Lecture 9: Learning max-sum classifier

Vojtéch Franc

April 23, 2015

7.C: Learning max-sum classifier from separable examples.

8.A: Learning two-class linear classifier from non-separable examples by SVM.

XEP33SML - Structured Model Learning, Summer 2015



Setting:
(V, €) is undirected graph; V are parts and £ C (M) pairs of related parts

each part v € V described by observation z € X and label y € V; X and Y are finite
qv: X XY — R quality of label y, given z,; ¢ = (g,(z,y) e R |z € X,y € Y, v € V)

Guu' = Y x Y — R quality a label pair (y,, ¥./);
g = (900 (v, ¥") ER | (y,9) € V*,{v,v'} € &)

Max-sum classifier: Given observations x = (z, € X |v € V) € XV, the max-sum classifier
h: XY — YV returns labeling y = (y, € Y | v € V) € YV with the maximal overall quality

h(x;q,g) € argmax f(x,y;q,9)
ye)yV

where

F@y:q,9) =) qo(@e, )+ D Gow (Yo, Yor)

veY {v,v'}e€

The max-sum classifier is an instance of the linear classifier since ,
flx,y;q,9) = (¥(z,y), w) where w = (q,g) and T: XY x YV — RVIVITIEIVI
constructed appropriately.



http://cmp.felk.cvut.cz

7.C: Relation between Max-sum classifier and Gibbs @ -
distribution 3/21
¢ (V,€) is undirected graph

¢ {(X,,Y,) | v €V} is a field of random variables taking values from
(To,Yp) € X X YV, 0 EV

¢ the random variables are distributed according to the Gibbs distribution

pq,g(w7y) — exp(qu lev,yv + Z Goo! yvayv )

q vey {v,v'}e€&
1

= 749 P f(x,y:q,9)

¢ The optimal (Bayes) classifier minimizing the expected risk under the 0/1-loss

R(h) — E(:L',y)wpq,g |[y 7& h(w)]l

is the max-sum classifier

h(x;q,g) € argmax f(x,y;q,9)
ye)yV
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7.C: Learning max-sum classifier from linearly separable @

examples 4/21

Task: Given linearly separable training set 7 = {(z*,y) € X¥ x YV |ie I ={1,...,m}}
find quality functions q, g of the max-sum classifier such that

yi — h(wi; q,g) = argmax [Z qv(a:fj, Yp) + Z Gov' (Yo, yvx)] : 1€l
yeyVv vEY (v/YeE

The max-sum problem P = (£,V, q, g, x) associated with the classification h(x;q,g) is
tractable if:

1. (V,&) is acyclic graph

2. Y is fully ordered and —g,,, {v,v'} € £ are submodular w.r.t the ordering: for each
(Yvs Yoy Yo' Yor) € V% such that y, > v/ and 3, > Y., it following inequality holds

Gou' (Yus Yo) + Gou Yns Yor) < oot (Yo, Yor) + Goo (Yuys Yor)

3. P=(,€&,q,9,x) have a strictly trivial equivalent, that is, the LP relaxation is tight and
the max-sum problem has unique solution
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7.C: LP relaxation of max-sum problem @ 0
(recall Lecture 3, section 3)

5/21
The max-sum problem

y* EargmaX[qu TosYo) + Y Gow yv,yv)]

yeyY veVY {v,w'}e€

The Schlesinger's LP relaxation of the max-sum problem reads

H* = argimnax [Z Z ,uv Q’U Ly, yv + Z Z Moo y y g'uv (yv Yy )]

2
peRIVIVIHIENY] VEY yEY {v,v'}eE€ (y,y")eY?

subject to

D bW y) = @), v} eEyeEY, D my)=LveY, p>0

y'ey yey

Note that adding a constraint p € {0, 1} makes the LP relaxation equivalent to the original
max-sum problem.



http://cmp.felk.cvut.cz

S -
7.C: Dual of LP relaxation
6/21

The Lagrange dual of the (primal) LP relaxation can be written as an unconstrained problem

