i.e., does it hold that $U\left(\boldsymbol{x}, \boldsymbol{q}^{\varphi^{*}}, \boldsymbol{g}^{\varphi^{*}}\right)=f\left(\boldsymbol{x}, \boldsymbol{y}^{*}, \boldsymbol{q}, \boldsymbol{g}\right)$?
2. If yes how to get the labels \boldsymbol{y}^{*} ?

7.C: Interpretation of the dual of LP relaxation

Definition 1. Problems $P=(\mathcal{V}, \mathcal{E}, \boldsymbol{q}, \boldsymbol{g}, \boldsymbol{x})$ and $P^{\prime}=\left(\mathcal{V}, \mathcal{E}, \boldsymbol{q}^{\prime}, \boldsymbol{g}^{\prime}, \boldsymbol{x}\right)$ are equivalent if $f(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{q}, \boldsymbol{g})=f\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{q}^{\prime}, \boldsymbol{g}^{\prime}\right)$ for all $\boldsymbol{y} \in \mathcal{Y}^{\mathcal{L}}$.

Re-parametrization: Let $P^{\varphi}=\left(\mathcal{V}, \mathcal{E}, \boldsymbol{q}^{\varphi}, \boldsymbol{g}^{\boldsymbol{\varphi}}, \boldsymbol{x}\right)$ be the max-sum problem constructed from $P=(\mathcal{V}, \mathcal{E}, \boldsymbol{q}, \boldsymbol{g}, \boldsymbol{x})$ by the re-reparametrization

$$
\begin{align*}
g_{v v^{\prime}}^{\varphi}\left(y, y^{\prime}\right) & =g_{v v^{\prime}}\left(y, y^{\prime}\right)+\varphi_{v v^{\prime}}(y)+\varphi_{v^{\prime} v}\left(y^{\prime}\right), & & \left\{v, v^{\prime}\right\} \in \mathcal{E}, y, y^{\prime} \in \mathcal{Y} \\
q_{v}^{\varphi}(y) & =q_{v}(y)-\sum_{v^{\prime} \in \mathcal{N}(v)} \varphi_{v v^{\prime}}(y), & & v \in \mathcal{V}, y \in \mathcal{Y} \tag{R}
\end{align*}
$$

Proposition 1. Two max-sum problems $P=(\mathcal{V}, \mathcal{E}, \boldsymbol{q}, \boldsymbol{g}, \boldsymbol{x})$ and $P^{\varphi}=\left(\mathcal{V}, \mathcal{E}, \boldsymbol{q}^{\boldsymbol{\varphi}}, \boldsymbol{g}^{\boldsymbol{\varphi}}, \boldsymbol{x}\right)$ related by the re-parametrization (R) are equivalent.

PROOF: It is seen from substituting (R) to $f(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{q}, \boldsymbol{g})=f\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{q}^{\boldsymbol{\varphi}}, \boldsymbol{g}^{\boldsymbol{\varphi}}\right)$.
Interpretation of the dual of LP relaxation: In the class of equivalent problems $\left\{P^{\varphi} \mid \varphi \in \mathbb{R}^{2|\mathcal{E}||\mathcal{Y}|}\right\}$ find the one with minimal energy

$$
U\left(\boldsymbol{x}, \boldsymbol{q}^{\boldsymbol{\varphi}}, \boldsymbol{g}^{\boldsymbol{\varphi}}\right)=\sum_{v \in \mathcal{V}} \max _{y \in \mathcal{Y}} q_{v}^{\boldsymbol{\varphi}}\left(x_{v}, y\right)+\sum_{\left\{v, v^{\prime}\right\} \in \mathcal{E}} \max _{\left(y, y^{\prime}\right) \in \mathcal{Y}^{2}} g_{v v^{\prime}}^{\varphi}\left(y, y^{\prime}\right)
$$

7.C: Trivial max-sum problems

Let us define a set $\mathcal{C}_{P} \subseteq \mathcal{Y}^{\mathcal{V}}$ which contains labelings $\boldsymbol{y} \in \mathcal{C}_{P}$ such that

$$
\begin{align*}
q_{v}\left(x_{v}, y_{v}\right) & \geq \max _{y \in \mathcal{Y}} q_{v}\left(x_{v}, y\right), & & v \in \mathcal{V} \\
g_{v v^{\prime}}\left(y_{v}, y_{v^{\prime}}\right) & \geq \max _{\left(y, y^{\prime}\right) \in \mathcal{Y}^{2}} g_{v v^{\prime}}\left(y, y^{\prime}\right), & & \left\{v, v^{\prime}\right\} \in \mathcal{E} \tag{Triv}
\end{align*}
$$

