Lecture 9: Learning max-sum classifier

Vojtěch Franc

April 23, 2015

- 7.C: Learning max-sum classifier from separable examples.
- 8.A: Learning two-class linear classifier from non-separable examples by SVM.

XEP33SML – Structured Model Learning, Summer 2015

7.C: Max-sum classifier

Setting:

- $lacktriangledow (\mathcal{V},\mathcal{E})$ is undirected graph; \mathcal{V} are parts and $\mathcal{E}\subseteq {|\mathcal{V}|\choose 2}$ pairs of related parts
- lacktriangle each part $v \in \mathcal{V}$ described by observation $x \in \mathcal{X}$ and label $y \in \mathcal{Y}$; \mathcal{X} and \mathcal{Y} are finite
- $q_v : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ quality of label y_v given $x_v : \mathbf{q} = (g_v(x, y) \in \mathbb{R} \mid x \in \mathcal{X}, y \in \mathcal{Y}, v \in \mathcal{V})$
- $g_{vv'} \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ quality a label pair $(y_v, y_{v'})$; $\mathbf{g} = (g_{vv'}(y, y') \in \mathbb{R} \mid (y, y') \in \mathcal{Y}^2, \{v, v'\} \in \mathcal{E})$

Max-sum classifier: Given observations $\boldsymbol{x} = (x_v \in \mathcal{X} \mid v \in \mathcal{V}) \in \mathcal{X}^{\mathcal{V}}$, the max-sum classifier $h \colon \mathcal{X}^{\mathcal{V}} \to \mathcal{Y}^{\mathcal{V}}$ returns labeling $\boldsymbol{y} = (y_v \in \mathcal{Y} \mid v \in \mathcal{V}) \in \mathcal{Y}^{\mathcal{V}}$ with the maximal overall quality

$$h(\boldsymbol{x}; \boldsymbol{q}, \boldsymbol{g}) \in \operatorname*{argmax} f(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{q}, \boldsymbol{g})$$

 $\boldsymbol{y} \in \mathcal{Y}^{\mathcal{V}}$

where

$$f(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{q}, \boldsymbol{g}) = \sum_{v \in \mathcal{V}} q_v(x_v, y_v) + \sum_{\{v, v'\} \in \mathcal{E}} g_{vv'}(y_v, y_{v'})$$

The max-sum classifier is an instance of the linear classifier since $f(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{q}, \boldsymbol{g}) = \langle \boldsymbol{\Psi}(\boldsymbol{x}, \boldsymbol{y}), \boldsymbol{w} \rangle$ where $\boldsymbol{w} = (\boldsymbol{q}, \boldsymbol{g})$ and $\boldsymbol{\Psi} \colon \mathcal{X}^{\mathcal{Y}} \times \mathcal{Y}^{\mathcal{V}} \to \mathbb{R}^{|\mathcal{Y}||\mathcal{V}| + |\mathcal{E}||\mathcal{Y}|^2}$ is constructed appropriately.

7.C: Relation between Max-sum classifier and Gibbs distribution

- \bullet $(\mathcal{V}, \mathcal{E})$ is undirected graph
- $\{(X_v, Y_v) \mid v \in \mathcal{V}\}$ is a field of random variables taking values from $(x_v, y_v) \in X \times \mathcal{Y}, v \in \mathcal{V}$
- the random variables are distributed according to the Gibbs distribution

$$p_{\boldsymbol{q},\boldsymbol{g}}(\boldsymbol{x},\boldsymbol{y}) = \frac{1}{Z(\boldsymbol{q},\boldsymbol{g})} \exp\left(\sum_{v \in \mathcal{V}} q_v(x_v, y_v) + \sum_{\{v,v'\} \in \mathcal{E}} g_{vv'}(y_v, y_{v'})\right)$$
$$= \frac{1}{Z(\boldsymbol{q},\boldsymbol{g})} \exp f(\boldsymbol{x},\boldsymbol{y};\boldsymbol{q},\boldsymbol{g})$$

lacktriangle The optimal (Bayes) classifier minimizing the expected risk under the 0/1-loss

$$R(h) = \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim p_{\boldsymbol{q}, \boldsymbol{q}}} [\boldsymbol{y} \neq h(\boldsymbol{x})]$$

is the max-sum classifier

$$h(\boldsymbol{x}; \boldsymbol{q}, \boldsymbol{g}) \in \operatorname*{argmax} f(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{q}, \boldsymbol{g})$$