¢ = argminU(x,q%, g )—argmm[Zmaxqv (X, y) + Z max g (y,y')]
P @) (v'}eE (y, y/)6y2

where ¢ € RZI€IYI is a vector of dual variables ¢,,: Y = R, v Y = R, {v,v'} € € and

g;Pvl(y’ y/) — gvv’(y7 y/) + vav’(y) + valv(y/)a {”U, U,} S ga Y, y/ SN
Wy = ) - > ewl), vEV,y €Y
v'eN (v)
Questions:

1. Is the LP relaxation tight, i.e., does it hold that U(:B,q‘P*,QSO*) = f(x,y",q,9) ?

2. If yes how to get the labels y* ?
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i
7.C: Interpretation of the dual of LP relaxation

7/21

Definition 1. Problems P = (V,&£,q,g9,x) and P' = (V,&,q’,g9’,x) are equivalent if
f(x,y,q,9) = f(x,y,q',g’) forally € YV.

Re-parametrization: Let P¥ = (V, &, q¥,g¥,x) be the max-sum problem constructed

from P = (V,&,q,g,x) by the re-reparametrization

Gor(U:Y) = Gou (¥, ¥) + @ou(y) + @un(y), {v,v'} €E 9,y €Y
@) = wy)— Y. ey veV,ye) (R)
v'eN (v)

Proposition 1. Two max-sum problems P = (V,£,q,g,x) and P¥ = (V,&,q%,g¥, )
related by the re-parametrization (R) are equivalent.

PROOF: It is seen from substituting (R) to f(x,y,q,9) = f(x,y,q%,g¥). -

Interpretation of the dual of LP relaxation: In the class of equivalent problems
{P? | ¢ € R2€IV] find the one with minimal energy

Ul max g (v0, y) + max g% (y,y’)
Z Z}:es (y,y")eYV?
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@
7.C: Trivial max-sum problems

8/21
Let us define a set Cp C VY which contains labelings y € Cp such that

Q’v(ajva yv) > max QU(SUU, y) , vey
yey / / (Triv)
gvv’(yva yv’) > max gvv’(yv Y ) ) {Uv v } €&
(y,y")€eV?

Definition 2. The max-sum problem P = (V,&£,q,g,x) is called trivial if Cp # ().

Definition 3. The max-sum problem P = (V,E,q,g,x) is called strictly trivial if it is
trivial and all the inequalitites (Triv) are satisfied strictly.

Proposition 2. For any max-sum problem P = (V. &,q, g, x) the inequality

U(x,q,9) > max f(x,y,q,9)
ye)yV

holds true. The bound is tight if and only if P is trivial.

Corrolary: It is clear that if U(x, q%,g¥) > min, U(x, q‘P/,g“’/) then P¥ is not trivial.

Definition 4. The max-sum problem P = (V,E,q,g,x) has a (strictly) trivial equivalent
iff there exist ¢ such P = (V,&,q%,g¥,x) is (strictly) trivial.
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&
7.C: Solving trivial max-sum problems by the LP relaxation C -
9/21
We can try to solve the max-sum problem P by checking whether it has a trivial equivalent
as follows:

1. Solve the dual of LP relaxation

" = argmin U(x, g%, g%¥)
Y

It is a convex problem which can be translated to linear program. However, of-the-shelf
solvers are not applicable for large problems.

2. Check the tightness of the LP relaxation by try to find y € Cp:

® Checking that P¥ is strictly trivial, i.e. |Cp| =1, requires O(|V||Y| + |€[|V|?)
operations.

¢ Finding the consistent labeling y € Cp can be expresses as a constraint satisfaction
problem (CSP) which is NP-complete in general.

CSP can be seen as an instance of max-sum problem with quality functions (q, g)
taking only values {—o0,0}.
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@ 0
7.C: Learning strictly trivial max-sum classifier C
10/21

Task: For a given training set {(z!,y!),..., (z™,y™)} € (XY x YY)™ find the quality
functions (g, g) such that y* = h(x*;q,g), i € Z, and the max-sum problems
P'=(V,E,q,9,x"), i € Z, have a strictly trivial equivalent.