Definition 2. The max-sum problem $P=(\mathcal{V}, \mathcal{E}, \boldsymbol{q}, \boldsymbol{g}, \boldsymbol{x})$ is called trivial if $\mathcal{C}_{P} \neq \emptyset$.
Definition 3. The max-sum problem $P=(\mathcal{V}, \mathcal{E}, \boldsymbol{q}, \boldsymbol{g}, \boldsymbol{x})$ is called strictly trivial if it is trivial and all the inequalitites (Triv) are satisfied strictly.

Proposition 2. For any max-sum problem $P=(\mathcal{V}, \mathcal{E}, \boldsymbol{q}, \boldsymbol{g}, \boldsymbol{x})$ the inequality

$$
U(\boldsymbol{x}, \boldsymbol{q}, \boldsymbol{g}) \geq \max _{\boldsymbol{y} \in \mathcal{Y} \mathcal{V}} f(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{q}, \boldsymbol{g})
$$

holds true. The bound is tight if and only if P is trivial.
Corrolary: It is clear that if $U\left(\boldsymbol{x}, \boldsymbol{q}^{\boldsymbol{\varphi}}, \boldsymbol{g}^{\boldsymbol{\varphi}}\right)>\min _{\varphi^{\prime}} U\left(\boldsymbol{x}, \boldsymbol{q}^{\varphi^{\prime}}, \boldsymbol{g}^{\varphi^{\prime}}\right)$ then $P^{\boldsymbol{\varphi}}$ is not trivial.
Definition 4. The max-sum problem $P=(\mathcal{V}, \mathcal{E}, \boldsymbol{q}, \boldsymbol{g}, \boldsymbol{x})$ has a (strictly) trivial equivalent iff there exist φ such $P=\left(\mathcal{V}, \mathcal{E}, \boldsymbol{q}^{\varphi}, \boldsymbol{g}^{\boldsymbol{\varphi}}, \boldsymbol{x}\right)$ is (strictly) trivial.

7.C: Solving trivial max-sum problems by the LP relaxation

We can try to solve the max-sum problem P by checking whether it has a trivial equivalent as follows:

1. Solve the dual of LP relaxation

$$
\boldsymbol{\varphi}^{*}=\underset{\boldsymbol{\varphi}}{\operatorname{argmin}} U\left(\boldsymbol{x}, \boldsymbol{q}^{\boldsymbol{\varphi}}, \boldsymbol{g}^{\varphi}\right)
$$

It is a convex problem which can be translated to linear program. However, of-the-shelf solvers are not applicable for large problems.
2. Check the tightness of the LP relaxation by try to find $\boldsymbol{y} \in \mathcal{C}_{P}$:
\bullet Checking that $P^{\varphi^{*}}$ is strictly trivial, i.e. $\left|\mathcal{C}_{P}\right|=1$, requires $\mathcal{O}\left(|\mathcal{V} \| \mathcal{Y}|+|\mathcal{E}||\mathcal{Y}|^{2}\right)$ operations.

- Finding the consistent labeling $\boldsymbol{y} \in \mathcal{C}_{P}$ can be expresses as a constraint satisfaction problem (CSP) which is NP-complete in general.
CSP can be seen as an instance of max-sum problem with quality functions $(\boldsymbol{q}, \boldsymbol{g})$ taking only values $\{-\infty, 0\}$.

7.C: Learning strictly trivial max-sum classifier

Task: For a given training set $\left\{\left(\boldsymbol{x}^{1}, \boldsymbol{y}^{1}\right), \ldots,\left(\boldsymbol{x}^{m}, \boldsymbol{y}^{m}\right)\right\} \in\left(\mathcal{X}^{\mathcal{V}} \times \mathcal{Y}^{\mathcal{V}}\right)^{m}$ find the quality functions $(\boldsymbol{q}, \boldsymbol{g})$ such that $\boldsymbol{y}^{i}=h\left(\boldsymbol{x}^{i} ; \boldsymbol{q}, \boldsymbol{g}\right), i \in \mathcal{I}$, and the max-sum problems $P^{i}=\left(\mathcal{V}, \mathcal{E}, \boldsymbol{q}, \boldsymbol{g}, \boldsymbol{x}^{i}\right), i \in \mathcal{I}$, have a strictly trivial equivalent.