 $\boldsymbol{y} \in \mathcal{Y}^{\mathcal{V}}$

7.C: Learning max-sum classifier from linearly separable examples

4/21

Task: Given linearly separable training set $\mathcal{T} = \{(\boldsymbol{x}^i, \boldsymbol{y}^i) \in \mathcal{X}^{\mathcal{V}} \times \mathcal{Y}^{\mathcal{V}} \mid i \in \mathcal{I} = \{1, \dots, m\}\}$ find quality functions \boldsymbol{q} , \boldsymbol{g} of the max-sum classifier such that

$$\mathbf{y}^i = h(\mathbf{x}^i; \mathbf{q}, \mathbf{g}) = \underset{\mathbf{y} \in \mathcal{Y}^{\mathcal{V}}}{\operatorname{argmax}} \left[\sum_{v \in \mathcal{V}} q_v(x_v^i, y_v) + \sum_{\{v, v'\} \in \mathcal{E}} g_{vv'}(y_v, y_{v'}) \right], \quad i \in \mathcal{I}.$$

The max-sum problem $\mathcal{P}=(\mathcal{E},\mathcal{V},\boldsymbol{q},\boldsymbol{g},\boldsymbol{x})$ associated with the classification $h(\boldsymbol{x};\boldsymbol{q},\boldsymbol{g})$ is tractable if:

- 1. $(\mathcal{V}, \mathcal{E})$ is acyclic graph
- 2. \mathcal{Y} is fully ordered and $-g_{vv'}$, $\{v,v'\} \in \mathcal{E}$ are submodular w.r.t the ordering: for each $(y_v,y'_v,y_{v'},y'_{v'}) \in \mathcal{Y}^4$ such that $y_v > y'_v$ and $y_{v'} > y'_{v'}$ it following inequality holds

$$g_{vv'}(y_v, y_{v'}) + g_{vv'}(y'_v, y'_{v'}) \le g_{vv'}(y_v, y'_{v'}) + g_{vv'}(y'_v, y_{v'})$$

3. $\mathcal{P} = (\mathcal{V}, \mathcal{E}, q, g, x)$ have a strictly trivial equivalent, that is, the LP relaxation is tight and the max-sum problem has unique solution

7.C: LP relaxation of max-sum problem (recall Lecture 3, section 3)

5/21

The max-sum problem

$$\mathbf{y}^* \in \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^{\mathcal{V}}} \left[\sum_{v \in \mathcal{V}} q_v(x_v, y_v) + \sum_{\{v, v'\} \in \mathcal{E}} g_{v, v'}(y_v, y_{v'}) \right]$$

The Schlesinger's LP relaxation of the max-sum problem reads

$$\boldsymbol{\mu}^* = \underset{\boldsymbol{\mu} \in \mathbb{R}^{|\mathcal{V}||\mathcal{Y}|+|\mathcal{E}||\mathcal{Y}|^2}}{\operatorname{argmax}} \left[\sum_{v \in \mathcal{V}} \sum_{y \in \mathcal{Y}} \mu_v(y) q_v(x_v, y_v) + \sum_{\{v, v'\} \in \mathcal{E}} \sum_{(y, y') \in \mathcal{Y}^2} \mu_{vv'}(y, y') g_{vv'}(y, y') \right]$$

subject to

$$\sum_{y' \in \mathcal{Y}} \mu_{vv'}(y, y') = \mu_v(y), \{v, v'\} \in \mathcal{E}, y \in \mathcal{Y}, \qquad \sum_{y \in \mathcal{Y}} \mu_v(y) = 1, v \in \mathcal{V}, \qquad \boldsymbol{\mu} \ge \mathbf{0}$$

Note that adding a constraint $\mu \in \{0,1\}$ makes the LP relaxation equivalent to the original max-sum problem.