It P=(V,&,q,9,x) has a strictly trivial equivalent and optimal solution is y* then there
must exist ¢ such that the re-parametrized quality functions

@) = @) - Y o), vEV,yEY
v'eN (v)
920y = Gor W) F oo (y) F oY), {v,v'} ey y el
satisfies o ) o ) y
P(xy,yy) > max q; (T, y), v €
4 Y yeV\{vs} 4 Y /
g;ov/(y;7 y;/) > max gzoful<y7 Yy )7 {Ua U/} S g

(v, y)EV\{(35y2)}

Hence, learning the max-sum problem with STE is equivalent to solving a set of
m(|V[(|Y]| — 1) +|€|(|Y|? — 1)) strict linear inequalities

¢ (xo,y) > ¢ (woy), i€T,veV,yeV\{y}
grzovl(y;i)? yz’) > g;ov/(yv y/) ) 7’ S Ia {Ua U/} S g ’ (y7 y/) S y2 \ {(y;&n y:)/)}
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7.C: Perceptron learning strictly trivial max-sum classifier C

. Setq+0,g+ 0, o'+ 0,icT

Find a tripleti € Z, ve V, y € Y\ {y%} such that

(@l yl) — > ohuh) <aulahy) = D ehu(®)

v'EN (v) v'eEN (v)

If no such triplet (7,v,y) exists then go to Step 4. Otherwise update q and ¢* by

pry(Uy) — wlyn) =1 el (y) el +1, v e N(v)
Gu(Ts Yy) qv( U,yv)+1 Gu(Ty,y) < qulzy,y) —1

Find a five-tuple i € Z, {v,v'} € &, (y,v') € Y*\ {(y}, y"/)} such that
g’U’U’(ny y’?}’) + sz)v’(y;) + SO:Z’U (yfj’) < gvv’(y7 y/) + w%v’(y) + 90:.)”0 (y/)

If no such five-tuple (i,v,v’,y,y") exists and no update was made in Step 3 then
(q,9,¢",1 € T) solves the tasks. Otherwise update g and " by

oo (o) < @huyy) +1, sova(yé) — ol (yl) +1,
S02}1}’(y) N 902;@’(9) _.1’ (y) — SO;LJ"U(y/)_L
Goo' (U Ytr) = Goo'(Uss Yir) + 1, Guw (y Y') <~ Guw(y,Y) —1

and go to step 2.

11/21
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Theorem 1. Let P = (V,&,q,g9,x) be a max-sum problem and let P have a
solution. If (V,E) is acyclic or quality functions —g are sub-modular then P is equivalent to
some strictly trivial problem.

General form of quality functions: It is straightforward to extend the algorithm so that it
learns a max-sum classifier h(x; w) = argmax, ¢y f(x, w) with score

fayw) = . ew) = (0.3 Wew) + Y Tl

veV {v,0'}e€

where w € R"™ are parameters to be learned while ¥,: X x Y — R", v € }V and
U, XxYxY—=>R? {v,v} €& are fixed.
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13/21

puzzle assignment solution
8 716 (314 (2 |8]11]9 |5
1 191516 2 4111915116 3|2 |7 |8
2 |5 1 §) 215|819 |1 |7]3 |6 |4
2 8 |1 913 (4117|5216 |81
81216 1 (8216 (3|94 |5 |7
5 |7 1 2 517161 (81419 |3 |2
2 11 9 4 13 6 (2 (189517 |43
5 71618 314 (9512|7618 |19
819 3 819 (7134115 |26

The task of Sudoku game is to fill empty fields such that each row, each column and each
3 x 3 field contains numbers {1,2,...,9}.
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7.C: Example: Sudoku solver
14/21

¢ We can solve Sudoku by an instance of max-sum classifier

y*zargmaX< > q(zeyy) + > 9 yw) )

yeyV vEVY {v,0'} €&

copy given fields nejghbors must be different

7

¢ Play field V={(i,j) e N* |1 <:<9,1 <j <9}

¢ Assignment x = (z, € {{1,1,...,9} | v € V) € XY; solution

y=(y, €{1,...,9} [vEV) €YY
¢ Related fields &€ = {{(¢,), (¢',5)} | i =" vj ="V ([i/3] = [I'/3[ A [5/3] = [5'/3])}
¢ ¢ {O0,1,...,9} x{1,...,9} — {0, —oc0} such that

—o0 if x#UANy#zx

a(z,y) = 0 otherwise

0 if y#19

¢ g:{1,...,9}* - {0, -0} such thatg(y,y’):{ oo if gy

Assignment for seminar: learn the quality fanctions (g, g) from an example of Sudoku
assighment and its correct solution.
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So far we have been talking about:

7.A: Definition of structured classification task and its solution via generative and
discriminative learning

7.B: Implementation of ERM learning using Perceptron algorithm

7.C: Learning of max-sum classifier

Next we show how to implement the ERM for non-separable examples and general linear
classifier:

8.A: Learning two-class linear classifier from non-separable examples by SVM.