If $P=(\mathcal{V}, \mathcal{E}, \boldsymbol{q}, \boldsymbol{g}, \boldsymbol{x})$ has a strictly trivial equivalent and optimal solution is \boldsymbol{y}^{*} then there must exist φ such that the re-parametrized quality functions

$$
\begin{aligned}
q_{v}^{\varphi}(y) & =q_{v}(y)-\sum_{v^{\prime} \in \mathcal{N}(v)} \varphi_{v v^{\prime}}(y), & & v \in \mathcal{V}, y \in \mathcal{Y} \\
g_{v v^{\prime}}^{\varphi}\left(y, y^{\prime}\right) & =g_{v v^{\prime}}\left(y, y^{\prime}\right)+\varphi_{v v^{\prime}}(y)+\varphi_{v^{\prime} v}\left(y^{\prime}\right), & & \left\{v, v^{\prime}\right\} \in \mathcal{E}, y, y^{\prime} \in \mathcal{Y}
\end{aligned}
$$

satisfies

$$
\begin{aligned}
q_{v}^{\varphi}\left(x_{v}, y_{v}^{*}\right) & >\max _{y \in \mathcal{Y} \backslash\left\{y_{v}^{*}\right\}} q_{v}^{\varphi}\left(x_{v}, y\right), & v \in \mathcal{V} \\
g_{v v^{\prime}}^{\varphi}\left(y_{v}^{*}, y_{v^{\prime}}^{*}\right) & >\max _{\left(y, y^{\prime}\right) \in \mathcal{Y}^{2} \backslash\left\{\left(y_{v}^{*}, y_{v^{\prime}}^{*}\right)\right\}} g_{v v^{\prime}}^{\varphi}\left(y, y^{\prime}\right), & \left\{v, v^{\prime}\right\} \in \mathcal{E}
\end{aligned}
$$

Hence, learning the max-sum problem with STE is equivalent to solving a set of $m\left(|\mathcal{V}|(|\mathcal{Y}|-1)+|\mathcal{E}|\left(|\mathcal{Y}|^{2}-1\right)\right)$ strict linear inequalities

$$
\begin{aligned}
q_{v}^{\varphi^{i}}\left(x_{v}, y_{v}^{i}\right) & >q_{v}^{\varphi^{i}}\left(x_{v}, y\right), \quad i \in \mathcal{I}, v \in \mathcal{V}, y \in \mathcal{Y} \backslash\left\{y_{v}^{i}\right\} \\
g_{v v^{\prime}}^{\boldsymbol{\varphi}}\left(y_{v}^{i}, y_{v^{\prime}}^{i}\right) & >g_{v v^{\prime}}^{\varphi^{i}}\left(y, y^{\prime}\right), \quad i \in \mathcal{I},\left\{v, v^{\prime}\right\} \in \mathcal{E},\left(y, y^{\prime}\right) \in \mathcal{Y}^{2} \backslash\left\{\left(y_{v}^{i}, y_{v^{\prime}}^{i}\right)\right\}
\end{aligned}
$$

7.C: Perceptron learning strictly trivial max-sum classifier

1. Set $\boldsymbol{q} \leftarrow \mathbf{0}, \boldsymbol{g} \leftarrow \mathbf{0}, \boldsymbol{\varphi}^{i} \leftarrow \mathbf{0}, i \in \mathcal{I}$.
2. Find a triplet $i \in \mathcal{I}, v \in \mathcal{V}, y \in \mathcal{Y} \backslash\left\{y_{v}^{i}\right\}$ such that

$$
q_{v}\left(x_{v}^{i}, y_{v}^{i}\right)-\sum_{v^{\prime} \in \mathcal{N}(v)} \varphi_{v v^{\prime}}^{i}\left(y_{v}^{i}\right) \leq q_{v}\left(x_{v}^{i}, y\right)-\sum_{v^{\prime} \in \mathcal{N}(v)} \varphi_{v v^{\prime}}^{i}(y)
$$