7.C: Dual of LP relaxation

The Lagrange dual of the (primal) LP relaxation can be written as an unconstrained problem

$$\varphi^* = \underset{\varphi}{\operatorname{argmin}} U(\boldsymbol{x}, \boldsymbol{q}^{\varphi}, \boldsymbol{g}^{\varphi}) = \underset{\varphi}{\operatorname{argmin}} \left[\sum_{v \in \mathcal{V}} \max_{y \in \mathcal{Y}} q_v^{\varphi}(x_v, y) + \sum_{\{v, v'\} \in \mathcal{E}} \max_{(y, y') \in \mathcal{Y}^2} g_{vv'}^{\varphi}(y, y') \right]$$

where $\varphi \in \mathbb{R}^{2|\mathcal{E}||\mathcal{Y}|}$ is a vector of dual variables $\varphi_{vv'} \colon \mathcal{Y} \to \mathbb{R}$, $\varphi_{v'v} \colon \mathcal{Y} \to \mathbb{R}$, $\{v,v'\} \in \mathcal{E}$ and

$$g_{vv'}^{\varphi}(y,y') = g_{vv'}(y,y') + \varphi_{vv'}(y) + \varphi_{v'v}(y'), \quad \{v,v'\} \in \mathcal{E}, y, y' \in \mathcal{Y}$$

$$q_v^{\varphi}(y) = q_v(y) - \sum_{v' \in \mathcal{N}(v)} \varphi_{vv'}(y), \qquad v \in \mathcal{V}, y \in \mathcal{Y}$$

Questions:

- 1. Is the LP relaxation tight, i.e., does it hold that $U(x, q^{\varphi^*}, g^{\varphi^*}) = f(x, y^*, q, g)$?
- 2. If yes how to get the labels y^* ?

Definition 1. Problems $P = (\mathcal{V}, \mathcal{E}, \boldsymbol{q}, \boldsymbol{g}, \boldsymbol{x})$ and $P' = (\mathcal{V}, \mathcal{E}, \boldsymbol{q}', \boldsymbol{g}', \boldsymbol{x})$ are equivalent if $f(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{q}, \boldsymbol{g}) = f(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{q}', \boldsymbol{g}')$ for all $\boldsymbol{y} \in \mathcal{Y}^{\mathcal{V}}$.

Re-parametrization: Let $P^{\varphi} = (\mathcal{V}, \mathcal{E}, q^{\varphi}, g^{\varphi}, x)$ be the max-sum problem constructed from $P = (\mathcal{V}, \mathcal{E}, q, g, x)$ by the re-reparametrization

$$g_{vv'}^{\varphi}(y,y') = g_{vv'}(y,y') + \varphi_{vv'}(y) + \varphi_{v'v}(y'), \quad \{v,v'\} \in \mathcal{E}, y, y' \in \mathcal{Y}$$

$$q_v^{\varphi}(y) = q_v(y) - \sum_{v' \in \mathcal{N}(v)} \varphi_{vv'}(y), \qquad v \in \mathcal{V}, y \in \mathcal{Y}$$
(R)

Proposition 1. Two max-sum problems $P = (\mathcal{V}, \mathcal{E}, \boldsymbol{q}, \boldsymbol{g}, \boldsymbol{x})$ and $P^{\varphi} = (\mathcal{V}, \mathcal{E}, \boldsymbol{q}^{\varphi}, \boldsymbol{g}^{\varphi}, \boldsymbol{x})$ related by the re-parametrization (R) are equivalent.

PROOF: It is seen from substituting (R) to $f(x, y, q, g) = f(x, y, q^{\varphi}, g^{\varphi})$.