8.B: Structured output SVM.

8.C: Structured output SVM for learning max-sum classifiers.


http://cmp.felk.cvut.cz

S -
8.A: Two-class linear classifier
16/21

® Observation is n-dimenzionalni vektor & € X = R".

¢ Hidden state (label) attains only two values y € Y = {+1, -1}

® Linear classifier

o [ 41 if (w,x)>0
h(w; w) = argmaxy(w, z) = { -1 i (w,z) <0

A biased decision function can be obtained via transformation w’ = (w;b) and
x' = (xz;1).

¢ Let us assume 0/1-loss function A(y,vy") = [y # ']

¢ We are going to discuss how to learn w from examples 7 = {(z*,y*) € X x Y | i € T}.
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S o

8.A: Two-class SVM: separable examples @

17/21

# Linearly separable training examples 7 = {(z',3%),..., (2™, y™)} € (R" x {+1,—-1})™
imply existence of w € R" such that

Rr(h(;w) = — Y[y # ha'sw)

1=1

¢ Searching for w such that Ry (h(-;w)) = 0 lead
to solving a set of linear inequalities:
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S o
8.A: Two-class classifier: optimal separating hyperplane @
18/21

¢ Optimal separating hyperplane H* = {x € R" | (w*, ) = 0} maximizes the
geometrical margin to the training points:

w™ € argmax min
weRn 1=1,....m ||’UJ||

® Searching for the optimal hyperplane leads to
quadratic programming

1
w* = argmin —||w||?
weR"

subject to
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A«
8.A: Two-class classifier: non-separable examples
19/21

subject to

y'(w, x")

i

AVARAY,
p—

|
A

&

~

|

p—

where A > 0 is a fixed regularization constant.

¢ Learning leads to a convex quadratic programming.

¢ Two-class linear Support Vector Machines (SVM) algorithm.
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8.A: Minimization of the regularized empirical risk: @ -

two-class classifier 20/21
® Learning of the SVM classifier can be seen as an unconstrained problem

w” = argmin ()\ Qw) + Ry(w)
wERN ~—~— N——
regularizer  surrogate of

empirical risk

¢ The regularizer : R — R is a convex function: Q(w) = ||w||3 or Q(w) = |Jw]};.

® The surrogate risk is a convex upper bound of the empirical risk

. 1 & - -
Rr(w) = —% max{0,1 -y (w,a")}
1=1

|
<
/\.
£

H@.
A
=
|

[y # h(z; w)]
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8.A: Minimization of the regularized empirical risk:
structured classifier

@

21/21

¢ Given training examples 7 = {(x%,y*) € X x Y | i € I}, the goal is to learn parameters

w € R™ of a general linear classifier

h(w; w) = argmax(w, ¥ (x, y))
yey

where W: X x VY — R" is fixed feature map.

® Regularized empirical risk minimization based learning leads to solving

w” = argmin ()\ Qw) + Ry(w) )
wERN S—— N——
regularizer  surrogate of

empirical risk

where Q: R” — R is a (convex) regularizer and R7: R” — R is a surrogate of the

empirical risk
1 <& . .
h(-; = — g l(y*, h(x";
RT( ( 7w) m L (y ) (CU ,'lU))

and /: Y x Y — [0,00) is an application specific loss.

Question: How to construct the surrogate R+ for a generic linear classifier and loss ?
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(161314 (2 8]1 9|5
4111915 |6 |32 |7 |8
215 (8191 713 |6 |4
913 (4|7 |5 (2]6 3|1
L 181216 (3 (914 |5 |7
b |7 161 (8419 |3 |2
6 12 (1|89 |07 4|3
314 (5|2 |7|6]|383 1|9
819 (7134|1152 16
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