3. If no such triplet (i, v, y) exists then go to Step 4. Otherwise update \boldsymbol{q} and $\boldsymbol{\varphi}^{i}$ by

$$
\left.\left.\begin{array}{rl}
\varphi_{v v^{\prime}}^{i}\left(y_{v}^{i}\right) & \leftarrow \varphi_{v v^{\prime}}^{i}\left(y_{v}^{i}\right)-1, \quad \varphi_{v v^{\prime}}^{i}(y) \\
q_{v}\left(x_{v}^{i}, y_{v}^{i}\right) & \leftarrow q_{v}\left(x_{v}^{i}, y_{v}^{i}\right)+1, \quad q_{v}\left(x_{v}^{i}, y\right)
\end{array}\right) \leftarrow q_{v v^{\prime}}^{i}(y)+1, \quad x_{v}^{i}, y\right)-1 \in \mathcal{N}(v)
$$

4. Find a five-tuple $i \in \mathcal{I},\left\{v, v^{\prime}\right\} \in \mathcal{E},\left(y, y^{\prime}\right) \in \mathcal{Y}^{2} \backslash\left\{\left(y_{v}^{i}, y_{v^{\prime}}^{i}\right)\right\}$ such that

$$
\boldsymbol{g}_{v v^{\prime}}\left(y_{v}^{i}, y_{v^{\prime}}^{i}\right)+\varphi_{v v^{\prime}}^{i}\left(y_{v}^{i}\right)+\varphi_{v^{\prime} v}^{i}\left(y_{v^{\prime}}^{i}\right) \leq g_{v v^{\prime}}\left(y, y^{\prime}\right)+\varphi_{v v^{\prime}}^{i}(y)+\varphi_{v^{\prime} v}^{i}\left(y^{\prime}\right)
$$

5. If no such five-tuple ($i, v, v^{\prime}, y, y^{\prime}$) exists and no update was made in Step 3 then $\left(\boldsymbol{q}, \boldsymbol{g}, \varphi^{i}, i \in \mathcal{I}\right)$ solves the tasks. Otherwise update \boldsymbol{g} and φ^{i} by

$$
\begin{aligned}
\varphi_{v v^{\prime}}^{i}\left(y_{v}^{i}\right) & \leftarrow \varphi_{v v^{\prime}}^{i}\left(y_{v}^{i}\right)+1, & \varphi_{v^{\prime} v}^{i}\left(y_{v^{\prime}}^{i}\right) & \leftarrow \varphi_{v^{\prime} v}^{i}\left(y_{v^{\prime}}^{i}\right)+1, \\
\varphi_{v v^{\prime}}^{i}(y) & \leftarrow \varphi_{v \prime^{\prime}}^{i}(y)-1, & \varphi_{v^{\prime} v}^{i}\left(y^{\prime}\right) & \leftarrow \varphi_{v^{\prime} v}^{i}\left(y^{\prime}\right)-1, \\
g_{v v^{\prime}}\left(y_{v}^{i}, y_{v^{\prime}}^{i}\right) & \leftarrow g_{v v^{\prime}}\left(y_{v}^{i}, y_{v^{\prime}}^{i}\right)+1, & g_{v v^{\prime}}\left(y, y^{\prime}\right) & \leftarrow g_{v v^{\prime}}\left(y, y^{\prime}\right)-1
\end{aligned}
$$

and go to step 2.

7.C: Generalization

Theorem 1. Let $P=(\mathcal{V}, \mathcal{E}, \boldsymbol{q}, \boldsymbol{g}, \boldsymbol{x})$ be a max-sum problem and let P have a unique solution. If $(\mathcal{V}, \mathcal{E})$ is acyclic or quality functions $-\boldsymbol{g}$ are sub-modular then P is equivalent to some strictly trivial problem.