Interpretation of the dual of LP relaxation: In the class of equivalent problems $\{P^{\varphi} \mid \varphi \in \mathbb{R}^{2|\mathcal{E}||\mathcal{Y}|}\}$ find the one with minimal energy

$$U(\boldsymbol{x}, \boldsymbol{q}^{\boldsymbol{\varphi}}, \boldsymbol{g}^{\boldsymbol{\varphi}}) = \sum_{v \in \mathcal{V}} \max_{y \in \mathcal{Y}} q_v^{\boldsymbol{\varphi}}(x_v, y) + \sum_{\{v, v'\} \in \mathcal{E}} \max_{(y, y') \in \mathcal{Y}^2} g_{vv'}^{\boldsymbol{\varphi}}(y, y')$$

7.C: Trivial max-sum problems

Let us define a set $\mathcal{C}_P \subseteq \mathcal{Y}^{\mathcal{V}}$ which contains labelings $\boldsymbol{y} \in \mathcal{C}_P$ such that

$$q_{v}(x_{v}, y_{v}) \geq \max_{y \in \mathcal{Y}} q_{v}(x_{v}, y), \qquad v \in \mathcal{V}$$

$$g_{vv'}(y_{v}, y_{v'}) \geq \max_{(y, y') \in \mathcal{Y}^{2}} g_{vv'}(y, y'), \quad \{v, v'\} \in \mathcal{E}$$
(Triv)

- **Definition 2.** The max-sum problem $P = (\mathcal{V}, \mathcal{E}, \boldsymbol{q}, \boldsymbol{g}, \boldsymbol{x})$ is called trivial if $\mathcal{C}_P \neq \emptyset$.
- **Definition 3.** The max-sum problem $P = (\mathcal{V}, \mathcal{E}, q, g, x)$ is called strictly trivial if it is trivial and all the inequalitites (Triv) are satisfied strictly.
- **Proposition 2.** For any max-sum problem $P = (\mathcal{V}, \mathcal{E}, q, g, x)$ the inequality

$$U(\boldsymbol{x}, \boldsymbol{q}, \boldsymbol{g}) \ge \max_{\boldsymbol{y} \in \mathcal{Y}^{\mathcal{V}}} f(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{q}, \boldsymbol{g})$$

holds true. The bound is tight if and only if P is trivial.

- Corrolary: It is clear that if $U(x, q^{\varphi}, g^{\varphi}) > \min_{\varphi'} U(x, q^{\varphi'}, g^{\varphi'})$ then P^{φ} is not trivial.
- **Definition 4.** The max-sum problem $P = (\mathcal{V}, \mathcal{E}, \boldsymbol{q}, \boldsymbol{g}, \boldsymbol{x})$ has a (strictly) trivial equivalent iff there exist φ such $P = (\mathcal{V}, \mathcal{E}, \boldsymbol{q}^{\varphi}, \boldsymbol{g}^{\varphi}, \boldsymbol{x})$ is (strictly) trivial.

7.C: Solving trivial max-sum problems by the LP relaxation

We can try to solve the max-sum problem P by checking whether it has a trivial equivalent as follows:

1. Solve the dual of LP relaxation

$$\varphi^* = \operatorname*{argmin}_{\varphi} U(\boldsymbol{x}, \boldsymbol{q}^{\varphi}, \boldsymbol{g}^{\varphi})$$

It is a convex problem which can be translated to linear program. However, of-the-shelf solvers are not applicable for large problems.

- 2. Check the tightness of the LP relaxation by try to find $y \in C_P$:
 - Checking that P^{φ^*} is strictly trivial, i.e. $|\mathcal{C}_P| = 1$, requires $\mathcal{O}(|\mathcal{V}||\mathcal{Y}| + |\mathcal{E}||\mathcal{Y}|^2)$ operations.
 - Finding the consistent labeling $y \in C_P$ can be expresses as a constraint satisfaction problem (CSP) which is NP-complete in general.

CSP can be seen as an instance of max-sum problem with quality functions (q, g) taking only values $\{-\infty, 0\}$.

