GRAPHICAL MARKOV MODELS (WS2014) 5. SEMINAR

Assignment 1. Consider the task of finding the most probable sequence of (hidden) states for a (Hidden) Markov model on a chain.
a) Show that the Dynamic Programming approach applied for this task can be interpreted as an equivalent transformation (re-parametrisation) of the model.
b) Show that the transformed functions (potentials) encode an explicit description of all optimisers of the problem

Assignment 2. Let (V, E) be an undirected tree and let $s_{i}, i \in V$ be K-valued random variables associated with the vertices of that tree. Their joint distribution is a Markov model given by

$$
p(s)=\frac{1}{Z} \prod_{i j \in E} g_{i j}\left(s_{i}, s_{j}\right)
$$

where $g_{i j}$ are non-negative factors.
a) Find an algorithm for computing all marginal probabilities $p\left(s_{i}\right), s_{i} \in K, i \in V$ of the model. Hint: See sec. 11 of the lecture, fill in details.
b) Is it possible to parallelise the algorithm?
c) Modify the algorithm such that it computes "max-marginals" of the distribution. The latter are defined by

$$
m\left(s_{i}=k\right)=\max _{s: s_{i}=k} p(s) .
$$

Assignment 3. Consider a GRF for binary valued labellings $x: V \rightarrow\{0,1\}$ of a graph (V, E) given by

$$
p(x)=\frac{1}{Z} \exp \left[\sum_{i j \in E} u_{i j}\left(x_{i}, x_{j}\right)+\sum_{i \in V} u_{i}\left(x_{i}\right)\right]
$$

Show that is is always possible to find an equivalent transformation (re-parametrisation)

$$
u_{i j} \rightarrow \tilde{u}_{i j}, \quad u_{i} \rightarrow \tilde{u}_{i}
$$

such that the new pairwise functions $\tilde{u}_{i j}$ have the form

$$
\tilde{u}_{i j}\left(x_{i}, x_{j}\right)=\alpha_{i j}\left|x_{i}-x_{j}\right|
$$

with some reals $\alpha_{i j} \in \mathbb{R}$.
Assignment 4. Consider the language L of all \mathbf{b} / \mathbf{w} images $x: D \rightarrow\{b, w\}$ containing an arbitrary number of non-overlapping and non-touching one pixel wide rectangular frames (see figure).

a) Prove that L is not expressible by a locally conjunctive predicate

$$
x \in L \quad \text { if and only if } \quad f(x)=\bigwedge_{c \in \mathcal{C}} f_{c}\left(x_{c}\right)=1
$$

with predicates f_{c}, defined on image fragments x_{c}, where $c \subset D$ have bounded size $|c| \leqslant m$.
b) Show that L can be expressed by introducing a field $s: D \rightarrow K$ of non-terminal symbols, a locally conjunctive predicate for them and pixel-wise predicates g "connecting" the non-terminal and terminal symbol in each pixel

$$
x \in L \quad \text { if and only if } \quad \bigvee_{s \in K^{D}}\left[\bigwedge_{c \in \mathcal{C}} f_{c}\left(s_{c}\right) \wedge \bigwedge_{i \in D} g\left(x_{i}, s_{i}\right)\right]=1
$$

Find a suitable structure \mathcal{C}, alphabet of non-terminal symbols K and predicates f_{c}, g.