General form of quality functions: It is straightforward to extend the algorithm so that it learns a max-sum classifier $h(\boldsymbol{x} ; \boldsymbol{w})=\operatorname{argmax}_{\boldsymbol{y} \in \mathcal{Y}^{\mathcal{V}}} f(\boldsymbol{x}, \boldsymbol{w})$ with score

$$
f(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{w})=\langle\boldsymbol{w}, \boldsymbol{\Psi}(\boldsymbol{x}, \boldsymbol{y})\rangle=\left\langle\boldsymbol{w}, \sum_{v \in \mathcal{V}} \boldsymbol{\Psi}_{v}\left(\boldsymbol{x}, y_{v}\right)+\sum_{\left\{v, v^{\prime}\right\} \in \mathcal{E}} \boldsymbol{\Psi}_{v, v^{\prime}}\left(\boldsymbol{x}, y_{v}, y_{v^{\prime}}\right)\right\rangle
$$

where $\boldsymbol{w} \in \mathbb{R}^{n}$ are parameters to be learned while $\boldsymbol{\Psi}_{v}: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^{n}, v \in \mathcal{V}$ and $\Psi_{v v^{\prime}}: \mathcal{X} \times \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^{n},\left\{v, v^{\prime}\right\} \in \mathcal{E}$ are fixed.

7.C: Example: Sudoku solver

puzzle assignment								
8 1 9 5 6 2 2 5 1 3 6 9 2 8 1 8 2 6 9 5 7 1 2 2 1 9 4 3 5 7 6 8 8 9 3								

solution

7	6	3	4	2	8	1	9	5
4	1	9	5	6	3	2	7	8
2	5	8	9	1	7	3	6	4
9	3	4	7	5	2	6	8	1
1	8	2	6	3	9	4	5	7
5	7	6	1	8	4	9	3	2
6	2	1	8	9	5	7	4	3
3	4	5	2	7	6	8	1	9
8	9	7	3	4	1	5	2	6

The task of Sudoku game is to fill empty fields such that each row, each column and each 3×3 field contains numbers $\{1,2, \ldots, 9\}$.

7.C: Example: Sudoku solver

- We can solve Sudoku by an instance of max-sum classifier

$$
\boldsymbol{y}^{*}=\underset{\boldsymbol{y} \in \mathcal{Y}^{\mathcal{V}}}{\operatorname{argmax}}(\underbrace{\sum_{v \in \mathcal{V}} q\left(x_{v}, y_{v}\right)}_{\text {copy given fields }}+\underbrace{\sum_{\left\{v, v^{\prime}\right\} \in \mathcal{E}} g\left(y_{v}, y_{v^{\prime}}\right)}_{\text {neighbors must be different }})
$$

- Play field $\mathcal{V}=\left\{(i, j) \in \mathbb{N}^{2} \mid 1 \leq i \leq 9,1 \leq j \leq 9\right\}$
- Assignment $\boldsymbol{x}=\left(x_{v} \in\{\square, 1, \ldots, 9\} \mid v \in \mathcal{V}\right) \in \mathcal{X}^{\mathcal{V}}$; solution $\boldsymbol{y}=\left(y_{v} \in\{1, \ldots, 9\} \mid v \in \mathcal{V}\right) \in \mathcal{Y}^{\mathcal{V}}$

Related fields $\mathcal{E}=\left\{\left\{(i, j),\left(i^{\prime}, j^{\prime}\right)\right\} \mid i=i^{\prime} \vee j=j^{\prime} \vee\left(\lceil i / 3\rceil=\left\lceil i^{\prime} / 3\right\rceil \wedge\lceil j / 3\rceil=\left\lceil j^{\prime} / 3\right\rceil\right)\right\}$

- $q:\{\square, 1, \ldots, 9\} \times\{1, \ldots, 9\} \rightarrow\{0,-\infty\}$ such that $q(x, y)=\left\{\begin{aligned}-\infty & \text { if } x \neq \square \wedge y \neq x \\ 0 & \text { otherwise }\end{aligned}\right.$
$g:\{1, \ldots, 9\}^{2} \rightarrow\{0,-\infty\}$ such that $g\left(y, y^{\prime}\right)=\left\{\begin{array}{rll}0 & \text { if } & y \neq y^{\prime} \\ -\infty & \text { if } & y=y^{\prime}\end{array}\right.$
Assignment for seminar: learn the quality fanctions $(\boldsymbol{q}, \boldsymbol{g})$ from an example of Sudoku assignment and its correct solution.

7.C: Recap

So far we have been talking about:
7.A: Definition of structured classification task and its solution via generative and discriminative learning
7.B: Implementation of ERM learning using Perceptron algorithm
7.C: Learning of max-sum classifier

Next we show how to implement the ERM for non-separable examples and general linear classifier:
8.A: Learning two-class linear classifier from non-separable examples by SVM.
8.B: Structured output SVM.
8.C: Structured output SVM for learning max-sum classifiers.