7.C: Learning strictly trivial max-sum classifier

Task: For a given training set $\{(\boldsymbol{x}^1, \boldsymbol{y}^1), \dots, (\boldsymbol{x}^m, \boldsymbol{y}^m)\} \in (\mathcal{X}^{\mathcal{V}} \times \mathcal{Y}^{\mathcal{V}})^m$ find the quality functions (q,g) such that $y^i=h(x^i;q,g)$, $i\in\mathcal{I}$, and the max-sum problems $P^i = (\mathcal{V}, \mathcal{E}, \boldsymbol{q}, \boldsymbol{g}, \boldsymbol{x}^i)$, $i \in \mathcal{I}$, have a strictly trivial equivalent.

If $P = (\mathcal{V}, \mathcal{E}, q, q, x)$ has a strictly trivial equivalent and optimal solution is y^* then there must exist φ such that the re-parametrized quality functions

$$q_v^{\varphi}(y) = q_v(y) - \sum_{v' \in \mathcal{N}(v)} \varphi_{vv'}(y), \qquad v \in \mathcal{V}, y \in \mathcal{Y}$$

$$g_{vv'}^{\varphi}(y, y') = g_{vv'}(y, y') + \varphi_{vv'}(y) + \varphi_{v'v}(y'), \quad \{v, v'\} \in \mathcal{E}, y, y' \in \mathcal{Y}$$

satisfies

$$q_{v}^{\boldsymbol{\varphi}}(x_{v}, y_{v}^{*}) > \max_{y \in \mathcal{Y} \setminus \{y_{v}^{*}\}} q_{v}^{\boldsymbol{\varphi}}(x_{v}, y), \qquad v \in \mathcal{V}$$

$$g_{vv'}^{\boldsymbol{\varphi}}(y_{v}^{*}, y_{v'}^{*}) > \max_{(y, y') \in \mathcal{Y}^{2} \setminus \{(y_{v}^{*}, y_{v'}^{*})\}} g_{vv'}^{\boldsymbol{\varphi}}(y, y'), \quad \{v, v'\} \in \mathcal{E}$$

Hence, learning the max-sum problem with STE is equivalent to solving a set of $m(|\mathcal{V}|(|\mathcal{Y}|-1)+|\mathcal{E}|(|\mathcal{Y}|^2-1))$ strict linear inequalities

$$q_v^{\boldsymbol{\varphi}^i}(x_v, y_v^i) > q_v^{\boldsymbol{\varphi}^i}(x_v, y), \quad i \in \mathcal{I}, v \in \mathcal{V}, y \in \mathcal{Y} \setminus \{y_v^i\}$$

$$g_{vv'}^{\boldsymbol{\varphi}}(y_v^i, y_{v'}^i) > g_{vv'}^{\boldsymbol{\varphi}^i}(y, y'), \quad i \in \mathcal{I}, \{v, v'\} \in \mathcal{E}, (y, y') \in \mathcal{Y}^2 \setminus \{(y_v^i, y_{v'}^i)\}$$

7.C: Perceptron learning strictly trivial max-sum classifier

- 1. Set $q \leftarrow 0$, $q \leftarrow 0$, $\varphi^i \leftarrow 0$, $i \in \mathcal{I}$.
- 2. Find a triplet $i \in \mathcal{I}$, $v \in \mathcal{V}$, $y \in \mathcal{Y} \setminus \{y_v^i\}$ such that

$$q_v(x_v^i, y_v^i) - \sum_{v' \in \mathcal{N}(v)} \varphi_{vv'}^i(y_v^i) \le q_v(x_v^i, y) - \sum_{v' \in \mathcal{N}(v)} \varphi_{vv'}^i(y)$$

3. If no such triplet (i, v, y) exists then go to Step 4. Otherwise update q and φ^i by

4. Find a five-tuple $i\in\mathcal{I}$, $\{v,v'\}\in\mathcal{E}$, $(y,y')\in\mathcal{Y}^2\setminus\{(y_v^i,y_{v'}^i)\}$ such that

$$\boldsymbol{g}_{vv'}(y_v^i, y_{v'}^i) + \varphi_{vv'}^i(y_v^i) + \varphi_{v'v}^i(y_{v'}^i) \leq g_{vv'}(y, y') + \varphi_{vv'}^i(y) + \varphi_{v'v}^i(y')$$

5. If no such five-tuple (i, v, v', y, y') exists and no update was made in Step 3 then $(q, g, \varphi^i, i \in \mathcal{I})$ solves the tasks. Otherwise update g and φ^i by

and go to step 2.

7.C: Generalization

General form of quality functions: It is straightforward to extend the algorithm so that it learns a max-sum classifier $h(x; w) = \operatorname{argmax}_{v \in \mathcal{V}} f(x, w)$ with score

$$f(\boldsymbol{x},\boldsymbol{y};\boldsymbol{w}) = \langle \boldsymbol{w},\boldsymbol{\Psi}(\boldsymbol{x},\boldsymbol{y})\rangle = \left\langle \boldsymbol{w}, \sum_{v \in \mathcal{V}} \boldsymbol{\Psi}_v(\boldsymbol{x},y_v) + \sum_{\{v,v'\} \in \mathcal{E}} \boldsymbol{\Psi}_{v,v'}(\boldsymbol{x},y_v,y_{v'}) \right\rangle$$

where $\boldsymbol{w} \in \mathbb{R}^n$ are parameters to be learned while $\boldsymbol{\Psi}_v \colon \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^n$, $v \in \mathcal{V}$ and $\boldsymbol{\Psi}_{vv'} \colon \mathcal{X} \times \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^n$, $\{v,v'\} \in \mathcal{E}$ are fixed.

7.C: Example: Sudoku solver

puzzle assignment

1 9 5 6 2 ... 2 5 1 3 6 9 2 8 1 8 2 6 9 ... 5 7 1 2 4 2 3 7 6 8 8 9 3 8 9

solution

7	6	3	4	2	8	1	9	5
4	1	9	5	6	3	2	7	8
2	5	8	9	1	7	3	6	4
9	3	4	7	5	2	6	8	1
1	8	2	6	3	9	4	5	7
5	7	6	1	8	4	9	3	2
6	2	1	8	9	5	7	4	3
3	4	5	2	7	6	8	1	9
8	9	7	3	4	1	5	2	6

The task of Sudoku game is to fill empty fields such that each row, each column and each 3×3 field contains numbers $\{1,2,\ldots,9\}$.

7.C: Example: Sudoku solver

We can solve Sudoku by an instance of max-sum classifier

$$\boldsymbol{y}^* = \operatorname*{argmax}_{\boldsymbol{y} \in \mathcal{Y}^{\mathcal{V}}} \left(\underbrace{\sum_{v \in \mathcal{V}} q(x_v, y_v)}_{\text{copy given fields}} + \underbrace{\sum_{\{v, v'\} \in \mathcal{E}} g(y_v, y_{v'})}_{\text{event}} \right)$$

- Play field $\mathcal{V} = \{(i,j) \in \mathbb{N}^2 \mid 1 \le i \le 9, 1 \le j \le 9\}$
- Assignment $\boldsymbol{x} = (x_v \in \{\Box, 1, \dots, 9\} \mid v \in \mathcal{V}) \in \mathcal{X}^{\mathcal{V}}$; solution $\boldsymbol{y} = (y_v \in \{1, \dots, 9\} \mid v \in \mathcal{V}) \in \mathcal{Y}^{\mathcal{V}}$
- Related fields $\mathcal{E} = \{\{(i,j),(i',j')\} \mid i=i' \lor j=j' \lor (\lceil i/3 \rceil = \lceil i'/3 \rceil \land \lceil j/3 \rceil = \lceil j'/3 \rceil)\}$
- $\begin{array}{l} \bullet & q \colon \{\square, 1, \dots, 9\} \times \{1, \dots, 9\} \to \{0, -\infty\} \text{ such that} \\ q(x,y) = \left\{ \begin{array}{cc} -\infty & \text{if} & x \neq \square \wedge y \neq x \\ 0 & \text{otherwise} \end{array} \right. \end{array}$
- $\bullet \ g \colon \{1,\dots,9\}^2 \to \{0,-\infty\} \text{ such that } g(y,y') = \left\{ \begin{array}{cc} 0 & \text{if} & y \neq y' \\ -\infty & \text{if} & y = y' \end{array} \right.$

Assignment for seminar: learn the quality functions (q, g) from an example of Sudoku assignment and its correct solution.