8.A: Two-class linear classifier

- Observation is n-dimenzionální vektor $\boldsymbol{x} \in \mathcal{X}=\mathbb{R}^{n}$.
- Hidden state (label) attains only two values $y \in \mathcal{Y}=\{+1,-1\}$
- Linear classifier

$$
h(\boldsymbol{x} ; \boldsymbol{w})=\underset{y \in \mathcal{Y}}{\operatorname{argmax}} y\langle\boldsymbol{w}, \boldsymbol{x}\rangle=\left\{\begin{array}{lll}
+1 & \text { if } & \langle\boldsymbol{w}, \boldsymbol{x}\rangle \geq 0 \\
-1 & \text { if } & \langle\boldsymbol{w}, \boldsymbol{x}\rangle<0
\end{array}\right.
$$

A biased decision function can be obtained via transformation $\boldsymbol{w}^{\prime}=(\boldsymbol{w} ; b)$ and $\boldsymbol{x}^{\prime}=(x ; 1)$.

- Let us assume $0 / 1$-loss function $\Delta\left(y, y^{\prime}\right)=\left[y \neq y^{\prime}\right]$.
- We are going to discuss how to learn \boldsymbol{w} from examples $\mathcal{T}=\left\{\left(\boldsymbol{x}^{i}, \boldsymbol{y}^{i}\right) \in \mathcal{X} \times \mathcal{Y} \mid i \in \mathcal{I}\right\}$.

8.A: Two-class SVM: separable examples

Linearly separable training examples $\mathcal{T}=\left\{\left(\boldsymbol{x}^{1}, y^{1}\right), \ldots,\left(\boldsymbol{x}^{m}, y^{m}\right)\right\} \in\left(\mathbb{R}^{n} \times\{+1,-1\}\right)^{m}$ imply existence of $\boldsymbol{w} \in \mathbb{R}^{n}$ such that

$$
R_{\mathcal{T}}(h(\cdot ; \boldsymbol{w}))=\frac{1}{m} \sum_{i=1}^{m} \llbracket y^{i} \neq h\left(\boldsymbol{x}^{i} ; \boldsymbol{w}\right) \rrbracket
$$

- Searching for \boldsymbol{w} such that $R_{\mathcal{T}}(h(\cdot ; \boldsymbol{w}))=0$ lead to solving a set of linear inequalities:

$$
y^{i}\left\langle\boldsymbol{w}, \boldsymbol{x}^{i}\right\rangle>0, \quad i=1, \ldots, m
$$

8.A: Two-class classifier: optimal separating hyperplane

- Optimal separating hyperplane $\mathcal{H}^{*}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid\left\langle\boldsymbol{w}^{*}, \boldsymbol{x}\right\rangle=0\right\}$ maximizes the geometrical margin to the training points:

$$
\boldsymbol{w}^{*} \in \underset{\boldsymbol{w} \in \mathbb{R}^{n}}{\operatorname{argmax}} \min _{i=1, \ldots, m} \frac{y^{i}\left\langle\boldsymbol{w}, \boldsymbol{x}^{i}\right\rangle}{\|\boldsymbol{w}\|}
$$

- Searching for the optimal hyperplane leads to quadratic programming

$$
\boldsymbol{w}^{*}=\underset{\boldsymbol{w} \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2}\|\boldsymbol{w}\|^{2}
$$

subject to

$$
y^{i}\left\langle\boldsymbol{w}, \boldsymbol{x}^{i}\right\rangle \geq 1, \quad i=1, \ldots, m
$$

8.A: Two-class classifier: non-separable examples

$$
g\left(\boldsymbol{w}^{*}, \boldsymbol{\xi}^{*}\right)=\underset{\boldsymbol{w}, \boldsymbol{\xi}}{\operatorname{argmin}}\left(\frac{\lambda}{2}\|\boldsymbol{w}\|^{2}+\frac{1}{m} \sum_{i=1}^{m} \xi_{i}\right)
$$

subject to

$$
\begin{aligned}
y^{i}\left\langle\boldsymbol{w}, \boldsymbol{x}^{i}\right\rangle & \geq 1-\xi_{i}, & & i=1, \ldots, m \\
\xi_{i} & \geq 0, & & i=1, \ldots, m
\end{aligned}
$$

where $\lambda>0$ is a fixed regularization constant.