7.C: Recap

So far we have been talking about:

- 7.A: Definition of structured classification task and its solution via generative and discriminative learning
- 7.B: Implementation of ERM learning using Perceptron algorithm
- 7.C: Learning of max-sum classifier

Next we show how to implement the ERM for non-separable examples and general linear classifier:

- 8.A: Learning two-class linear classifier from non-separable examples by SVM.
- 8.B: Structured output SVM.
- 8.C: Structured output SVM for learning max-sum classifiers.

8.A: Two-class linear classifier

- lacktriangle Observation is n-dimenzionální vektor $oldsymbol{x} \in \mathcal{X} = \mathbb{R}^n$.
- lacktriangle Hidden state (label) attains only two values $y \in \mathcal{Y} = \{+1, -1\}$
- Linear classifier

$$h(\boldsymbol{x}; \boldsymbol{w}) = \operatorname*{argmax}_{y \in \mathcal{Y}} y \langle \boldsymbol{w}, \boldsymbol{x} \rangle = \begin{cases} +1 & \text{if } \langle \boldsymbol{w}, \boldsymbol{x} \rangle \geq 0 \\ -1 & \text{if } \langle \boldsymbol{w}, \boldsymbol{x} \rangle < 0 \end{cases}$$

A biased decision function can be obtained via transformation ${\boldsymbol w}'=({\boldsymbol w};b)$ and ${\boldsymbol x}'=(x;1).$

- Let us assume 0/1-loss function $\Delta(y, y') = [y \neq y']$.
- lacktriangle We are going to discuss how to learn $m{w}$ from examples $\mathcal{T} = \{(m{x}^i, m{y}^i) \in \mathcal{X} imes \mathcal{Y} \mid i \in \mathcal{I}\}.$

8.A: Two-class SVM: separable examples

• Linearly separable training examples $\mathcal{T} = \{(\boldsymbol{x}^1, y^1), \dots, (\boldsymbol{x}^m, y^m)\} \in (\mathbb{R}^n \times \{+1, -1\})^m$ imply existence of $\boldsymbol{w} \in \mathbb{R}^n$ such that

$$R_{\mathcal{T}}(h(\cdot; \boldsymbol{w})) = \frac{1}{m} \sum_{i=1}^{m} [y^i \neq h(\boldsymbol{x}^i; \boldsymbol{w})]$$

• Searching for w such that $R_{\mathcal{T}}(h(\cdot; w)) = 0$ lead to solving a set of linear inequalities:

$$y^i \langle \boldsymbol{w}, \boldsymbol{x}^i \rangle > 0, \quad i = 1, \dots, m$$

8.A: Two-class classifier: optimal separating hyperplane

• Optimal separating hyperplane $\mathcal{H}^* = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \langle \boldsymbol{w}^*, \boldsymbol{x} \rangle = 0 \}$ maximizes the geometrical margin to the training points:

$$\boldsymbol{w}^* \in \operatorname*{argmax} \min_{\boldsymbol{w} \in \mathbb{R}^n} \frac{y^i \langle \boldsymbol{w}, \boldsymbol{x}^i \rangle}{\|\boldsymbol{w}\|}$$

 Searching for the optimal hyperplane leads to quadratic programming

$$oldsymbol{w}^* = \operatorname*{argmin}_{oldsymbol{w} \in \mathbb{R}^n} rac{1}{2} \|oldsymbol{w}\|^2$$

subject to

$$y^i \langle \boldsymbol{w}, \boldsymbol{x}^i \rangle \ge 1, \quad i = 1, \dots, m$$

8.A: Two-class classifier: non-separable examples

19/21

$$g(\boldsymbol{w}^*, \boldsymbol{\xi}^*) = \underset{\boldsymbol{w}, \boldsymbol{\xi}}{\operatorname{argmin}} \left(\frac{\lambda}{2} ||\boldsymbol{w}||^2 + \frac{1}{m} \sum_{i=1}^m \xi_i \right)$$

subject to

$$y^{i}\langle \boldsymbol{w}, \boldsymbol{x}^{i} \rangle \geq 1-\xi_{i}, \quad i=1,\ldots,m$$

 $\xi_{i} \geq 0, \quad i=1,\ldots,m$

where $\lambda > 0$ is a fixed regularization constant.

- Learning leads to a convex quadratic programming.
- ◆ Two-class linear Support Vector Machines (SVM) algorithm.

8.A: Minimization of the regularized empirical risk: two-class classifier

Learning of the SVM classifier can be seen as an unconstrained problem

$$m{w}^* = \operatorname*{argmin}_{m{w} \in \mathbb{R}^n} \left(\lambda \underbrace{\Omega(m{w})}_{\text{regularizer}} + \underbrace{\hat{R}_{\mathcal{T}}(m{w})}_{\text{surrogate of empirical risk}} \right)$$

- The regularizer $\Omega\colon \mathbb{R}^n o \mathbb{R}$ is a convex function: $\Omega(m{w})=rac{1}{2}\|m{w}\|_2^2$ or $\Omega(m{w})=\|m{w}\|_1$.
- The surrogate risk is a convex upper bound of the empirical risk

$$\hat{R}_{\mathcal{T}}(\boldsymbol{w}) = \frac{1}{m} \sum_{i=1}^{m} \max \left\{ 0, 1 - y^{i} \langle \boldsymbol{w}, \boldsymbol{x}^{i} \rangle \right\}$$

8.A: Minimization of the regularized empirical risk: structured classifier

21/21

• Given training examples $\mathcal{T}=\{(\boldsymbol{x}^i,\boldsymbol{y}^i)\in\mathcal{X}\times\mathcal{Y}\mid i\in\mathcal{I}\}$, the goal is to learn parameters $\boldsymbol{w}\in\mathbb{R}^n$ of a general linear classifier

$$h(\boldsymbol{x}; \boldsymbol{w}) = \underset{\boldsymbol{y} \in \mathcal{Y}}{\operatorname{argmax}} \langle \boldsymbol{w}, \boldsymbol{\Psi}(\boldsymbol{x}, \boldsymbol{y}) \rangle$$

where $\Psi \colon \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^n$ is fixed feature map.

• Regularized empirical risk minimization based learning leads to solving

$$m{w}^* = \operatorname*{argmin}_{m{w} \in \mathbb{R}^n} \left(\lambda \underbrace{\Omega(m{w})}_{\text{regularizer}} + \underbrace{\hat{R}_{\mathcal{T}}(m{w})}_{\text{surrogate of empirical risk}} \right)$$

where $\Omega \colon \mathbb{R}^n \to \mathbb{R}$ is a (convex) regularizer and $\hat{R}_{\mathcal{T}} \colon \mathbb{R}^n \to \mathbb{R}$ is a surrogate of the empirical risk

$$R_{\mathcal{T}}(h(\cdot; \boldsymbol{w}) = \frac{1}{m} \sum_{i=1}^{m} \ell(\boldsymbol{y}^{i}, h(\boldsymbol{x}^{i}; \boldsymbol{w}))$$

and $\ell \colon \mathcal{Y} \times \mathcal{Y} \to [0, \infty)$ is an application specific loss.

Question: How to construct the surrogate $\hat{R}_{\mathcal{T}}$ for a generic linear classifier and loss?

					8			
	1	9	15	6		2		
2	5			1		3	6	
9					2		8	1
	8	2	6		9			
5	7		1					2
	2	1		9			4	3
		5		7	6	8		
8	9		3					

7	6	3	4	2	8	1	9	5
4	1	9	5	6	3	2	7	8
2	5	8	9	1	7	3	6	4
9	3	4	7	5	2	6	8	1
1	8	2	6	3	9	4	5	7
5	7	6	1	8	4	9	3	2
6	2	1	8	9	5	7	4	3
3	4	5	2	7	6	8	1	9
8	9	7	3	$\boxed{4}$	1	5	2	6