- Learning leads to a convex quadratic programming.
- Two-class linear Support Vector Machines (SVM) algorithm.

8.A: Minimization of the regularized empirical risk: two-class classifier

- Learning of the SVM classifier can be seen as an unconstrained problem

$$
\boldsymbol{w}^{*}=\underset{\boldsymbol{w} \in \mathbb{R}^{n}}{\operatorname{argmin}}(\lambda \underbrace{\Omega(\boldsymbol{w})}_{\text {regularizer }}+\underbrace{\hat{R}_{\mathcal{T}}(\boldsymbol{w})}_{\begin{array}{c}
\text { surrogate of } \\
\text { empirical risk }
\end{array}})
$$

The regularizer $\Omega: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function: $\Omega(\boldsymbol{w})=\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2}$ or $\Omega(\boldsymbol{w})=\|\boldsymbol{w}\|_{1}$.

- The surrogate risk is a convex upper bound of the empirical risk

$$
\hat{R}_{\mathcal{T}}(\boldsymbol{w})=\frac{1}{m} \sum_{i=1}^{m} \max \left\{0,1-y^{i}\left\langle\boldsymbol{w}, \boldsymbol{x}^{i}\right\rangle\right\}
$$

$$
\begin{aligned}
{\left[y^{i} \neq h\left(\boldsymbol{x}^{i} ; \boldsymbol{w}\right)\right] } & =\llbracket y^{i}\left\langle\boldsymbol{w}, \boldsymbol{x}^{i}\right\rangle \leq 0 \rrbracket \\
& \leq \max \left\{0,1-y^{i}\left\langle\boldsymbol{w}, \boldsymbol{x}^{i}\right\rangle\right\}
\end{aligned}
$$

8.A: Minimization of the regularized empirical risk: structured classifier

- Given training examples $\mathcal{T}=\left\{\left(\boldsymbol{x}^{i}, \boldsymbol{y}^{i}\right) \in \mathcal{X} \times \mathcal{Y} \mid i \in \mathcal{I}\right\}$, the goal is to learn parameters $\boldsymbol{w} \in \mathbb{R}^{n}$ of a general linear classifier

$$
h(\boldsymbol{x} ; \boldsymbol{w})=\underset{\boldsymbol{y} \in \mathcal{Y}}{\operatorname{argmax}}\langle\boldsymbol{w}, \Psi(\boldsymbol{x}, \boldsymbol{y})\rangle
$$

where $\boldsymbol{\Psi}: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^{n}$ is fixed feature map.

- Regularized empirical risk minimization based learning leads to solving

$$
\boldsymbol{w}^{*}=\underset{\boldsymbol{w} \in \mathbb{R}^{n}}{\operatorname{argmin}}(\lambda \underbrace{\Omega(\boldsymbol{w})}_{\text {regularizer }}+\underbrace{\hat{R}_{\mathcal{T}}(\boldsymbol{w})}_{\begin{array}{c}
\text { surrogate of } \\
\text { empirical risk }
\end{array}})
$$

where $\Omega: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a (convex) regularizer and $\hat{R}_{\mathcal{T}}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a surrogate of the empirical risk

$$
R_{\mathcal{T}}\left(h(\cdot ; \boldsymbol{w})=\frac{1}{m} \sum_{i=1}^{m} \ell\left(\boldsymbol{y}^{i}, h\left(\boldsymbol{x}^{i} ; \boldsymbol{w}\right)\right)\right.
$$

and $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow[0, \infty)$ is an application specific loss.
Question: How to construct the surrogate $\hat{R}_{\mathcal{T}}$ for a generic linear classifier and loss ?

					8			
	1	9	5	6		2		
2	5			1		3	6	
9					2		8	1
	8	2	6		9			
5	7		1					2
	2	1		9			4	3
		5		7	6	8		
8	9		3					

7	6	3	4	2	8	1	9	5
4	1	9	5	6	3	2	7	8
2	5	8	9	1	7	3	6	4
9	3	4	7	5	2	6	8	1
1	8	2	6	3	9	4	5	7
5	7	6	1	8	4	9	3	2
6	2	1	8	9	5	7	4	3
3	4	5	2	7	6	8	1	9
8	9	7	3	4	1	5	2	6

